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3.1 Geometric meaning

◮ The geometric meaning of higher-order equations is a
generalization of the first-order case

◮ Let us suppose that the equation of a family of flat
curves depends on the parameters C1,C2, . . . ,Cn

◮ The finite equation and its n derivatives will be the
following:

ϕ(x , y , C1, C2, . . . , Cn) = 0,

∂ϕ

∂x
+

∂ϕ

∂y
y ′ = 0,

∂2ϕ

∂x2
+ 2

∂2ϕ

∂x∂y
y ′ +

∂2ϕ

∂y2
y ′2 +

∂ϕ

∂y
y ′′ = 0,

...
∂nϕn

∂xn
+ · · · + ∂ϕ

∂y
y (n) = 0,
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◮ It is possible to eliminate the n parameters using all
those equations, to obtain the differential equation for
the family

F (x , y , y ′, y ′′, . . . , y (n)) = 0.

◮ The equation for the family of curves
ϕ(x , y ,C1,C2, . . . ,Cn) = 0 is the solution to the
differential equation, and each of the curves is an
integral curve
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Exercise 3.1

◮ Which is the differential equation of the unit circles?

◮ Denoting C1 = a and C2 = b, we get
ϕ(x , y , C1, C2) = (x − a)2 + (y − b)2 − 1 = 0.
We need two more equations

∂ϕ

∂x
+

∂ϕ

∂y
y ′ = 2(x − a) + 2(y − b)y ′ = 0

and
∂2ϕ

∂x2
+ 2

∂2ϕ

∂x∂y
y ′ +

∂2ϕ

∂y2
y ′2 +

∂ϕ

∂y
y ′′ =

2+0+2y ′2 +2(y − b)y ′′ = 2(1+ y ′2)+2(y − b)y ′′ = 0

The first derivative gives (x − a)2 = (y − b)2(y ′)2 and
combining this result with the finite equation we get
(y − b)2(1 + y ′2) = 1
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The finite equation and its first derivative give

1

1 + y ′2
= (y − b)2.

The second derivative gives

(1 + y ′2)2 = (y − b)2y ′′2.

Therefore, the equation we are after is the following

(1 + y ′2)3 = y ′′2.
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3.2 Existence-uniqueness theorem

◮ Let us write a differential equation in its normal form:

y (n) = f (x , y , y ′, . . . , y (n−1))

If the function f and ∂f /∂y , ∂f /∂y ′, ∂f /∂y (n−1) are
continuous, and the equation has n initial conditions

y(x0) = y0

y ′(x0) = y ′

0

...

y (n−1)(x0) = y
(n−1)
0

then there exists a single solution to the equation
satisfying the initial conditions.
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3.3 Equivalence between equation and systems

◮ By adding variables and equations, we can always lower
the order of an equation

◮ In fact, if we define new variables such as

y1 ≡ y , y2 ≡ y ′, . . . , yn ≡ y (n−1),

the n-th order equation y (n) = f (x , y , y ′, . . . , y (n−1)) is
equivalent to a system of n equations

y ′

1 = y2,

y ′

2 = y3,
...

y ′

n = f (x , y1, y2, . . . , yn).



ODE topic 3

Higher-order
equations

3.1 Geometric
meaning

3.2
Existence-uniqueness
theorem

3.3 Equivalence
between equation and
systems

3.4 Lowering the order

3.5 Linear dependency
of functions

3.6 Linear differential
equations

3.7 Homogeneous
linear equations

3.8 Complete linear
equations

Exercise 3.2

◮ Write the equation of a forced oscillator as a system

◮ Denoting the dependent variable as x , and the
independent variable as t, the equation for the oscillator
is:

ẍ + ω2x =
F (x)

m
.

In order to write it as a system, we will introduce
x1 = x and x2 = ẋ .
Thus, our system will be

ẋ1 = x2,

ẋ2 =
F (x1)

m
− ω2x1,

.
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3.4 Lowering the order

◮ There are not many procedures to solve higher-order
equations

◮ One possibility might be to lower the order
◮ In some specific cases that can be done in a systematic

way
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Equations with the dependent absent

◮ Let us suppose that the equation can be written as
F (x , y ′, y ′′, . . . , y (n)) = 0

◮ It is then desirable to define
u ≡ y ′, u′ ≡ y ′′, . . . , u(n−1) ≡ yn.

◮ The differential equation obtained is of one order lower

F (x , u, u′, . . . , u(n−1)) = 0.

◮ If the solution of the new equation is
ϕ̃(x , u,C1, . . . ,Cn−1) = 0

◮ Then, undoing the change of variable u = y ′ we obtain
a family of first order differential equations
ϕ̃(x , y ′, C1, . . . , Cn−1) = 0,

◮ By solving this last equation, we get the general
solution: ϕ(x , y , C1, . . . , Cn) = 0.
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◮ Moreover, every singular solution of
F (x , u, u′, . . . , u(n−1)) = 0 will give us another first
order differential equation. Its solutions will be singular
solutions for the original equation.

◮ Of course, if on top of a missing y variable, also higher
derivatives y ′, . . . , y (m−1) are missing, the change
u ≡ ym will lower the equation to an equation of order
n − m



ODE topic 3

Higher-order
equations

3.1 Geometric
meaning

3.2
Existence-uniqueness
theorem

3.3 Equivalence
between equation and
systems

3.4 Lowering the order

3.5 Linear dependency
of functions

3.6 Linear differential
equations

3.7 Homogeneous
linear equations

3.8 Complete linear
equations

◮ Let us make an example: y ′′2 = 240x2y ′ = 0

As there is no y in the equation, let us define u = y ′ to
obtain u′ = ±

√
240x

√
u . Thus, we need to solve the

integral du/
√

u = ±
√

240xdx

Its solution is
4
√

u =
√

240(x2 + C1) =
√

15 × 16(x2 + C1), and
undoing the change, we obtain the following equation:
y ′ = 15(x2 + C1)

2.
Expanding and integrating, we obtain the general
solution y = 3x5 + 10C1x

3 + 15C1x + C2

On the other hand, we cannot forget the singular
solution y ′ = 0, which gives also the family of curves
y = C3
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Exercise 3.3

◮ A point-like particle is falling down a vertical straight
line due to gravity. If friction is proportional to the
velocity, which is the velocity at every time step? Prove
that there is a limiting velocity.

◮ The equation describing the velocity is mz̈ = −mg − kż.
This, it is convenient to use v = ż to rewrite the
equation as v̇ = −g − kv/m.
By direct integration

v = −gm

k
+ Ce−

k
m

t

and clearly there is a limiting velocity

lim
t→∞

v = −gm/k .

Finally, undoing he change ż = v and integrating, we

obtain z = −m
k

(

gt + Ce−
k
m

)
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Autonomous Equations
◮ If the dependent variable is absent in the differential

equation, it is called autonomous:
F (y , y ′, y ′′, . . . , y (n)) = 0.

◮ Then, if ϕ(x , y) is a solution, ϕ(x − x0, y) is also a
solution for all x0.

◮ Therefore, one of the constants corresponds to where to
set the origin, and the general solution is the following:

ϕ(x − x0, y , C1, . . . , Cn−1) = 0.

◮ one can use u ≡ y ′ to lower the order, and thus

y ′′ =
du

dy
u

y ′′′ =
d2u

dy2
u2 +

(

du

dy

)2

u

...

y (n) =
dn−1u

dyn−1
un−1 + · · · +

(

du

dy

)n−1

u (1)
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◮ Substituting these in the original equation, we obtain a
new equation of order n − 1:

F (y , u, du/dy , d2u/dy2, . . . , dn−1u/dyn−1) = 0.

◮ If the general solution to this equation is given by
ϕ̃(y , u,C1, . . . ,Cn−1) = 0, then, the change of variable
u = y ′ we obtain a new equation

◮ By solving this last equation, we get the general
solution ϕ(x − x0, y ,C1, . . . ,Cn−1) = 0.
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Exercise 3.4

◮ Solve y ′′ = (2y + 1)y ′

◮ As it is autonomous, we will take u ≡ y ′ (in order to
simplify notation, we will take
u̇ = du/dy , üd2u/dy2, . . . )
As seen before, y ′′ = udu/dy = uu̇, so the equation to
solve reads

u̇u = (2y + 1)u = 0.

Clearly u =
∫

(2y + 1)dy = y2 + y + C1 (Note that we
have lost the solution u = 0).
Undoing the change of variables we get y ′ = y2 + y + C

and integrating [Spiegel, pg. 263, 1.12.1]:

2√
4C1 − 1

arctan

(

1 + 2y√
4C1 − 1

)

= x + C2.
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Equidimensional-in-x differential equations

◮ These equations are invariant under x → ax

F (ax , y , a−1y ′, a−2y ′′, . . . , a−ny (n)) =

F (x , y , y ′, y ′′, . . . , y (n)) = 0.

◮ This can be transformed into autonomous equations by
x → t ≡ ln x . Thus

x = et

y ′ =
1

x
ẏ

y ′′ =
1

x2
(ÿ − ẏ )

...

y (n) =
1

xn

[

dny

dtn
+ · · · + (−1)n−1(n − 1)!

dy

dt

]

.
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◮ It can be seen that the original equation
F (x , y , y ′, y ′′, . . . ) = 0 is equivalent to
F (1, y , ẏ , ÿ − ẏ , . . . ) = 0.

◮ Since the last equation is autonomous, it is convenient
to use u ≡ ẏ to find its solution. This will give us a new
first order equation that needs to be solved.
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Exercise 3.5

◮ Solve xy ′′ = yy ′

◮ Bearing in mind y ′ = ẏ/x and y ′′ = (ÿ − ẏ)/x2, the
equation reads:

x

[

1

x2
(ÿ − ẏ )

]

=
y ẏ

x
.

This is equivalent to ÿ = (1 + y)ẏ (careful! Remember
to check y = 0).
But this is a known result, since the changes y → 2y

and x → t take us to the equation solved in exercise 3.4
.
By using that solution, and undoing 2y → y and t → x

, the solution to the new equation is

2√
4C1 − 1

arctan

(

1 + y√
4C1 − 1

)

= t + C2.

There is also the singular solution y = C3.
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Equidimensional-in-y differential equations

◮◮ This are invariant under the scaling y → ay

F (x , ay , ay ′, ay ′′, . . . , ay (n)) =

F (x , y , y ′, y ′′, . . . , y (n)) = 0.

◮ they can be turned into autonomous equations by
u = y ′/y

Then

y ′ = yu,

y ′′ = y(u′ + u2),

...

y (n) = y(u(n−1) + · · · + un).
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◮ The original equation F (x , y , y ′, y ′′, . . . ) = 0 is
equivalent to F (x , 1, u, u′, u′ + u2 . . . ) = 0

◮ Solving this last one and undoing u = y ′/y we get a
first order equation. Solving this one we obtain the
solution.
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Exercise 3.6

◮ Solve yy ′′ = y ′2

◮ Since it is a second order equation, we have to use
y ′ = yu and y ′′ = y(u′ + u2)
We then obtain y(y(u′ + u2)) = (yu)2, and simplifying
the factors of y , we are losing the solution y = 0
The new equation reads u′ = 0, which is directly
integrable to u = C1

Undoing the change of variables, we get y ′ = C1y , and
the general solution is then

ln y = C1x + C2, y = eC1x+C2 .

Note that the solution y = 0 is not really lost, since it is
recovered in the limit C2 → −∞. So y = 0 is not a
singular solution, it is a particular solution.
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◮ Let us supposed that the equation is an exact derivative

F (x , y , y ′, . . . , y (n)) =
d

dx
G (x , y , y ′, . . . , y (n−1)) = 0.

◮ Then, the quadrature

G (x , y , y ′, . . . , y (n−1)) = C

will give as a first integral.

◮ The quadrature is a differential equation of order n − 1,
and this will be the new equation to be solved.
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Exercise 3.7

◮ Solve yy ′′ + y ′2 = 0

◮ It can be seen ”by eye” that

yy ′′ + y ′2 =
d

dx
(yy ′) = 0.

therefore, yy ′ = C1 is a first integral.
Lastly, we can get the solution

y2 = 2C1x + C2
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◮ Sometimes, an equation that is not exact can be made
exact by an integrating factor or by suitable
transformations.
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Exercise 3.7

◮ Show that the equation yy ′′ − y ′2 can be made exact by
dividing it by y2. Is there any singular solution?

◮ One could guess that

yy ′′ − y ′2

y2
=

d

dx

(

y ′

y

)

= 0.

Then, y ′/y = C1 is a first integral. Solving it we get the
general solution:

ln y = C1x + C2,

y = eC1x+C2

In principle the solution y = 0 could have been lost, but
it is part of the general solutions in the limit C2 → −∞
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3.5 Linear dependency of functions

◮ The group of solutions of any homogeneous linear
differential equation is a linear vector space.

◮ The usual addition and multiplication operators of
functions induce that structure

◮ The space is the subspace of the infinite dimensional
space of regular functions

◮ Let us use yk(x) to denote any solution

◮ As we know, if all functions yk(x) are solutions to our
linear equations then y =

∑

∞

k=1 ckyk(x) is also a
solution, but as we will see later, it can be written in an
easier way
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◮ If the domain of definition for the functions is I

{yk(x) : k = 1, . . . , n; x ∈ I}

the regular functions will be linearly independent if and
only if

∞
∑

k=1

ckyk(x) = 0 (∀x ∈ I )

holds only for the case c1 = c2 = c3 = · · · = cn = 0.

◮ For example, the set of powers 1, x , x2, . . ., xn is linearly
independent in any domain

◮ Let us see this: If the coefficients of the polynomial
c1 + c2x + c3x

2 + · · · + cnx
n = 0 are not all zero, then

the polynomial will only be zero in its roots.
◮ But since there are at most n roots, the roots cannot

feel all the domain



ODE topic 3

Higher-order
equations

3.1 Geometric
meaning

3.2
Existence-uniqueness
theorem

3.3 Equivalence
between equation and
systems

3.4 Lowering the order

3.5 Linear dependency
of functions

3.6 Linear differential
equations

3.7 Homogeneous
linear equations

3.8 Complete linear
equations

◮ In order to study the linear dependency, it is useful to
use the Wronskian:

◮ For the functions {yk(x) : k = 1, . . . , n; x ∈ I} the
Wronskian is defined as

W [y1, . . . , yn] =

∣

∣

∣

∣

∣

∣

∣

∣

∣

y1(x) y2(x) . . . yn(x)
y ′

1(x) y ′

2(x) . . . y ′

n(x)

. . . . . .
. . . . . .

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣
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◮ On the other hand, if the set yk(x) : k = 1, . . . , n; x ∈ I

is linearly dependent, it is possible to find a set of
constants c1, c2, . . . , cn not all zero for which
∑

∞

k=1 ckyk(x) = 0 for all points x in its definition
domain.

◮ But the first n − 1 derivatives of that equation will also
be zero in all the domain. Therefore:

c1y1(x)n+ c2y2(x)+ · · ·+ cnyn(x) = 0,
c1y

′

1(x)+ c2y
′

2(x)+ · · ·+ cny
′

n(x) = 0,
...

...
...

...,

c1y
(n−1)
1 (x)+ c2y

(n−1)
2 (x)+ · · ·+ cny

(n−1)
n (x) = 0.
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◮ The previous system of equations defines a linear
homogeneous system with unknowns ck at every point
x

◮ since we are assuming that there is linear dependency,
the solutions to this system are not zero

◮ Therefore, in all points of the domain, the determinant
of the system (the Wronskian) is not zero

◮ This is the main conclusion: the Wronskian of a linearly
dependent set of functions is zero for all points in its
definition domain..

◮ This is way if the Wronskian is not identically zero, the
functions will be linearly independent



ODE topic 3

Higher-order
equations

3.1 Geometric
meaning

3.2
Existence-uniqueness
theorem

3.3 Equivalence
between equation and
systems

3.4 Lowering the order

3.5 Linear dependency
of functions

3.6 Linear differential
equations

3.7 Homogeneous
linear equations

3.8 Complete linear
equations

Exercise 3.10

◮ Show that 1, x , x2, . . . , xn are independent using the
Wrosnkian

◮ It is clear that:

W =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 x x2 x3 . . . xn

0 1 2x 3x2 . . . nxn−1

0 0 2 6x . . . n(n − 1)xn−2

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

but W = 1 × 2 × 6 · · · × n! 6= 0 so they are linearly
independent
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Exercise from Feb-03 exam

◮ Discuss whether the functions x − 2, x3 − x and
6x3 − 3x − 6 are linearly independent in the real line.

◮ We can answer this by studying the linear combination

c1(x − 2) + c2(x
3 − x) + c3(6x3 − 3x − 6) = 0

in three different points
For example, the points x = 0, x = 2, x = −1 give the
following system:

−2c1 − 6c3 = 0,

6c2 + 36c3 = 0,

−3c1 − 4c2 − 6c3 = 0.
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◮ From the second equation c2 = −6c3, and substituting
in the third we get −3c1 − 3c2 = 0, so c1 = −c2.
The first, in turn, gives 2c1 = −6c3, but using the
previous result 2c1 = c2

Combining all relations we get c1 = 0 = c2 = c3, and
there is no linear dependency.
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3.6 Linear differential equations

◮ These equations can be written as:

a0(x)y (n) + a1(x)y (n−1) + · · ·+ an−1(x)y ′ + any = b(x).

◮ Dividing the equation by a0 the only thing that changes
is the definition domain

◮ In general, we will take a0 = 1
◮ Moreover, we will take a1, a2, . . . , an and b to be

continuous in the domain I (when b = 0 the equation
will be homogeneous, and not-homogeneous otherwise).
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◮ We may also use the following to operators to make the
notation easier

D ≡ d

dx
,

L ≡ Dn + a1(x)Dn−1 + · · · + an−1(x)D + an(x).

◮ Thus, the operator L will act upon the functions f (x)
which are defined over the domain I :

(Lf )(x) = f (n)(x) + a1(x)f (n−1)(x) + · · · +
an−1(x)f ′(x) + anf (x).

◮ Linear non-homogeneous equations can be written as:
Ly = b.

◮ Besides, the operator is a linear operator

L(c1f1 + c2f2) = c1Lf1 + c2Lf2

for any constants c1 and c2
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Exercise

◮ Write the equation for a harmonic oscillator with
frequency ω using the operator D

◮ With the usual notation

ẍ + ω2x = 0,

Using the operator D

D2x + ω2x = 0,

Therefore, we will have L = D2 + ω2, and using L, the
original equation can be written as Lx = 0
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3.7 Homogeneous linear equations

◮ For homogeneous linear equations we have

Ly = 0.

◮ Besides, the principle of superposition and the linearity
of the operator L are equivalent. If we use yk to
represent the solutions to the homogeneous equation we
get

Lyk = 0 ⇒ L

∞
∑

k=1

ckyk =

∞
∑

k=1

ckLyk = 0.

◮ The previous results proves that the set of solutions of a
homogeneous linear equation forms a vector space

◮ The dimension of the vector space is related to the
Wronskian
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3.1 Theorem
Let us consider n solutions for an n dimensional linear
homogeneous equation defined in the domain I : Lyk = 0.
The following three sentences are equivalent:

1. The functions yk are linearly dependent in I .
2. The Wronskian for yk is identically zero in I .
3. The Wrosnkian for yk is zero in one point x0 ∈ I .
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◮ On the other hand, the dimension for the solution-space
for a linear homogeneous equation of order n cannot be
less than n.

◮ To see this, we need to use the existence&uniqueness
theorem, which says that for initial conditions given by

y1(x0) = 1
y ′

1(x0) = 0
...

y
(n−1)
1 (x0) = 0

there is a unique solution.

◮ We can construct similar n initial value problems:

y1(x0) = 1 y2(x0) = 0 . . . yn(x0) = 0,
y ′

1(x0) = 0 y ′

2(x0) = 1 . . . y ′

n(x0) = 0,
...

...
...

y
(n−1)
1 (x0) = 0 y

(n−1)
2 (x0) = 0 . . . y

(n−1)
n (x0) = 1.
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◮ Due to the uniqueness&existence, the solutions to each
of those initial conditions are different

◮ Therefore, their Wrosnkian is not zero

◮ We have thus constructed n linearly independent
solutions to our linear homogeneous equation. But the
number of such constructions is infinite (for example,
choosing a constant C 6= 0 instead of 1 in each one).

◮ The set of n solutions to an n order linear homogeneous
equation is called the fundamental system of solutions.
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3.2 theorem
If we choose n linearly dependent solutions (yk) for a
homogeneous linear equation of order n, then any other
solution can be written in a unique way as a linear
combination of constant coefficients of the solutions (yk).

◮ For example, for the equation y ′′ + ω2y = 0 we have
the following as fundamental system of solutions:
{cos ωx , sinωx}. Their Wronskian is ω and the general
solution is y = A cos ωx + B sinωx . This can be written
in many other ways.
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Exercise 3.13

◮ Show that the set {1, ex , e−x} is a fundamental system
for the equation y ′′′ − y ′ = 0. Find another
fundamental system. Write the general solution using
both systems and check that they are equivalent.

◮ The Wronskian of the fundamental system is:

W =

∣

∣

∣

∣

∣

∣

1 ex e−x

0 ex −e−x

0 ex e−x

∣

∣

∣

∣

∣

∣

= 2.

Since it is not zero, the system is independent.
now we have to show that any given linear combination
is a solution of the differential equation:

y = A + Bex + Ce−x , y ′ = Bex − Ce−x

y ′′ = Bex + Ce−x = y , y ′′′ = Bex − Ce−x = y ′.

Thus, since it is a solution, we have shown that
{1, ex , e−x} is a fundamental system.
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◮◮ We can guess that the set {1, sinh x , cosh x} is a good
candidate. The Wronskian is

W =

∣

∣

∣

∣

∣

∣

1 sinh x cosh x

0 cosh x sinh x

0 sinh x cosh x

∣

∣

∣

∣

∣

∣

= cosh2 x − sinh2 x = 1.

The equivalence between both systems is clear

sinh x =
ex − e−x

2
, cosh x =

ex + e−x

2
.
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◮ Let us study more closely the link between fundamental
systems and linear equations:

◮ Each fundamental systems corresponds to a single linear
homogeneous equation (at least if a0 = 1 in the
equation)

◮ Let us imagine that a set of n functions is the
fundamental system of two operators L1 and L2:

L1yk = yn
k +a1(x)y (n−1)+· · ·+an−1(x)y ′(x)+an(x)y = 0,

L2yk = yn
k + ã1(x)y (n−1) + · · ·+ ãn−1(x)y ′(x)+ ãny = 0.

◮ Then, the set is also a fundamental system for the
operator L1 − L2: L1yk − L2yk = (L1 − L2)yk = 0.

◮ But, the order of the operator L1 − L2 is n − 1:

(L1 − L2)yk = (yn
k − yn

k ) + (a1(x)− ã1(x))y (n−1) + · · ·+

(an−1(x) − ãn−1(x))y ′(x) + (an(x) − ãn(x))y = 0.

�
�

�

H
H

H

◮ Thus,the operator L1 − L2 of order n − 1 admits a
fundamental system of order n. Since that is impossible,
L1 − L2 has to be the null-operator, so L1 = L2
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◮ It is easy to construct the equation that corresponds to
a fundamental system.

◮ If the system is {y1, . . . , yn}, any other solution to the
equation will be written as a linear combination of these.

◮ Thus, the system y , y1, . . . , yn and thus
W [y1, . . . , yn, y ] = 0.

◮ The equation defined by W [y1, . . . , yn, y ] = 0 will be a
linear homogeneous equation for y , and it will have yk

as independent solutions
◮ In that equation, y (n) will be the highest derivative and

a0 its coefficient.
◮ It can be seen that W [y1, . . . , yn] = a0 6= 0
◮ Dividing the whole equation by a0 we will get the only

normalized linear homogeneous equation that has the
initial system as a fundamental solution
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◮ For example, x and x−1 are linearly independent in any
domain that does not contain the origin

The linear homogeneous equation corresponding to
them is

W [x , x−1, y ] =

∣

∣

∣

∣

∣

∣

x x−1 y

1 −x−2 y ′

0 2x−3 y ′′

∣

∣

∣

∣

∣

∣

=

−2

x
y ′′ − 2

x2
y ′ +

2

x3
y = −2

x

(

y ′′ +
y ′

x
y ′ +

y

x2

)

= 0.

◮ In order to write the equation in normal form we have
to divide it by W [x , x−1] = −2x−1:

y ′′ +
y ′

x
+

y

x2
= 0

.
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Exercise 3.14

◮ Find the linear homogeneous equation that has the
system {x , ex} as its fundamental system.

◮ First we need the Wronskian:

W [x , ex , y ] =

∣

∣

∣

∣

∣

∣

x ex y

1 ex y ′

0 ex y ′′

∣

∣

∣

∣

∣

∣

= xexy ′′+exy−xexy ′−exy ′′ =

ex ((x − 1)y ′′ − xy ′ + y) = 0.

Then, the equation is:

y ′′ − xy ′

x − 1
+

y

x − 1
y ,

and it is defined in all domains that do not contain
x = 1.
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◮ Liouville (and also independently Abel and
Ostrogradski) found the formula that describes how the
Wronskian evolves from point to point:

W (x) = W (x0)e
−

R x

x0
a1(u)du ∀x ∈ I .

This formula assumes that a0 = 1.

◮ Besides, since the exponential is non-zero, it is clear
that in order for the W to be zero in all its domain, it is
enough for it to be zero in one point.
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◮ In general, there is no general way of solving linear
equations, but we can ease the process if we know one
particular solution,

◮ Let us suppose that one know one particular solution
y1. According to the method of D’Alembert we can
lower the order of the equation by performing a change
of variables

y = y1

∫

udx

.
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◮ Let us try to understand that. First we construct:

an {y = y1

∫

udx}

an−1 {y ′ = y ′

1

∫

udx + y1u}

an−2 {y ′′ = y ′′

1

∫

udx + 2y ′

1u + y1u
′}

...
...

1 {y (n) = y
(n)
1

∫

udx + ny
(n−1)
1 u + · · · + y1u

(n−1)}

◮ Adding all the equations we get:

Ly = (Ly1)

∫

udx+(an−1y1+an−22y
′

1+· · ·+ny
(n−1)
1 )u+

(an−2y1 + . . . )u′ + · · · + (· · · + y1)u
(n−1) = 0.
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◮ Since y1 is a solution, we have Ly1 = 0. Then,

Ly = (an−1y1 + an−22y
′

1 + · · · + ny
(n−1)
1 )u+

(an−2y1 + . . . )u′ + · · · + y1u
(n−1) =

ãn(x)u + ãn−1(x)u′ + · · · + y1u
(n−1) = 0.

◮ Therefore, the change of variables has enable us to get
an equation with a lower order.
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◮ For general second order homogeneous linear equations:
y ′′ + a1(x)y ′ + a0(x)y = 0 The useful formula from the
method of d’Alembert is the following:

(a1(x)y1(x) + 2y ′

1(x))u + y1(x)u′ = 0.

◮ The last equation is separable and easy to solve:

∫

du

u
= −

∫

(a1(x)y1(x) + 2y ′

1(x))

y1(x)
=

−
∫

(a1(x) +
2y ′

1(x)

y1(x)
)dx =

ln u − lnC2 = −
∫

a1(x)dx − ln y2
1 .

◮ This is,

u = C2
exp(−

∫

a1(x)dx)

y2
1

.
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◮ But since y = y1

∫

udx , our solution is:

y = C1y1 + C2y1

∫

exp(−
∫

a1(x)dx)

y2
1

dx .
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Exercise 3.17

◮ Solve (x2 + 1)y ′′ − 2xy ′ + 2y = 0.

◮ We can find ”by eye” that a solution is y = x .
On the other hand, writting the solution in normal form
we get:

y ′′ − 2x

x2 + 1
y ′ +

2

x2 + 1
y ,

and so, a1 = −2x/(x2 + 1).
Applying the formula we have obtained before

y = C1x + C2x

∫

exp(
∫

2x
x2+1dx)

x2
dx =

C1x +C2x

∫

exp(ln((x2 + 1))

x2
= C1x +C2x

∫

x2 + 1

x2
=

= C1x + C2(x
2 − 1)

This is the general solution.
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◮ Use the method of d’Alembert and y1 = ekx to prove
the following result:

y ′′ − 2ky ′ + k2y = 0 ⇔ y = C1e
kx + C2xe

kx .

◮ In that equation a1 = −2k , therefore,

y = C1e
kx + C2e

kx

∫

exp(
∫

2kdx)

e2kx
dx

y = C1e
kx + C2e

kx

∫

dx = C1e
kx + C2e

kx

∫

dx .

Then, we get,

y ′′ − 2ky ′ + k2y = 0 ⇒ y = C1e
kx + C2xe

kx

proving the result.
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◮ On the other hand, this is fundamental system ekx , xekx :

W =

∣

∣

∣

∣

ekx xekx

kekx ekx + kxekx

∣

∣

∣

∣

=

ekx(ekx + kxekx) − (kekx)(xekx) = e2kx 6= 0.

What equation does the system correspond to?

W =

∣

∣

∣

∣

∣

∣

ekx xekx y

kekx ekx + kxekx y ′

k2ekx 2kekx + k2xekx y ′′

∣

∣

∣

∣

∣

∣

=

e2kx(y ′′ − 2y ′k + k2y) = 0.

Dividing by the Wrosnkian we get the equation in
normal form

y ′′ − 2y ′k + k2y = 0

Thus, we have proved that

y ′′ − 2ky ′ + k2y = 0 ⇐ y = C1e
kx + C2xe

kx .
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Usual particular solutions

◮ What conditions do the coefficients of a linear
homogeneous equation of order n have to satisfy in
order to accept the following as particular solutions?
a) y1 = x , b) y1 = x2, c) y1 = ex , d) y1 = e−x .

◮ a) For y1 = x , y (n) = 0∀n > 1, then
Ly = y (n) +a1(x)y (n−1) + · · ·+an−2y

′′+an−1y
′+any =

an−1 + anx = 0.
The condition reads an−1 = −anx , but the other am

coefficients are unconstrained ∀n − 1 > m > 0.

◮ b) For y1 = x2, y (n) = 0∀n > 2, then
Ly = 2an−2 + 2an−1x + anx

2 = 0.
The condition reads 2(an−2 + an−1x) = −anx , but the
other am coefficients are unconstrained
∀ n − 2 > m > 0.



ODE topic 3

Higher-order
equations

3.1 Geometric
meaning

3.2
Existence-uniqueness
theorem

3.3 Equivalence
between equation and
systems

3.4 Lowering the order

3.5 Linear dependency
of functions

3.6 Linear differential
equations

3.7 Homogeneous
linear equations

3.8 Complete linear
equations

◮ c) For y1 = ex , y (n) = y ∀n > 0, then
Ly = (1 + a1(x) + · · · + an−2 + an−1 + an)e

x = 0.
The condition reads
(1 + a1(x) + · · · + an−2 + an−1 + an) = 0 .

◮ d) For y1 = e−x , y (n) = (−1)ny ∀n > 0, then
Ly = (1 − a1(−1)(n−1) + · · · + an−3(−1)3 +
an−2(−1)2 − an−1 + an)e

−x = 0.
The condition reads (1 − a1(−1)(n−1) + · · · +
an−3(−1)3 + an−2(−1)2 − an−1 + an) = 0.
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◮ what happens if we do not know a particular solution?

◮ We can try a couple of other changes of variables.
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Exercise 3.21

◮ Perform the change x → t ≡
∫ √

Qdx in the equation
y ′′ + P(x)y ′ + Q(x)y = 0, and prove that when
2PQ ′ + Q ′ = 0 we can find solutions. Solve the
following equation:

xy ′′ − y ′ + 4x3y = 0.

For what other cases can this change of variables by
useful?

◮ Let us calculate derivatives using the chain-rule:

y ′ =
dy

dx
=

dy

dt

dt

dx
= ẏ

√

Q,

y ′′ =
d2y

dx2
=

d

dt

(

ẏ
√

Q
) dt

dx
= ÿQ +

ẏ

2
√

Q
Q ′.

The equation now reads:

ÿQ +
ẏ

2
√

Q
Q ′ + Pẏ

√

Q + Qy = 0.
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◮ If we have Q ′ + 2PQ = 0, then we get:

ÿ + y = 0.

On the other hand, when

Q ′

2
√

Q
+ Pẏ

√

Q = CQ

the equation turns into

ÿ + Cẏ + y = 0

and its solution can be given by exponentials.
◮◮ Let us solve xy ′′ − y ′ + 4x3y = 0. In this case

P = −Q/x = 4x2, 2PQ = −8x , and Q ′ = 8x . Using
the change of variables we have just seen, we get
ÿ + y = 0.
The general solution is thus y = A cos t + B sin t, but
using t =

∫
√

4x2dx =
∫

2xdx = x2,the final result can
be written as:

y = A cos(x2) + B sin(x2).



ODE topic 3

Higher-order
equations

3.1 Geometric
meaning

3.2
Existence-uniqueness
theorem

3.3 Equivalence
between equation and
systems

3.4 Lowering the order

3.5 Linear dependency
of functions

3.6 Linear differential
equations

3.7 Homogeneous
linear equations

3.8 Complete linear
equations

Exercise 3.22

◮ The following change of variables is called Liouville’s
transform:

y = ue−
1
2

R

P(x)dx .

Use it to prove that the equation
y ′′ + P(x)y ′ + Q(x) = 0 can be written in the following
way:

u′′ + f (x)u = 0.

Show that when the coefficient
f (x) ≡ (4Q − P2 − 2P ′)/4 is constant, it helps us get
solutions. Find the general solution for
xy ′′ + 2y ′ + xy = 0.

◮ Taking derivatives we get:

y ′ = e−
1
2

R

P(x)dx (u′ − u (1/2)P) .
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Taking derivatives again:

y ′′ = e−
1
2

R

P(x)dx (u′′ − u′P + (1/4)uP2 − (1/2)uP ′)

Our equation now reads:

u′′ − u

(

P2

4
+

P ′

2
− Q

)

= 0.

◮ Let us solve xy ′′ + 2y ′ + xy = 0 now.
In this case P = 2/x , P ′ = −2/x2 and Q = 1. Thus,
P2/4 + P ′/2 − Q = 1/x2 − 1/x2 − 1 = −1, therefore
f (x) = 1 and performing the change, the equation is
now u′′ + u = 0.
The general solution is u = A cos x + B sin x ; therefore,
the general solution is

y = ue−
1
2

R

P(x)dx = ue−
1
2

R

(2/x)dx =

u

x
=

1

x
(A cos x + B sin x) .
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3.8 Complete linear equations

◮ From linearity, we get
◮ Ly1 = b1, Ly2 = b2 ⇒ L(a1y1 + a2y2) = a1b1 + a2b2,

◮ Ly1 = 0, Ly2 = b ⇒ L(y1 + y2) = Ly1 + Ly2 = b,

◮ Ly1 = Ly2 = b ⇒ L(y1 − y2) = Ly1 − Ly2 = 0.

◮ Thus, the solution for the complete linear equation is
the sum of the general solution for the homogeneous
equation and a particular solution.
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◮ Thus, the complete linear equation is solved in two
steps:

◮ First find n linearly independent solution of the
homogeneous to compute the general solution:

Ly = 0 ⇔ y =
n

∑

k=1

Ckyk .

◮ Find one particular solution of the complete equation

Lyp = b.

◮ The general solution for the complete equation is then
y =

∑n
k=1 Ckyk + yp

Lyp = b ⇔ y =
n

∑

k=1

Ckyk + yp.
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◮ For example, let us consider the following linear
equation y ′′′ − y ′ = 1

◮ In exercise 3.13 we found out that the general solution
of the homogeneous equation is y = A + Bex + Ce−x

◮ In this case, it is easy to see that one particular solution
is y = −x

◮ Then, we reach the general solution:

y = A + Bex + Ce−x − x .
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Exercise 3.23

◮ Find the general solution of y ′′ + y = x .

◮ The general solution for the homogeneous is clearly
y = A cos x + B sin x

◮ On the other hand, we can see that a particular solution
is yp = x

◮ Therefore, the complete solution is
y = A cos x + B sin x + x
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◮ The most difficult part of finding the general solution for
the complete equation is to find the particular solution

◮ There are some systematic methods to find the
particular solution, and we will study one of them
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Variation of parameters

◮ Let us suppose that we know the general solution to a
linear homogeneous equation

∑n
k=1 Ckyk

◮ We will suppose that a particular solution to the
complete equation will be given by yp =

∑n
k=1 gk(x)yk .

We will obtain gk(x) by the following method:

◮ First, we will impose that the following relations are
satisfied

g ′

1y1 + g ′

2y2 +. . . + g ′

nyn =
∑n

k=1 g ′

kyk = 0
g ′

1y
′

1 + g ′

2y
′

2 +. . . + g ′

ny
′

n =
∑n

k=1 g ′

ky ′

k = 0
...

...
. . . +

...
...

g ′

1y
(n−2)
1 +g ′

2y
(n−2)
2 +. . . +g ′

ny
(n−2)
n =

∑n
k=1 g ′

ky
(n−2)
k = 0

g ′

1y
(n−1)
1 +g ′

2y
(n−1)
2 +. . . +g ′

ny
(n−1)
n =

∑n
k=1 g ′

ky
(n−1)
k = b
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◮ Using the relation, we can construct the following

an {yp =
∑n

k=1 gkyk }
an−1 {y ′

p =
∑n

k=1 gky ′

k + [
∑n

k=1 g ′

kyk = 0] }
an−2 {y ′′

p =
∑n

k=1 gky ′′

k + [
∑n

k=1 g ′

ky ′

k = 0] }
...

...

a1 {y (n−1)
p =

∑n
k=1 gky

(n−1)
k +

[

∑n
k=1 g ′

ky
(n−2)
k = 0

]

}
1 {y (n)

p =
∑n

k=1 g ′

kyk(n) +
[

∑n
k=1 g ′

ky
(n−1)
k = b

]

}

◮ Adding all terms:

Lyp =

n
∑

k=1

gkLyk + b,

and since the functions yk are a solution, we end up
with Lyp = b.
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◮ On the other hand, the conditions imposed over gk(x)
form a linear system

◮ The determinant, is the Wronskian of the yk solutions
of the homogeneous equation

◮ Since the Wronskian is not zero, the solution is not
trivial and is moreover unique:

g ′

k(x) = f (x) ⇒ gk(x) =

∫

fk(x)dx + Ck .

◮ Thus, we obtain

yp =
n

∑

k=1

(
∫

fk(x)dx

)

yk +
n

∑

k=1

Ckyk ,

and since it has n free constants, it is really a general
solution of the complete equation
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◮ As an example, let us analyse y ′′ − y = x2

◮ We know that the solution to the homogeneous
equation is y = C1e

x + C2e
−x

◮ Let us check then a particular of the form
yp = g(x)ex + h(x)e−x

◮ We have to study the following relations

g ′y1 + h′y2 = 0, g ′y ′

1 + h′y ′

2 = b.

◮ Therefore g ′ex + h′ex = 0, g ′ex − h′ex = x2.

◮ It is easily seen that g ′ = x2e−x/2 and h′ = −x2ex/2,
therefore we have

g = −1

2
(x2 + 2x + 2)e−x/2 + C1,

h = −1

2
(x2 − 2x + 2)ex + C2,

and the general solution is

y = C1e
x + C2e

−x − x2 − 2.
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Exercise 3.24

◮ Find the general solution for y ′′ + y = 1/ cos x

◮ The general solution for the homogeneous is
y = C1 cos x + C2 sin x , so then
g ′ cos x + h′ sin x = 0, −g ′ sin x + h′ cos x = 1/ cos x .
which can be rewritten as

g ′ cos x sin x + h′ sin2 x = 0,

−g ′ cos x sin x + h′ cos x2 = 1.

Adding both equations, we get h′ = 1, so g ′ = − tan x

and h = x + C1, g = log(cos x) + C2.
The general solution thus reads

y = (log(cos x) + C2) cos x + (x + C1) sin x .
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