## Ordinary differential equations Topic 5

Laplace transforms
5.1 Definition, 5.2 Properties, 5.3 Inverse transform, 5.6

Linear equations with constant coefficients

### 5.1 Definition

- We will study a new concept, which will be useful in order to solve problems with initial conditions:

- We will turn a differential equation into an algebraic equation
- It is very important from a theoretical point of view: it is widely used in the theory of circuits and in quantum mechanics
- The Laplace transform $F$ of the function $f$ will be defined by the following integral:

$$
\mathcal{L}[f]=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

## Exercise 5.1

- Show that the Laplace transform of $f=1$ is the following:

$$
\mathcal{L}[1]=\frac{1}{s} \text { if } s>0 .
$$

- Applying the definition

$$
\begin{gathered}
\mathcal{L}[1]=\int_{0}^{\infty} e^{-s t} d t=\lim _{R \rightarrow \infty} \int_{0}^{R} e^{-s t} d t= \\
\lim _{R \rightarrow \infty}\left[-\frac{e^{-s t}}{s}\right]_{0}^{R}=\lim _{R \rightarrow \infty}\left[\frac{1}{s}-\frac{e^{-s R}}{s}\right]=\frac{1}{s} .
\end{gathered}
$$

- Bear in mind that the expression is well defined because we have that $s>0$.
- When calculating Laplace transforms, it is useful to use the following function: the Heaviside function. This is usually expressed as $\theta(t)$ and it is defined as:

$$
\theta(t)= \begin{cases}1 & t>0 \\ 0 & t<0\end{cases}
$$



- Clearly

$$
\theta(t-a)= \begin{cases}1 & t>a \\ 0 & t<a\end{cases}
$$

Laplace transforms
5.1 Definition
5.2 Properties
5.3 Inverse transform
5.6 Linear equations with constants
coefficients

- For example, the function $\theta(t-2)$ will be:

- Note that in order to calculate the Laplace transform of the function $f(t)$, the value of the function at $t<0$ is not important, so we will always take:

$$
f(t)=\theta(t) f(t)
$$

- Here are two examples showing the effect of applying the Heaviside function:


- If $s>0$ we have

$$
\mathcal{L}[1]=\mathcal{L}[\theta(t)]=\frac{1}{s}
$$

- The following properties will be useful:
- $\theta^{2}(t-a)=\theta(t-a)$,
- $\theta(t-a) \theta(t-b)=\theta(t-\max (a, b))$.


## The $\mathbf{F}(\alpha)$ space

- We need some condition in order for the integral in the Laplace transform to exist
- The function $f$ will be or exponential order $\alpha$ if, given a constant $\alpha$ and the positive constants $t_{0}, M$, the following is satisfied

$$
e^{-\alpha t}|f(t)|<M \quad \forall t>t_{0}
$$

- The functions that satisfy the condition form the $\mathbf{F}(\alpha)$ space.


## Exercise 5.2

- Prove that the functions $1, \sin$ at and $\cos$ at belong to the $\mathbf{F}(0)$ space

For $f=1$

$$
|1| \leq M \quad \forall M \geq 1, \quad \forall t>0
$$

For $f=\sin a t$

$$
|\sin a t| \leq M \quad \forall M \geq 1, \quad \forall t>0
$$

For $f=\cos a t$

$$
|\sin a t| \leq M \quad \forall M \geq 1, \quad \forall t>0
$$

Therefore, since $\alpha=0$, then all the above functions belong to $\mathbf{F}(0)$..

## Another exercise

- Which is the exponential order of the function $e^{\sin t}$ ?

Since $|\sin t| \leq 1$,

$$
\frac{1}{e} \leq e^{\sin t} \leq e \quad \forall t>0
$$

and

$$
\left|e^{\sin t}\right| \leq e \quad \forall t>0
$$

Thus, if we choose $M=e$, we find that the exponential order is 0 .

## And yet another one

- Which is the exponential order of $e^{(1+\cos t) t}$ ?

Since $(1+\cos t) t<(1+|\cos t|) t<2 t$, we have that at least for $\forall t>1$ then

$$
e^{(1+\cos t) t} \leq e^{2 t} \quad \forall t>1
$$

The exponential order is 2 .
(actually, more careful analysis shows that it holds for $\forall t>0.739)$.

## Exercise 5.4

- Prove that if $f \in \mathbf{F}(\alpha)$ and $g \in \mathbf{F}(\beta)$, then $f g \in \mathbf{F}(\alpha+\beta)$

We know for $f$ that for some constants $M_{1}$ and $t_{1}$

$$
|f(t)| \leq M_{1} e^{\alpha t} \forall t>t_{1}
$$

And for $g$, given the constants $M_{2}$ and $t_{2}$

$$
|g(t)| \leq M_{2} e^{\beta t} \forall t>t_{2}
$$

Then, we will have that

$$
|f(t) g(t)| \leq M_{1} M_{2} e^{\alpha+\beta t} \forall t>\max \left(t_{1}, t_{0}\right)
$$

so this means that $f g \in \mathbf{F}(\alpha+\beta)$.

- If $f(t) \in \mathbf{F}(\alpha)$ then the following properties will be satisfied:
- The transform $F(s)$ will be defined for $s>\alpha$
- The function $s F(s)$ will be bounded at $s \rightarrow \infty$, so $\lim _{s \rightarrow \infty} F(s)=0$.
- For example, since $1 \in \mathbf{F}(0)$, the transform $\mathcal{L}[1]$ will be defined for $s>0$. Moreover, $\lim _{s \rightarrow \infty} \mathcal{L}[1]=0$
- In this case this is obvious, since we have seen previously that

$$
\lim _{s \rightarrow \infty} \mathcal{L}[1]=\frac{1}{s}
$$

- From now on, we will assume that the function $f(t)$ will belong to the appropriate $\mathbf{F}(\alpha)$.


## Exercise 5.5

- Prove the following

$$
\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a} \quad \text { if } \quad s>a
$$

$$
\begin{gathered}
\mathcal{L}\left[e^{a t}\right]=\int_{0}^{\infty} e^{-s t} e^{a t} d t=\lim _{R \rightarrow \infty} \int_{0}^{R} e^{(a-s) t} d t \\
\lim _{R \rightarrow \infty}\left[\frac{e^{(a-s) t}}{a-s}\right]_{0}^{R}= \\
{\left[\frac{e^{(a-s) R}}{a-s}-\frac{1}{a-s}\right]=\frac{1}{s-a} \quad \forall s>a .}
\end{gathered}
$$

### 5.2 Properties Linearity

- From the linearity of the integral, we get:

$$
\mathcal{L}[a f(t)+b g(t)]=a \mathcal{L}[f(t)]+b \mathcal{L}[g(t)],
$$

where $a$ and $b$ are constants.

- Therefore, if our differential problem is linear, we will not lose the linearity when performing the transform.


## Exercise 5.6

- Use linearity and the transform of the exponential to prove

$$
\begin{gathered}
\mathcal{L}[\cosh a t]=\frac{s}{s^{2}-a^{2}}, \quad \mathcal{L}[\sinh a t]=\frac{a}{s^{2}-a^{2}}, \\
\text { for } s>|a|
\end{gathered}
$$

without calculating any integral.
On the one hand

$$
\cosh a t=\frac{e^{a t}+e^{-a t}}{2}, \quad \sinh a t=\frac{e^{a t}-e^{-a t}}{2}
$$

and on the other

$$
\begin{gathered}
\mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a} \text { if } s>a, \\
\mathcal{L}\left[e^{-a t}\right]=\frac{1}{s+a} \text { if } s>-a .
\end{gathered}
$$

- Then,

$$
\begin{gathered}
\mathcal{L}[\cosh a t]=\frac{\mathcal{L}\left[e^{a t}\right]}{2}+\frac{\mathcal{L}\left[e^{-a t}\right]}{2} \\
=\frac{1}{2(s-a)}+\frac{1}{2(s+a)}=\frac{s}{s^{2}-a^{2}} \quad \text { for } s>|a| .
\end{gathered}
$$

- In a similar way we have,

$$
\begin{gathered}
\mathcal{L}[\sinh a t]=\frac{\mathcal{L}\left[e^{a t}\right]}{2}-\frac{\mathcal{L}\left[e^{-a t}\right]}{2} \\
=\frac{1}{2(s-a)}-\frac{1}{2(s+a)}=\frac{a}{s^{2}-a^{2}} \quad \text { for } s>|a| .
\end{gathered}
$$

## Theorem of displacement

- If $F(s)=\mathcal{L}[f(t)]$ for $s>\alpha$, then, using the definition of the Laplace transform,

$$
\begin{gathered}
\mathcal{L}\left[e^{a t} f(t)\right]=\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t= \\
\int_{0}^{\infty} e^{-(s-a) t} f(t) d t=F(s-a) \quad \text { for } s-a>\alpha .
\end{gathered}
$$

- The transform of the product between $f(t)$ and $e^{a t}$, is the translation of the transform of the function $f(t)$.
- Using the result of the previous exercise:

$$
\begin{aligned}
& \mathcal{L}\left[e^{a t} \cosh b t\right]=\frac{s-a}{(s-a)^{2}-b^{2}}, \text { for } s>|b|+a, \\
& \mathcal{L}\left[e^{a t} \sinh b t\right]=\frac{b}{(s-a)^{2}-b^{2}}, \text { for } s>|b|+a
\end{aligned}
$$

- Remember that we are working with the hypothesis that the functions $f(t)$ are zero for $t>0$.


## Exercise 5.8

- Use a change of variables to prove the following: if

$$
\begin{aligned}
F(s)= & \mathcal{L}[f(t)] \text { for } s>\alpha, \text { and } \alpha>0 \text {, then } \\
& \mathcal{L}[\theta(t-a) f(t-a)]=e^{-a s} F(s), \text { if } s>\alpha .
\end{aligned}
$$

From the definition:

$$
\begin{gathered}
\mathcal{L}[\theta(t-a) f(t-a)]=\int_{0}^{\infty} e^{-s t} \theta(t-a) f(t-a) d t= \\
\int_{a}^{\infty} e^{-s t} f(t-a) d t
\end{gathered}
$$

Now, changing variables to $\tau=t-a$

$$
\begin{aligned}
& \mathcal{L}[\theta(t-a) f(t-a)]=\int_{0}^{\infty} e^{-s(\tau+a)} f(\tau) d \tau= \\
& e^{-s a} \int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau=e^{-s a} F(s), \text { for } s>\alpha .
\end{aligned}
$$

## Exercise 5.9

- Prove, without calculating any integral that for $a>0$ :

$$
\mathcal{L}[\theta(t-a)]=\frac{e^{-a s}}{s}, \text { for } s>0
$$

We know that the transform of $f(t)=1$ for $s>0$ is

$$
\mathcal{L}[1]=\frac{1}{s} \text { for } s>0 .
$$

Now, using the result of 5.8,

$$
\mathcal{L}[\theta(t-a)]=e^{-s a} / s, \text { for } s>0
$$

But in order for the previous result to be acceptable we need $a>0$, because for $a<0$ we have

$$
\lim _{s \rightarrow \infty} e^{-s a} / s \neq 0
$$

## Change of scale <br> Exercise 5.10

- Let us suppose that when $a>0$ and $s>\alpha$, then $F(s)=\mathcal{L}[f(t)]$. Prove that

$$
\mathcal{L}[f(a t)]=\frac{1}{a} F\left(\frac{s}{a}\right), \text { if } s>\alpha a .
$$

Applying the definition

$$
\mathcal{L}[f(a t)]=\int_{0}^{\infty} e^{-s t} f(a t) d t
$$

Now, changing variables to $\tau=a t$ :

$$
\begin{gathered}
\mathcal{L}[f(a t)]=\frac{1}{a} \int_{0}^{\infty} e^{-\frac{s}{a} \tau} f(\tau) d \tau=\frac{1}{a} F\left(\frac{s}{a}\right), \\
\text { if } s>\alpha a .
\end{gathered}
$$

## Derivatives

- Let us suppose that $f, f^{\prime}, \ldots, f^{(n)} \in F(\alpha)$ and $F(s)=\mathcal{L}[f(t)]$ for all $s>\alpha$.
- Supposing that the derivative of $f$ is continuous in $[0, \infty)$, let us calculate the transform of the derivative $f^{\prime}$ :

$$
\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t=\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t
$$

- Bearing in mind that the exponential order of the function $f(t)$ is $\alpha$, then $\lim _{s \rightarrow \infty} e^{-s t} f(t)=0$ for all $s>\alpha$.
- Thus

$$
\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0), \text { for } s>\alpha .
$$

- By induction, we can get, for $s>\alpha$ :

$$
\begin{gathered}
\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0), \\
\mathcal{L}\left[f^{\prime \prime}(t)\right]=s^{2} F(s)-s f(0)-f^{\prime}(0), \\
\vdots \\
\mathcal{L}\left[f^{n}(t)\right]=s^{n} F(s)-s^{n-1} f(0)- \\
s^{n-2} f^{\prime}(0)-\cdots-s f^{n-2}(0)-f^{(n-1)}(0) .
\end{gathered}
$$

- We will suppose that $f(0), f^{\prime}(0), f^{\prime \prime}(0) \cdots$ exist as right limits


## Exercise 5.11

- Use $\mathcal{L}\left[f^{\prime}(t)\right]=s F(s)-f(0)$ to get the transform of $e^{a t}$.

$$
\mathcal{L}\left[a e^{a t}\right]=\mathcal{L}\left[\frac{d}{d t}\left(e^{a t}\right)\right]=s \mathcal{L}\left[e^{a t}\right]-\left.e^{a t}\right|_{t=0}=s \mathcal{L}\left[e^{a t}\right]-1 .
$$

On the other hand,

$$
\mathcal{L}\left[a e^{a t}\right]=a \mathcal{L}\left[e^{a t}\right] .
$$

Then,

$$
a \mathcal{L}\left[e^{a t}\right]=s \mathcal{L}\left[e^{a t}\right]-1,
$$

and so

$$
\left(\mathcal{L}\left[e^{a t}\right](a-s)\right)=-1, \quad \mathcal{L}\left[e^{a t}\right]=\frac{1}{s-a} \text { if } s>a .
$$

## Exercise 5.12

- Use the definition of the transform, and then induction, to prove:

$$
\begin{gathered}
\mathcal{L}[t f(t)]=-F^{\prime}(s) \quad \text { if } s>\alpha, \\
\mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} F^{(n)}(s) \quad \text { if } s>\alpha
\end{gathered}
$$

Bearing in mind that

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

we can take a derivative with respect to $t$ to get

$$
F^{\prime}(s)=-1 \int_{0}^{\infty} e^{-s t} t f(t) d t
$$

Taking further derivatives

$$
\begin{gathered}
F^{\prime \prime}(s)=(-1)^{2} \int_{0}^{\infty} e^{-s t} t^{2} f(t) d t \\
F^{\prime \prime \prime}(s)=(-1)^{3} \int_{0}^{\infty} e^{-s t} t^{3} f(t) d t \\
\vdots \\
F^{(n)}(s)=(-1)^{n} \int_{0}^{\infty} e^{-s t} t^{n} f(t) d t
\end{gathered}
$$

And then we get:

$$
\mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} F^{(n)}(s) \quad \text { if } s>\alpha
$$

## Exercise 5.13

- Prove (without performing any integral)

$$
\begin{aligned}
& \mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}} \quad \text { if } s>0, \\
& \mathcal{L}\left[t^{n} e^{a t}\right]=\frac{n!}{(s-a)^{n+1}} \quad \text { if } s>\alpha
\end{aligned}
$$

Bearing in mind that

$$
\mathcal{L}\left[t^{n} f(t)\right]=(-1)^{n} F^{(n)}(s) \quad \text { if } s>\alpha,
$$

and in this case $f(t)=1$, and $\mathcal{L}[f(t)]=1 / s$, then

$$
\mathcal{L}\left[t^{n}\right]=(-1)^{n} \frac{d^{n}}{d s^{n}}\left(\frac{1}{s}\right)=\frac{n!}{s^{n+1}} \quad \text { if } s>0 .
$$

- Let us study the second case now.

First we denote $\mathcal{L}\left[t^{n}\right]=F(s)$.
Using the displacement theorem

$$
\mathcal{L}\left[t^{n} e^{a t}\right]=F(s-a)
$$

In this last expression, we do the change $s \rightarrow s-a$ to get:

$$
\mathcal{L}\left[t^{n} e^{a t}\right]=\frac{n!}{(s-a)^{n+1}} .
$$

- Remember that

$$
\mathcal{L}[\theta(t) f(t)]=\mathcal{L}[f(t)]=F(s)
$$

then, it is convenient to write this in the most general way as

$$
\begin{gathered}
\mathcal{L}[\theta(t) t f(t)]=-F^{\prime}(s) \\
\mathcal{L}\left[\theta(t) t^{n} f(t)\right]=(-1)^{n} F^{(n)}(s) \\
\mathcal{L}\left[\theta(t) t^{n}\right]=\frac{n!}{s^{n+1}} \quad \text { if } n=1,2, \cdots \\
\mathcal{L}\left[\theta(t) t^{n} e^{a t}\right]=\frac{n!}{(s-a)^{n+1}} \quad \text { if } n=1,2, \cdots
\end{gathered}
$$

- Some other useful transforms (Use the book!)

$$
\begin{aligned}
\mathcal{L}[\theta(t) \sin (a t)] & =\frac{a}{s^{2}+a^{2}} \\
\mathcal{L}[\theta(t) t \sin (a t)] & =\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}} \\
\mathcal{L}[\theta(t) \cos (a t)] & =\frac{s}{s^{2}+a^{2}} \\
\mathcal{L}[\theta(t) t \cos (a t)] & =\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}
\end{aligned}
$$

### 5.3 Inverse transform

- There is a general formula to get the inverse transform, but we will mostly do it by inspection
- The inverse transform is denoted as:

$$
\mathcal{L}^{-1}[F(s)]=f(t) .
$$

- We will also use that it is linear:

$$
\mathcal{L}^{-1}[a F(s)+b G(s)]=a \mathcal{L}^{-1}[F(s)]+b \mathcal{L}^{-1}[G(s)] .
$$

- Let us try one example:

$$
F(s)=\frac{1}{s(s+1)^{2}}
$$

We can decompose it in simple fractions

$$
\frac{1}{s(s+1)^{2}}=\frac{1}{s}-\frac{1}{s+1}-\frac{1}{(s+1)^{2}} .
$$

Using tables and the theorem of displacement we can get:

$$
\mathcal{L}^{-1}\left[\frac{1}{s}\right]=\theta(t), \quad \mathcal{L}^{-1}\left[\frac{1}{s+1}\right]=\theta(t) e^{-t} .
$$

$$
\mathcal{L}^{-1}\left[-\left(\frac{1}{s+1}\right)^{2}\right]=-\theta(t) t e^{-t}
$$

The final answer being

$$
\mathcal{L}^{-1}\left[\frac{1}{s(s+1)^{2}}\right]=\theta(t)\left(1-(1+t) e^{-t}\right) .
$$

## Exercise 5.15

- Find the inverse transform of the following functions:

$$
\begin{gathered}
F(s)=\frac{s}{s^{3}-s^{2}-s+1} \\
F(s)=\frac{2 s}{\left(s^{2}+1\right)^{2}}
\end{gathered}
$$

- For the first case we can decompose it as

$$
\frac{s}{s^{3}-s^{2}-s+1}=\frac{1}{2(s-1)^{2}}+\frac{1}{4(s-1)}-\frac{1}{4(s+1)}
$$

We know that:

$$
\mathcal{L}\left[e^{a t} t^{n}\right]=\mathcal{L}\left[\theta(t) e^{a t} t^{n}\right]=\frac{n!}{(s-a)^{n+1}}
$$

Then

$$
\begin{gathered}
\frac{1}{(s-1)^{2}}=\mathcal{L}\left[\theta(t) e^{t} t\right], \frac{1}{(s-1)}=\mathcal{L}\left[\theta(t) e^{t}\right], \\
\frac{1}{(s+1)}=\mathcal{L}\left[e^{-t}\right] .
\end{gathered}
$$

and,

$$
\begin{aligned}
& F(s)=\frac{1}{2(s-1)^{2}}+\frac{1}{4(s-1)}-\frac{1}{4(s+1)}= \\
& \frac{1}{2} \mathcal{L}\left[\theta(t) e^{t} t\right]+\frac{1}{4} \mathcal{L}\left[\theta(t) e^{t}\right]-\frac{1}{4} \mathcal{L}\left[\theta(t) e^{-t}\right]
\end{aligned}
$$

The solution is then

$$
\mathcal{L}^{-1}[F(s)]=f(t)=\frac{1}{4} \theta(t)\left(e^{t}(2 t+1)-e^{-t}\right) .
$$

- The second case is easier:

$$
\begin{gathered}
\mathcal{L}^{-1}[F(s)]=\mathcal{L}^{-1}\left[\frac{d}{d s}\left(-\frac{1}{s^{2}+1}\right)\right]= \\
\mathcal{L}^{-1}\left[\frac{d}{d s} \mathcal{L}[-\sin t]\right]=t \sin t
\end{gathered}
$$

### 5.6 Linear equations with constants coefficients

- Due to the properties of the Laplace transform, the derivatives become multiplications
- We can use that property to solve the initial value problem of a differential equation (or system of equations) with constant coefficients using the following method:

1. Calculate the Laplace transform of the differential problem
2. Solve the algebraic problem
3. Find the inverse transform

- Laplace transforms are specially useful when the inhomogeneous term is defined in parts


## Exercise 5.23

- LEt us consider the following differential equation

$$
\ddot{x}+x=\left\{\begin{array}{ll}
1, & \text { if } 0<t<\pi, \\
0, & \text { if } t>\pi,
\end{array} \quad x(0)=\dot{x}(0)=0 .\right.
$$

Show that the inhomogeneous term is $\theta(t)-\theta(t-\pi)$ and solve the problem. Is the solution continuous?

- Let us study the following relation with a graphic:

$$
\theta(t)-\theta(t-\pi)= \begin{cases}1, & \text { if } 0<t<\pi \\ 0, & \text { if } t>\pi\end{cases}
$$



Laplace transforms
5.1 Definition
5.2 Properties
5.3 Inverse transform
5.6 Linear equations with constants
coefficients

- In general we will have:

$$
\theta(t-a)-\theta(t-b)= \begin{cases}1, & \text { if } a<t<b \\ 0, & \text { otherwise }\end{cases}
$$



Laplace transforms
5.1 Definition
5.2 Properties
5.3 Inverse transform
5.6 Linear equations
with constants
coefficients

- Let us solve the problem now

If we call $X(s)=\mathcal{L}[x[t]]$.
Then

$$
\mathcal{L}[\ddot{x}[t]]=s^{2} X(s)-s X(0)-\dot{x}(0)=s^{2} X(s),
$$

where we have used $x(0)=\dot{x}(0)=0$.
The equation to solve is

$$
\ddot{x}+x=\theta(t)-\theta(t-\pi) .
$$

Then,

$$
\mathcal{L}[\ddot{x}+x]=\mathcal{L}[\theta(t)-\theta(t-\pi)] .
$$

Using previous results we get:

$$
\mathcal{L}[\ddot{x}+x]=s^{2} X(s)+X(s)=\left(s^{2}+1\right) X(s)
$$

On the other hand

$$
\mathcal{L}[\theta(t)]=\frac{1}{s}, \quad \mathcal{L}[\theta(t-\pi)]=\frac{e^{-\pi s}}{s} .
$$

The transform then reads:

$$
\begin{gathered}
\left(s^{2}+1\right) X(s)=\frac{1}{s}-\frac{e^{-\pi s}}{s}=\frac{1-e^{-\pi s}}{s} \\
X(s)=\frac{1-e^{-\pi s}}{s\left(s^{2}+1\right)}=\left(1-e^{-\pi s}\right)\left(\frac{1}{s}-\frac{s}{s^{2}+1}\right) .
\end{gathered}
$$

- We need to calculate the inverse transform now.
- Remembering the following relation:

$$
\mathcal{L}[\theta(t-a) f(t-a)]=e^{-a s} F(s)
$$

defining $F(s)=\mathcal{L}[f(t-a)]$.
It can be seen that:

$$
\begin{gathered}
X(s)=\left(1-e^{-\pi s}\right)(\mathcal{L}[\theta(t)]-\mathcal{L}[\theta(t) \cos t])= \\
(\mathcal{L}[\theta(t)]-\mathcal{L}[\theta(t) \cos t])-e^{-\pi s}(\mathcal{L}[\theta(t)]-\mathcal{L}[\cos t])= \\
\mathcal{L}[\theta(t)]-\mathcal{L}[\theta(t) \cos t]- \\
\mathcal{L}[\theta(t-\pi)]-\mathcal{L}[\theta(t-\pi) \cos (t-\pi)]= \\
\mathcal{L}[\theta(t)(1-\cos t)]-\mathcal{L}[\theta(t-\pi)(1-\cos (t-\pi))]
\end{gathered}
$$

- Then

$$
\begin{gathered}
X(s)=\mathcal{L}[x(t)]=\mathcal{L}[\theta(t)(1-\cos t)- \\
\theta(t-\pi)(1-\cos (t-\pi))]
\end{gathered}
$$

and the solution is

$$
x(t)=\theta(t)(1-\cos t)-\theta(t-\pi)(1-\cos (t-\pi))
$$

- In order to check the the continuity, we can write it as

$$
x(t)= \begin{cases}1-\cos t & \pi>t>0 \\ -2 \cos t & t>\pi\end{cases}
$$

And as this is satisfied:

$$
\lim _{t \rightarrow \pi^{-}}=1-\cos \pi=2, \quad \lim _{t \rightarrow \pi^{+}}=-2 \cos \pi=2
$$

The function is continuous

## February 2008

- Solve the following initial value problem:

$$
\ddot{x}+2 \dot{x}-3 x=\left\{\begin{array}{ll}
t & 0<t<1, \\
0 & t>1,
\end{array} \quad x(0)=\dot{x}(0)=0 .\right.
$$

The problem can be rewritten as:

$$
\begin{gathered}
\ddot{x}+2 \dot{x}-3 x=t[\theta(t)-\theta(t-1)]= \\
t \theta(t)-(t-1) \theta(t-1)-\theta(t-1)
\end{gathered}
$$

Taking its Laplace transform and bearing in mind $x(0)=\dot{x}(0)=0$, one gets

$$
\begin{gathered}
\left(s^{2}+2 s-3\right) X(s)=(s+3)(s-1) X(s)= \\
\frac{1}{s^{2}}-e^{-s}\left(\frac{1}{s^{2}}+\frac{1}{s}\right) .
\end{gathered}
$$

We can solve for $X(s)$ now:

$$
\begin{gathered}
X(s)=\frac{1-e^{-s}}{s^{2}(s+3)(s-1)}-\frac{e^{-s}}{s(s+3)(s-1)}= \\
\left(1-e^{-s}\right)\left(\frac{1}{4(s-1)}-\frac{1}{36(s+3)}-\frac{2}{9 s}-\frac{1}{3 s^{2}}\right)- \\
e^{-s}\left(\frac{1}{4(s-1)}+\frac{1}{12(s+3)}-\frac{1}{3 s}\right)
\end{gathered}
$$

Laplace transforms 5.1 Definition
5.2 Properties
5.3 Inverse transform
5.6 Linear equations with constants
coefficients

To solve the problem, we need another "recipe". Remember the relation

$$
\mathcal{L}\left[e^{a t} f(t)\right]=F(s-a) \text { if } \mathcal{L}[f(t)]=F(s)
$$

Let us define

$$
g(t)=e^{a t} f(t) \text { with } F(s-a)=G(s) .
$$

Using that

$$
\mathcal{L}[\theta(t-b) g(t-b)]=e^{-b s} G(s) \text { if } \mathcal{L}[g(t)]=G(s)
$$

Then

$$
\begin{gathered}
\mathcal{L}[\theta(t-b) g(t-b)]=\mathcal{L}\left[\theta(t-b) e^{a(t-b)} f(t-b)\right]= \\
e^{-b s} F(s-a) .
\end{gathered}
$$

So what is the value of the following ?

$$
\mathcal{L}^{-1}\left[\frac{e^{-b s}}{s-a}\right] .
$$

In this case we have $f(t)=\theta(t)$ and then
$\mathcal{L}^{-1}\left[\frac{e^{-b s}}{s-a}\right]=\theta(t-b) e^{a(t-b)} \theta(t-b)=\theta(t-b) e^{a(t-b)}$,
since $\theta^{2}(t-b)=\theta(t-b) \forall b$.

So using the inverse transform one gets:

$$
\begin{gathered}
x(t)=\theta(t)\left(\frac{e^{t}}{4}-\frac{e^{-3 t}}{36}-\frac{t}{3}-\frac{2}{9}\right)- \\
\theta(t-1)\left(\frac{e^{t-1}}{2}+\frac{e^{-3(t-1)}}{18}-\frac{t-1}{3}-\frac{5}{9}\right) .
\end{gathered}
$$

## September 2008

- Solve the following initial value problem:

$$
\ddot{x}+x= \begin{cases}\cos t & 0<t<\pi \\ 0 & t>\pi\end{cases}
$$

$$
x(0)=\dot{x}(0)=0
$$

Rewriting the problem as:

$$
\begin{gathered}
\ddot{x}+x=(\theta(t)-\theta(t-\pi)) \cos t= \\
\theta(t) \cos t+\theta(t-\pi) \cos (t-\pi)
\end{gathered}
$$

Taking its Laplace transform and using $x(0)=\dot{x}(0)=0$ :

$$
\begin{gathered}
\left(s^{2}+1\right) X(s)=\frac{s}{s^{2}+1}\left(1+e^{-\pi s}\right) . \\
X(s)=\frac{s\left(1+e^{-\pi s}\right)}{\left(s^{2}+1\right)^{2}}=-\frac{\left(1+e^{-\pi s}\right)}{2} \frac{d}{d s}\left(\frac{1}{s^{2}+1}\right) .
\end{gathered}
$$

- The inverse transform gives:

$$
\begin{gathered}
x(t)=\frac{1}{2}\{\theta(t)(t \sin t)+\theta(t-\pi)[(t-\pi) \sin (t-\pi)]\}= \\
\frac{1}{2}[\theta(t) t-\theta(t-\pi)(t-\pi)] \sin t
\end{gathered}
$$

