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7.1 The concept of stability

◮ In general, it is not easy to solve ordinary differential
equations. Fortunately, sometimes it is enough to know
the behavior of the solution in the limit t → ±∞ or to
study its asymptotically.

◮ This field is known as qualitative dynamics

◮ The fundamental concept for this analysis is the
stability.
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◮ As we saw in topic 4, a system of first order differential
equations is known as dynamical system. Let

~̇x = ~f (t, ~x),

be a dynamical system, and ~x∗(t) its solution; that is

~̇x
∗

(t) = ~f (t, ~x∗(t)).

◮ In order to describe the qualitative behavior of a
system, it is very useful to know if and where it has an
invariant set.

If a solutions of a system always belongs to a set, then
the set is invariant
There are many types, but the most common are the
equilibrium points. These are also known as stable,
fixed, critic... points. Their definition is the following:

◮ The point ~x = ~x∗ is a equilibrium point if:

~f (t, ~x∗) = 0, (and also
∂~f (t, ~x∗)

∂t
= 0).
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Exercise 7.1

◮ Find the equilibrium points of the following dynamical
systems (a) ẋ = ax , (b)ẋ = ax − x3.

◮ a) In this case, there is only one point x∗ = 0 .
b) In this other case, on the other hand, there are three
solutions to the equation ax − x3 = 0 :
x∗

1 = 0, x∗

2 =
√

a, x∗

3 = −√
a.
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◮ In real physical problems, there are always errors in the
initial values. Therefore, it is very important to know
what happens to a solution if the initial values change a
bit. If the solution of the new initial values tend to the
original one, then the solution is stable.

◮ One can examples of stability in physical systems.
◮ In a pendulum it is clear that the equilibrium points are

the maximum and minimum vertical positions. The
lower point is stable, since it is the minimum of the
potential energy (and if there is friction, is is
asymptotically stable)

◮ The higher point, on the other hand, it is unstable: any
perturbation will make the pendulum fall from the
maximum.

◮ In order to define stability we will use Liapunov’s
criterion
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Stable points

◮ The solution ~x∗(t) is stable if for every ǫ > 0 there
exists a δ(ǫ)) > 0 such that:
for any solution ~x(t) that satisfies
|~x(t0) − ~x∗(t0)| < δ(ǫ) (initial condition),
then |~x(t) − ~x∗(t)| < ǫ for every t > t0.

∆

Ε
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Unstable points

◮ The solution ~x∗(t) is unstable if for a δ > 0 as small as
we want, there exist an ǫ > 0 and a ~x(t) for t > t0 such
that |~x(t0) − ~x∗(t0)| < δ and |~x(t) − ~x∗(t)| > ǫ.

∆

Ε
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Asymptotically stable point

◮ The solution ~x∗(t) will be asymptotically stable if it is
stable, and if there is a δ′ > 0 such that for all solutions
whose initial values satisfy |~x(t0) − ~x∗(t0)| < δ′, then
limt→+∞|~x(t) − ~x∗(t)| = 0.

∆

Ε
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◮ The properties of an equilibrium point can be changed
when a parameter changes. When that happens, there
is a bifurcation

◮ One can use bifurcation-diagram to study bifurcations.

◮ The parameter that creates the change is know as
bifurcation-parameter
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◮ The bifurcation-diagrams for a first order equation are
represented as follows:

◮ The position of the equilibrium points is plotted as a
function of the bifurcation-parameter

◮ Stability is represented with a continuous line
◮ Instabilities are represented by dashed lines

◮ The magnitude and direction of the vector-field ẋ is also
represented
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7.2 Two-dimensional autonomous dynamical

systems

◮ We will study systems of the type

ẋ = P(x , y)

ẏ = Q(x , y)

◮ Its solution defines a curve-congruency (t, x , y) in space

◮ Since the system is autonomous, its projection defines a
curve-congruency in (x , y) phase space.

◮ The projection of a solution (x(t), y(t)) onto phase
space, defines a parametric curve, known as phase
trajectory or phase orbit
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7.3. General solution of an autonomous system and its projection onto phase space
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◮ In order to calculate the equation of the phase
trajectories (y(x)), taking into account that our system
is autonomous, we have to integrate

dy

dx
=

Q(x , y)

P(x , y)
.

◮ From the uniqueness-existence theorem, if things are
regular, phase trajectories will not intersect

◮ It can also be seen that the vector field Pî + Qĵ is
tangent to the phase trajectories

◮ Using a hydrodynamic picture, the vector field would be
a velocity-field, and the phase trajectories would be
current lines
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Unidimensional mechanical systems

◮ The machinery of dynamical systems is very useful in
order to study unidimensional mechanical systems

◮ Newton’s second law tells us that the equation of
motion for a force that depends only on position and
velocity is:

ẍ = f (x , ẋ).

◮ This can be rewritten as:

ẋ = y , ẏ = f (x , y).

◮ It is interesting to study the case of a conservative force

ẍ = F (x) = −V ′(x).

The system in this case will be:

ẋ = y , ẏ = −V ′(x).
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7.3 Quasilinear systems

◮ From now on, we will consider that the dynamical
systems have only a single equilibrium point

Without loss of generality, we will suppose that that
point is at the origin

P(0, 0) = Q(0, 0) = 0

.

◮ We will suppose that the functions P(x , y) and Q(x , y)
accept a Taylor series around the origin:

ẋ ≈ a11x + a12y ,

ẏ ≈ a21x + a22y ,

where

A =

(

a11 a12

a21 a22

)

=

(

∂P
∂x

∂P
∂y

∂Q
∂x

∂Q
∂y

)

(x ,y)=(0,0)
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◮ The system will be quasilinear if:

lim√
x2+y2

→0

P(x , y) − a11x − a12y
√

x2 + y2
= 0,

lim√
x2+y2

→0

Q(x , y) − a21x − a22y
√

x2 + y2
= 0.

◮ The non-linear terms go to zero faster than the linear
terms.
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◮ The system we get once we neglect the non-linear terms
is called linearized system or first approximation or
linear approximation:

ẋ = a11x + a12y ,

ẏ = a21x + a22y ,

◮ The cases we will study have isolated fixed points, and
therefore:

detA 6= 0.

◮ It can be proved that the characteristic roots of the
matrix A will be the following:

k1,2 =
1

2
(trA ± ∆) ,

where
∆ ≡ tr2

A− 4detA.
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7.4 Linear stability

◮ We will apply Liapunov’s method, also known as the
linear stability method. The asymptotic behaviour of a
quasilinear system, and that of the linearized system,
are qualitatively the same (modulo one exception)

◮ The dynamical system that we will mostly use in these
sections is:

ẋ = −x − y − ǫxy ,

ẏ = (1 + r + d)x + (1 + r)y + ǫ(y2 − x2).

When ǫ = 0 the system is fully linear.

◮ For this system detA = d , trA = r , the characteristic
roots are k = (r ±

√
r2 − 4d)/2 with corresponding

eigenvectors

x =

(

−1
k + 1

)
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7.4.1 Different real characteristic roots

∆ > 0 ⇒ k1 > k2

◮ In this case the eigenvectors corresponding to k1 and k2

will be:

~x1 =

(

x1

y1

)

~x2 =

(

x2

y2

)

.

◮ The general solution of the linear system will be:

~x = C1~x1 + C2~x2,

that is,
x = C1x1e

k1t + C2x2e
k2t ,

y = C1y1e
k1t + C2y2e

k2t .
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◮ The slope of the solution curves will be:

y

x
=

C1y1e
k1t + C2y2e

k2t

C1x1ek1t + C2x2ek2t
.

◮ There are two special solution, corresponding to the
trajectories parallel to the eigenvectors:

C2 = 0,
y

x
=

y1

x1
,

C1 = 0,
y

x
=

y2

x2
.
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Real negative roots

∆ > 0, det A > 0, trA < 0 ⇒ k2 < k1 < 0

◮ In this case

lim
t→∞

x = lim
t→∞

(C1x1e
k1t + C2x2e

k2t) = 0

lim
t→∞

y = lim
t→∞

(C1y1e
k1t + C2y2e

k2t) = 0;

so all the trajectories tend to the origin; therefore the
equilibrium pooint is asymptotically stable

◮ Besides, for all curves

y

x
= lim

t→∞

C1y1e
k1t + C2y2e

k2t

C1x1ek1t + C2x2ek2t
=

y1

x1

except for C1 = 0. When the geometry of the
trajectories is like this, the point is called a node.
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So the origin is an asymptotically stable node

7.6. The phase space for our system, for d = 1, r = −5/2 and
ǫ = 0 (left figure)

ǫ = 1 (right figure).

C2 = 0

C1 = 0
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Real positive roots

∆ > 0, det A > 0, trA > 0 ⇒ 0 < k2 < k1

◮ In this case

lim
t→∞

x = lim
t→∞

(C1x1e
k1t + C2x2e

k2t) = ∞

lim
t→∞

y = lim
t→∞

(C1y1e
k1t + C2y2e

k2t) = ∞;

so all trajectories go away from the origin; therefore the
origin is an unstable point

◮ Moreover, for all curves

y

x
= lim

t→∞

C1y1e
k1t + C2y2e

k2t

C1x1ek1t + C2x2ek2t
=

y2

x2

except for C2 = 0. It is a node, then
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So the origin is an unstable node

7.7 The phase space for our system, for d = 1, r = 5/2 and
ǫ = 0 (left figure)

ǫ = 1 (right figure)

C2 = 0

C1 = 0
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Real roots with opposite signs

∆ > 0, det A < 0, trA > 0 ⇒ k2 < 0 < k1

◮ The particular solution C1 = 0 tends to the origin,
following the straight line y/x = y2/x2, called the
stable space

◮ But the particular solution C2 = 0 goes away from the
origin, following the line y/x = y1/x1, called the
unstable space

◮ How do all the other solutions behave?
◮ in the future infinity, they tend to the unstable space

lim
t→∞

y/x = y1/x1

◮ in the past infinity, they tend to the stable space

lim
t→−∞

y/x = y2/x2
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A point with this geometry is called a saddle point

7.8 The phase space for our system, for d = r = −1 and
ǫ = 0 (left figure)

ǫ = 1 (right figure)

C2 = 0

C1 = 0
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7.4.2 Complex characteristic roots

∆ < 0 ⇒ k+ = α + iω, k+ = α − iω,

◮ The general solution for this case is:

x = eαt(C1x1 cos ωt + C2x2 sinωt),

y = eαt(C1y1 cos ωt + C2y2 sinωt).

◮ Now we have periodic solutions, modulated by an
exponential.
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Complex roots with negative real part

∆ < 0, trA < 0 ⇒ α < 0

◮ eαt is decreasing, so the solutions will tend to the origin

◮ but they will not follow a fixed direction, the slope will
be

y

x
=

C1y1 cos ωt + C2y2 sinωt

C1x1 cos ωt + C2x2 sinωt
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This kind of point is called focus or spiral point

7.9 The phase space for our system, for d = 3, r = −1 and ǫ = 0
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Complex roots with negative real part

∆ < 0, trA > 0 ⇒ α > 0

◮ In this case the solutions will go away from the origin

◮ The slope will rotate as the curves go away from the
center

◮ Behaviour as in figure 7.9, but with the arrows pointing
in the opposite direction, away from the origin
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Imaginary roots

∆ < 0, trA = 0 ⇒ α = 0

◮ The orbits are periodic in this case:

x = eαt(C1x1 cos ωt + C2x2 sinωt),

y = eαt(C1y1 cos ωt + C2y2 sinωt).

◮ The point will be stable, but not asymptotically stable

◮ This kind of point is called center or vortex
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◮ The influence of the non-linear term can be very
important, totally changing the geometry of the point

◮ A point that is a center in the linear approximation can
become a focus due to the non-linear term, but can
continue being a center

7.10 The phase space for our system, for d = 1, r = 0 and
ǫ = 0 (left figure)

ǫ = 1 (right figure)
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◮ Another example:
ẋ = −y

ẏ = x − ayn

◮ In the linear approximation, the origin is a center

7.11 Phase space of the system with a = 0
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◮ It can be seen (problem 7.38) that for n = 2, the origin
is still a center

◮ but for n = 3 the center becomes an asymptotically
stable focus
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7.4.3 Same real characteristic roots

∆ = 0 ⇒ k1 = k2

◮ In this case

k1 = k2 =
1

2
trA.

◮ Moreover

∆ = 0 = (a11 − a22) + 4a1221

We have two different cases
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Same roots, first case

a12 = a21 = 0

◮ In this case a ≡ a11 = a22 = 0 and the orbits are the
following straight lines

x = C1e
at , y = C2e

at .

◮ The slopes are different, and such a point is called a
proper node or star node
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◮ One example of this is given by the following system:

ẋ = −x − ǫxy ,

ẏ = −y − ǫ(y2 − x2).

7.12. Phase space for this case with ǫ = 0 (left figure) and ǫ = 1 (right figure).
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Same roots: second case

|a12| + |a21| = 0

◮ In this case the orbits are as follows

x = (C1x1 + C2(x1t + x2))e
kt ,

y = (C1y1 + C2(y1t + y2))e
kt .

◮ All the slopes are asymptotically the same

lim
t→∞

y

x
=

y1

x1
,

and this point is called a degenerate node
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7.13 The phase space for our system, for d = 1, r = −2 and
ǫ = 0 (left figure)

ǫ = 1 (right figure)
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7.5 Unidimensional mechanical systems

◮ Let us suppose that a particle experiences a
conservative force F = −V ′(x) indar kontserbakorrak
and a friction froce R = −γẋ (γ ≥ 0)

◮ Its equation of motion will be:

ẍ = −V ′(x) − γ

m
ẋ

◮ We can write this equation in a system-like form by
defining v = ẋ :

ẋ = P(x , v) ≡ v

v̈ = Q(x , v) ≡ −V ′(x) − γ

m
v
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◮ If the point x = x∗ satisfies V (x∗) = 0, then the linear
approximation will be

ẋ = v

v̈ = −V ′′(x∗) − γ

m
v .

◮ The characteristic roots will be

k1,2 = − γ

m
±
√

−V ′′(x∗) +
( γ

m

)2
.

◮ Let us classify these points
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Local Maximum

V ′′(x∗) < 0 ⇒ k2 < 0 < k1

◮ This will be a saddle point.

Inflection point or higher order extremum

V ′′(x∗) = 0 ⇒ k1 = 0, k2 = −γ

◮ In this case the linear approximation is not enough.
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Local minimum

V ′′(x∗) > 0

◮ We have two cases here
◮ γ2 < 4V ′′(x∗) (friction too big)

The roots are complex, and with negative real part: the
equilibrium point will be an asymptotically stable focus

◮ γ2 > 4V ′′(x∗) (small friction)
In this case the roots are real and negative: the
equilibrium point will be an asymptotically stable node
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