Based on JM Aguirregabiria's textbook.

1. $\ddot{x}=y, \quad \ddot{y}=x$.
2. $\ddot{x}-2 \dot{y}+x=0, \quad \ddot{y}-2 \dot{x}+y=e^{2 t}$.
3. Calculate two independent first-integrals for the following system

$$
a \dot{x}=(b-c) y z, \quad b \dot{y}=(c-a) z x, \quad c \dot{z}=(a-b) x y
$$

and the first order equation resulting using the first-integrals. (a, b and c are constants.) What is the meaning of this system in mechanics? What is the meaning of the first integrals?
4. $\frac{d x}{x(y-z)}=\frac{d y}{y(z-x)}=\frac{d z}{z(x-y)}$.
5. Are the following vectors $\binom{1}{t}$ and $\binom{t^{2}}{t^{3}}$ independent? Calculate their Wronskian and explain the result.
6. Liouville's formula. Remembering that the trace of a matrix is the sum of the elements of its diagonal $\left(\operatorname{tr} \mathbf{A}=\sum_{k=1}^{n} a_{k k}\right)$, prove that the Wronskian of the fundamental system of a linear homogeneous system $\dot{\mathbf{x}}=\mathbf{A} \cdot \mathbf{x}$ satisfies $W(t)=W\left(t_{0}\right) \exp \int_{t_{0}}^{t} \operatorname{tr} \mathbf{A} d t$

Suggestion: Start with the $n=2$ case.
7. Systems and equations Study the first order system corresponding to a second order linear equation. Find the relation between the equation and the fundamental system and compare their Wronskians.
8. Find the linear system that admits the following fundamental matrix $\left(\begin{array}{cc}t & t^{2} \\ 0 & 0\end{array}\right)$.
9. Show that any matrix \mathbf{A}, satisfies $\operatorname{det} e^{\mathbf{A}}=e^{\operatorname{tr} \mathbf{A}}$.

Suggestion: Use Liouvilles's formula in det $e^{\mathbf{A} t}$ and choose $t=1$.
10. Asymptotic stability of the origin Let us suppose that the (constant) $n \times n$ matrices corresponding to a linear homogeneous system have n real distinct proper values. What conditions do the proper values have to satisfy so that all solutions $\mathbf{x}(t)$ obey $\lim _{t \rightarrow \infty} x_{i}(t)=0$? What happens if all proper values are not real? And if all of them are not different?
11. Classify the phase-space orbits of the following linear homogeneous systems with respect to the constants a and b :

$$
\binom{\dot{x}}{\dot{y}}=\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right) \cdot\binom{x}{y} .
$$

12. Consider the following matrices:

$$
\mathbf{A}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right)
$$

Calculate $e^{\mathbf{A}}, e^{\mathbf{B}}, e^{\mathbf{A}} \cdot e^{\mathbf{B}}, e^{\mathbf{B}} \cdot e^{\mathbf{A}}$ and $e^{\mathbf{A}+\mathbf{B}}$. Explain your results.
13. Baker, Campbell and Hausdorff formula.Expand the product $\mathbf{F}(t)=e^{\mathbf{A} t} \cdot \mathbf{B} \cdot e^{-\mathbf{A} t}$ in a Taylor series around $t=0$ in order to prove

$$
e^{\mathbf{A}} \cdot \mathbf{B}=(\mathbf{B}+[\mathbf{A}, \mathbf{B}]+\frac{1}{2}[\mathbf{A},[\mathbf{A}, \mathbf{B}]]+\cdots+\frac{1}{n!} \underbrace{\mathbf{A},[\mathbf{A}, \ldots,[\mathbf{A}, \mathbf{B}}_{n \text { aldiz }} \underbrace{] \cdots]]}_{n \text { aldiz }}+\cdots) \cdot e^{\mathbf{A}} .
$$

As usual, the commutator of the matrices \mathbf{A} and \mathbf{B} is given by $[\mathbf{A}, \mathbf{B}] \equiv \mathbf{A} \cdot \mathbf{B}-\mathbf{B} \cdot \mathbf{A}$
14. Glauber's formula. Suppose that both matrices \mathbf{A} and \mathbf{B} commute with their commutator $[\mathbf{A}, \mathbf{B}]$. Find the differential equation that $\mathbf{F}(t)=e^{\mathbf{A} t} \cdot e^{\mathbf{B} t}$ satisfies in order to prove

$$
e^{\mathbf{A}} \cdot e^{\mathbf{B}}=e^{\mathbf{A}+\mathbf{B}} \cdot e^{\frac{1}{2}[\mathbf{A}, \mathbf{B}]} .
$$

15. RLC circuit. Find the differential equation that describes the circuit in the figure. Use as unknowns the intensity through the autoinduction and the change-in-voltage in the condensators. Calculate the fundamental matrix and the solution corresponding to null initial conditions for the following potential:

$$
V(t)= \begin{cases}1, & \text { baldin } 0 \leq t \leq 1, \\ 0, & \text { baldin } t>1 .\end{cases}
$$

16. $\dot{x}=x+y+z, \quad \dot{y}=-2 y+t, \quad \dot{z}=2 z+\sin t$.
17. $\dot{x}+6 x+3 y-14 z=0, \quad \dot{y}-4 x-3 y+8 z=0, \quad \dot{z}+2 x+y-5 z=\sin t$.
18. One electron is moving in a constant uniform electromagnetic field satisfying $\mathbf{E} \perp \mathbf{B}$. Show that its nonrelativistic trajectory, starting from rest, is given by a cycloid.
19. $\dot{\mathrm{x}}=\left(\begin{array}{rrr}1 & -3 & 9 \\ 0 & -5 & 18 \\ 0 & -3 & 10\end{array}\right) \cdot \mathbf{x}$.
20. Radioactive decay. At the beginning the isotope A is pure, but it undergoes a the double disintegration $A \rightarrow B \rightarrow C$. The isotope is C is stable. Using half-lives, calculate the relative concentration of the isotopes A, B and C at any time.
21. Study the trajectory a falling particle, when the friction is proportional to the velocity.
22. $\dot{\mathbf{x}}=\left(\begin{array}{rrr}1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1\end{array}\right) \cdot \mathbf{x}$.
23. $\dot{x}+3 x+4 y=0, \quad \dot{y}+2 x+5 y=0$.
24. $\dot{x}=-5 x-2 y, \quad \dot{y}=x-7 y$.
25. $\dot{x}-y+z=0, \quad \dot{y}-x-y=t, \quad \dot{z}-x-z=t$.
26. How can we calculate the homogeneous linear system that has as a general solution a given fundamental matrix? Use your answer to find the system that has the following as general solution

$$
\begin{aligned}
x & =A e^{3 t}+C e^{-2 t}, \\
y & =\frac{3}{2} A e^{3 t}+B e^{-t}-C e^{-2 t}, \\
z & =\frac{3}{2} A e^{3 t}-B e^{-t}-C e^{-2 t} .
\end{aligned}
$$

27. Solve the following system

$$
\begin{aligned}
\dot{x} & =z \sin t-y \\
\dot{y} & =x-z \cos t \\
\dot{z} & =y \cos t-x \sin t .
\end{aligned}
$$

Can you find an easy geometric explanation to the solution?
Suggestion: Write the solution by means of matrices and using the initial condition corresponding to $t=0$.
28. Find the general solution for the following system

$$
\begin{aligned}
y^{\prime} & =4 \frac{x y-z}{x^{2}-1} \\
z^{\prime} & =2 \frac{x z-y}{x^{2}-1}
\end{aligned}
$$

29. Systems of Cauchy and Euler. Explain the method to solve a system of differential equations that can be written as follows

$$
t \dot{\mathbf{x}}=\mathbf{A} \cdot \mathbf{x}, \quad(\dot{\mathbf{A}}=\mathbf{0})
$$

In order to do so, use variations of the method explained to solve the equation of the same name, and apply the method to find the general solution of

$$
\begin{aligned}
t \dot{x} & =3 x-2 y \\
t \dot{y} & =2 x-2 y
\end{aligned}
$$

30. Solve the following system

$$
\begin{aligned}
y^{\prime} & =\frac{z}{x} \\
z^{\prime} & =-x y
\end{aligned}
$$

