Ordinary differential equations Topic 2

First order equations
2.1 Geometric meaning, 2.2 Existence-uniqueness theorem,
2.3 Exact equations, 2.4 Integrating factor, 2.5 Separable equations, 2.6 Special integrating factor, 2.7 Linear equations, 2.8 Transformation methods, 2.9 Homogeneous equations, 2.10 Equations type $y^{\prime}=f(a x+b y+c), 2.11$ Equations of type $y^{\prime}=f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$, 2.12 Bernouilli's equations, 2.13 Riccati's equations, 2.14 Envelopes and singular solutions, 2.15 Equations not soluble for the derivative

2.1 Geometric meaning

First order

equations
2.1 Geometric

Meaning

- We already know that the finite equation $\varphi(x, y)=0$ defines a curve in the (x, y) plane
- e.g. the equation $x^{2}+y^{2}=1$ defines a unit circle centered at the origin
- But in order to describe a family of curves we need something like $\varphi(x, y, C)=0$
- e.g. the equation $x^{2}+y^{2}=C^{2}$ defines a family of circles of radious $C(\geq 0)$ centered at the origin
- But why wonder about curves in a class of differential equations?
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{c x+\beta y+c}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative
- Combining the equation for the family

$$
\varphi(x, y, C)=0
$$

and its derivative

$$
\frac{\partial \varphi}{\partial x}(x, y, C)+\frac{\partial \varphi}{\partial y}(x, y, C) y^{\prime}=0
$$

we can eliminate the parameter C

- This shows the close relation between differential equations and families of curves
- The result of the previous combination gives us the differential equation for the family:

$$
F\left(x, y, y^{\prime}\right)=0 .
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{a x+c}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- This equation gives the relation between the slope at a point, and the curve that goes through that point

Exercise 2.1

- Take the derivative of $x^{2}+y^{2}=C^{2}$ to show that the differential equation of circles centered at the origin is the following:

$$
x+y y^{\prime}=0
$$

From $\left(x^{2}+y^{2}\right)^{\prime}=\left(C^{2}\right)^{\prime}$ it is easy to see that $x+y y^{\prime}=0$
This is the result we are after

- This example is very easy, since the derivative is enough to get the equation. Generally, we would need both equations.
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of type y^{\prime}
$f\left(\frac{a x+b y+c}{c+c y}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- By construction, the functions $\varphi(x, y, C)=0$ are a uniparametric family of solutions for $F\left(x, y, y^{\prime}\right)=0$
- Besides, since the equation is first order it is the general solution
- Careful! By eliminating C, other general solutions and singular solutions can appear
- On the other hand, each particular case of $\varphi(x, y, C)=0$ is the equation for an integral curve
- integral curves are particular solutions obtained by integration of the differential equation of the family
- e.g. the circles defined by $x^{2}+y^{2}=C^{2}$ are integral curves.

Exercise 2.2

- Find the differential equation for the unit circles whose center is in the x axis. Is there any singular solution?
- The finite equation for this family of curves is

$$
(x-C)^{2}+y^{2}=1,
$$

and by derivation plus some other simple operations we get $y y^{\prime}=-(x-C)$
This can be rewritten as $y^{2}\left(y^{\prime}\right)^{2}=(x-C)^{2}$ Using the finite equation we can eliminate C to get $y^{2}\left(\left(y^{\prime}\right)^{2}+1\right)=1$.

- By inspection, one can guess the singular solutions given by $y= \pm 1$

Particular (circles) and singular (straight lines) solutions.

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{c x+c y}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- If the curves of a family do not cross each other, we get a very intersting case: a congruence of curves
- Are the families of circles from the previous exercises congruences?
Those from exercise 2.1 yes, but not those of exercise 2.2
- In the case of congruences, there is a single curve that goes through a given point (and there is only corresponding value of the parameter)
- In other words, there is only one single curve, and one single value of C that corresponds to a given point (x, y)
- This is why it is possible to use $\varphi(x, y, C)=0$ to solve for C for a given point (x, y)
- By doing that, we will be able to write the congruence as

$$
u(x, y)=C
$$

- Remember the case $x^{2}+y^{2}=C^{2}$
- In the case of congruencies, the differential equation is obtained by mere differentiation

$$
\begin{gathered}
(u(x, y)=C)^{\prime} \\
u^{\prime}(x, y)=\frac{\partial u}{\partial x}(x, y)+\frac{\partial u}{\partial y}(x, y) y^{\prime}=C^{\prime}=0
\end{gathered}
$$

- Taking derivatives is enough to eliminate the parameter C
- We can obtain the symmetric form of the equation by multiplying by $d x$:

$$
u^{\prime} d x=\frac{d u}{d x} d x=d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=0
$$

- From now on, we will use the following short-hands

$$
\begin{gathered}
P \equiv \frac{\partial u}{\partial x}, Q \equiv \frac{\partial u}{\partial y} \\
d u=P d x+Q d y
\end{gathered}
$$

- e.g. for the equation $x+y y^{\prime}=0$ we get:

$$
P \equiv \partial u / \partial x=x, Q \equiv \partial u / \partial y=y, x d x+y d y=0
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of
type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{c x+c}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

- We can obtain the normal form by solving for the highest derivative:

$$
y^{\prime}=f(x, y)
$$

- Sometimes the normal form is more convenient than the symmetric
- In any case, they are related by

$$
f(x, y) \equiv-\frac{\partial u / \partial x}{\partial u / \partial y}=-\frac{P(x, y)}{Q(x, y)}
$$

- The normal form for the previous example is:

$$
y^{\prime}=-\frac{x}{y} .
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{c x+s y+i}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

Figure 2.1 Congruence of curves, derivative and slope.

- The normal form gives the interpretation for the differential equation:
- the differential equation gives the slope for the integral curve going through (x, y)
- the value of the slope is $y^{\prime}=\tan \alpha=f(x, y)$
- there is only one curve per point, and the tangent defines a single direction
- Therefore, the equation $y^{\prime}=f(x, y)$ assigns one direction to each point
- Taking into account all points, it defines a direction field

First order equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

Figure 2.2 Congruence and direction field.

- When is the relation between the equation and the congruence one-to-one?
- When the hypothesis for the theorem of existence and uniqueness are satisfied

Theorem (existence and uniqueness)
If the function f and its derivative $\partial f / \partial y$ are continuous in a domain, then the initial-value problem posed by

$$
y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}
$$

admits only one solution for each initial value (x_{0}, y_{0})

- Due to this theorem, given some continuity properties, the curve obtained by integrating a differential equation is a congruence
- But, if there is a singular point, the theorem cannot be applied
- In those points, there can be more than one curve per point

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of type y^{\prime}
$f\left(\frac{a x+b y+c}{a x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

Exercise 2.4

- Show that the differential equation for the circles centered in the y axis that touch the x axis is given by

$$
y^{\prime}=\frac{2 x y}{x^{2}-y^{2}}
$$

- The equation for circles with center in the y is $x^{2}+\left(y-y_{0}\right)^{2}=R^{2}$
We also need the point $(x, y)=(0,0)$ to be included in the circle
so $0^{2}+\left(0-y_{0}\right)^{2}=R^{2}$, and thus $y_{0}= \pm R$
This gives us the finite equation for the family

$$
x^{2}+(y \mp R)^{2}=R^{2} .
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
$f\left(\frac{a x+b y+c}{c+c y}\right)$ 2.12 Bernouilli's equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

It can be rewritten as $x^{2}+y^{2} \mp 2 R y=0$, and therefore $\pm R=\left(x^{2}+y^{2}\right) /(2 y)$
By taking derivatives and simplifying

$$
x+(y \mp R) y^{\prime}=0
$$

Combining with the expression for $\pm R$ and multiplying by y
$x y+\left(y^{2}-\left(y^{2}+x^{2}\right) / 2\right) y^{\prime}=0$
and finally we get

$$
y^{\prime}=\frac{2 x y}{x^{2}-y^{2}},
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{c x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of
type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{c x+c}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

Figure 2.3 Circles that touch the x axis.

- The diagonal lines $y= \pm x$ and the point $(x, y)=(0,0)$ are singular
- At the origin there is no uniqueness, but it doesn't disagree the theorem (singular)
- At the diagonals there is no uniqueness problem

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

2.3 Exact equations

- The symmetric form for the equation $u(x, y)=C$ was given by

$$
d u=P(x, y) d x+Q(x, y) d y=(\partial u / \partial x) d x+(\partial u / \partial y) d y
$$

- Such differential equations are called exact
2.2 teorema

Following Schwarz's theorem, all exact solution satisfy the following property

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} .
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

Example: integration of an exact equation

- Let us start with the following equation

$$
x d x+y d y=0
$$

- Since $\partial P / \partial y=\partial Q / \partial x$ it is exact
- $\partial u / \partial x=x$, and integrating we obtain

$$
u=x^{2} / 2+h(y)
$$

($h(y)$ is not determined as of yet)

- Now, bear in mind that $\partial u / \partial y=y$, and on the other hand $\partial u / \partial y=h^{\prime}(y)$.
- Comparing and integrating we get $h(y)=y^{2} / 2+D$, and therefore
- We can choose $D=0$ by redefinitions

Exercise 2.5

- Solve he following equation

$$
(x+y+1) d x+\left(x-y^{2}+3\right) d y=0
$$

In this case $\partial P / \partial y=1$ and $\partial Q / \partial x=1$, so it is exact Now, as $\partial u / \partial x=(x+y+1)$, we obtain

$$
u=x^{2} / 2+x(y+1)+h(y)
$$

This gives $\partial u / \partial y=x+h^{\prime}(y)$
Using $Q=\partial u / \partial y=x-y^{2}+3$ and comparing we get $h^{\prime}(y)=3-y^{2}$
This gives $h(y)=3 y-y^{3} / 3$ and we thus obtain the solution

$$
u=\frac{x^{2}}{2}+x(y+1)+y\left(3-\frac{y^{2}}{3}\right)=C
$$

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous
equations
2.10 Equations of type
$f\left(\frac{a x+b y+c}{a x+c}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

1st special case: Equations without dependent variable

- These look as follows

$$
y^{\prime}=f(x)
$$

- Both cross terms are zero, so it is exact
- Clearly

$$
y=\int f(x) d x+C
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of
type
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

- As an example, let us integrate $y^{2}\left(\left(y^{\prime}\right)^{2}+1\right)=1$
- It can be written as $\left(y^{\prime}\right)^{2}=1 / y^{2}-1$,
and also as $\left(y^{2}\left(y^{\prime}\right)^{2}\right) / 1-y^{2}=1$.
- Squaring and remembering $y^{\prime}=d y / d x$, we can write
$\frac{y d y}{\sqrt{1-y^{2}}}= \pm d x$ and by direct integration one obtains
$\sqrt{1-y^{2}}= \pm(x-C)$
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

2nd special case: Equations with separated

 variables- In this case, the independent and the dependent variables appear separated, in different terms:

$$
P(x) d x+Q(y) d y=0 .
$$

- It is exact since both cross derivatives are zero
- Clearly

$$
y=\int P(x) d x+\int Q(y) d y+C
$$

Exercise 2.7

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

General procedure If the equation

$$
d u=P(x, y) d x+Q(x, y) d y=0
$$

is exact, this is the way of obtaining the general solution:

- 1. Calculate $\int P(x, y) d x$ since $u(x, y)=\int P(x, y) d x+h(y)$
- 2. Write

$$
\frac{d\left[\int P(x, y) d x\right]}{d y}+h^{\prime}(y)=Q(x, y)
$$

and solve for $h^{\prime}(y)$

- 3. Calculate $h(y)$ by direct integration

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating
factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
$\alpha x+\beta y+\chi$,
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

2.4 Integrating factor

- Let us start with an example

$$
\frac{x}{y} d x+d y=0
$$

- This equation is not exact, but if we multiply it by y it becomes exact
- Sometimes it is possible to covert some equations into exact equations
- ZIf a non-exact equation $P(x, y) d x+Q(x, y) d y=0$ becomes exact by multiplying with $\mu(x, y)$, then the function $\mu(x, y)$ is known as the integrating factor for that equation
- In general, the solutions for $\mu(x, y)(P(x, y) d x+Q(x, y) d y)=0$ will also be solutions for $P(x, y) d x+Q(x, y) d y=0$

1st execption

- Let us consider the following equation $x y d x+y^{2} d y=0$

This equation has one singular solution if the form $y=0$
On the other hand, it accepts an integrating factor $\mu=1 / y$
But the euqation
$\mu(P(x, y) d x+Q(x, y) d y)=x d x+y d y=0$ does not have $y=0$ as a solution: we have lost one solution! In this example, it cna be seen that the solution we have lost $(y=0)$ is the root of $1 / \mu$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{c}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- In general, one should check what happens with the roots of the inverse of the integrating factor, i.e., the solutions of $1 / \mu(x, y)=0$

If there are solutions, and they are not part of the general solution for $\mu(P(x, y) d x+Q(x, y) d y)=0$, then, they will be singular solutions for the original equation $P(x, y) d x+Q(x, y) d y=0$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2. $\alpha x+\beta y+\gamma)$
2. Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

2nd exception

- The integrating factor can bring "fake solutions"
$\mu(x, y)=0$ can describe solutions for the new equation
$\mu(P(x, y) d x+Q(x, y) d y)=0$
But it can happen that those solutions are not solutions
of the original equation
It has to be checked
- In summary
- If $\mu(x, y)=0$, fake solutions can happen
- If $1 / \mu(x, y)=0$ true solutions can disappear

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\tau}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

Exercise 2.8

- Show that $\mu=1 /\left(x y^{2}\right)$ is an integrating factor for the following equation: $\left(x y+y^{2}\right) d x-x^{2} d y=0$. Get the general solution. Is there any singular solution? Is there any root of μ that is not a solution for the differential equation?

Let us start with:
$\mu P=\frac{1}{x y^{2}}\left(x y+y^{2}\right)=\frac{1}{y}+\frac{1}{x}, \quad \mu Q=-\frac{x^{2}}{x y^{2}}=-\frac{x}{y^{2}}$
It can be seen that $\partial(\mu P) / \partial y=-1 / y^{2}=\partial(\mu Q) / \partial x$, so the new equation is exact
Using that $\partial u / \partial x=\mu P=1 / y+1 / x$, we get
$u=x / y+\log |x|+h(y)$
On the one hand, $\partial u / \partial y=\mu Q=-x / y^{2}$, but on the

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{c x+\beta y+c}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative other $\partial u / \partial y=-x / y^{2}+h^{\prime}(y)$.
Therfore $h(y)=C$ and $u=x / y+\log |x|=C$.

- Let us now check $\mu=0$ and $1 / \mu$.
- The first one happens at $y=\infty$ so it is nothing to worry about
- the second one happens when $y=0$
- From the general solution $x / y+\log |x|=C=1 / D$ one gets

$$
y=\frac{D x}{1-D \log |x|}
$$

- Setting $D=0$ we recover $y=0$ so we have not lost any solution

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{c x+s y+c}\right)$
$\alpha(\alpha+\beta y+\gamma$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- If an equation accepts μ as an integrating factor, $C \mu$ will also be an integrating factor, with C any constant
- All first order equations accept an integrating factor
- The problem is...how can we calculate it in general?
- In some cases there is a method to obtain the integrating facto
- If the new equation is exact, it should satisfy

$$
\frac{\partial(\mu P)}{\partial y}=\frac{\partial(\mu Q)}{\partial x}
$$

- We can rewrite it to obtain

$$
Q \frac{\partial \log \mu}{\partial x}-P \frac{\partial \log \mu}{\partial y}=\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}
$$

which can be sometime useful

2.5 Separable equations

- If in the symmetric form, the dependent and the independent variables can be written in different factors, the the equation is separable :

$$
R(x) S(y) d x+U(x) V(y)=0
$$

- This case accepts the following integrating factor $1 /(S(y) U(x))$

$$
\begin{gathered}
\frac{1}{S(y) U(x)}(R(x) S(y) d x+U(x) V(y))= \\
\frac{R(x)}{U(x)} d x+\frac{V(y)}{S(y)} d y=0
\end{gathered}
$$

- Since the variables get separated, the solution is

$$
u=\int \frac{R(x)}{U(x)} d x+\int \frac{V(y)}{S(y)} d y=C
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$=f(a x+b y+c)$
2.11 Equations of type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+c}\right)$
2. $\alpha x+\beta y+\gamma)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- Let us check that the equation $x(1+y) y^{\prime}=y$ takes $\mu=1 /(x y)$ as an integrating factor and let us obtain the solution
- In the symmetric form we have $-y d x+x(1+y) d y=0$, so

$$
\begin{aligned}
& R(x)=-1, \quad S(y)=y, \quad U(x)=x, \quad V(y)=(1+y) \\
& \mu=1 /(S U)=1 /(x y) .
\end{aligned}
$$

- Our new equation is

$$
-\frac{1}{x} d x+\frac{1}{y}(1+y) d y=0
$$

- By direct integration, the general solution is

$$
\ln |y|+y=\ln |x|+\ln C \text { or }
$$

$$
|y| e^{y}=C|x|
$$

- One should check whether the solution $y=0$ is lost. That is not the case, since it corresponds to the case $C=0$

Exercise 2.9

- Solve the following equation

$$
(x-4) y^{4} d x-x^{3}\left(y^{2}-3\right) d y=0
$$

- For this case

$$
\begin{aligned}
& R(x)=x-4, S(y)=y^{4}, U(x)=-x^{3}, \quad V(y)=y^{3}-3, \\
& \mu=1 /(S U)=-1 /\left(x^{3} y^{4}\right) .
\end{aligned}
$$

- The new equation reads

$$
-\left((x-4) / x^{3}\right) d x+\left(\left(y^{2}-3\right) / y^{4}\right) d y
$$

- Therefore,

$$
\begin{gathered}
u=-\int(x-4) / x^{3} d x+\int\left(y^{2}-3\right) / y^{4} d y= \\
\frac{1}{x}+\frac{2}{x^{2}}-\frac{1}{y}+\frac{1}{y^{3}}=C=1 / D
\end{gathered}
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{c+c}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

- We shoudl check for $1 / \mu=U(x) S(y)=0$. One should worry if $y=0$ is lost, but it corresponds to $D=0$ in the general solution

2.6 Special integrating factors

1st case: integrating factors of type $\mu(x)$

- In general, the integrating factor satisfies

$$
Q \frac{\partial \log \mu}{\partial x}-P \frac{\partial \log \mu}{\partial y}=\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}
$$

- But for the case $\mu(x)$:

$$
\frac{\partial \log \mu}{\partial x}=\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)
$$

- If that is satisfied, we get

$$
\frac{d}{d y}\left[\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)\right]=0
$$

and this is what one has to check

- Then, integrating

$$
\frac{\partial \log \mu}{\partial x}=\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)
$$

one gets

$$
\mu(x)=C \exp \int \frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) d x
$$

- We can choose the value C to our convinience.

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

- For example, let us consider
$\left(2 x^{2}+y\right) d x+\left(x^{2} y-x\right) d y=0$
- In this case,

$$
\begin{gathered}
\frac{d}{d y}\left[\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)\right]= \\
\frac{d}{d y}\left[\frac{1}{x^{2} y-x}(1-(2 x y-1))\right]=\frac{d}{d y}\left[\frac{2-2 x y}{x^{2} y-x}\right]= \\
\frac{d}{d y}\left[-\frac{2}{x}\right]=0
\end{gathered}
$$

- therefore, it is possible to get an integrating factor of the form $\mu(x)$

$$
\begin{aligned}
& \mu(x)=C \exp \int \frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right) d x= \\
& C \exp \int-\frac{2}{x} d x=C \exp (-2 \ln x)=\frac{1}{x^{2}}
\end{aligned}
$$

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations 2.8 Transformation methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{\alpha x+6 y+c}\right)$
2.12 Bernouilli's
2
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

- The new equation is

$$
\left(2+\frac{y}{x^{2}}\right) d x+\left(y-\frac{1}{x}\right) d y=0
$$

- Following the usual steps, we get on the one hand $u=2 x-y / x+h(y)$ on the other

$$
-\frac{1}{x}+h^{\prime}(y)=y-\frac{1}{x},
$$

therfore $h(y)=y^{2} / 2$.

- The final solution is

$$
u=2 x-\frac{y}{x}+\frac{y^{2}}{2}=C
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

Exercise 2.10

- Solve $\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$

In this case

$$
\begin{gathered}
\frac{d}{d y}\left[\frac{1}{Q}\left(\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}\right)\right]= \\
\frac{d}{d y}\left[\frac{1}{x^{2}+x y}(x+y)\right]=\frac{d}{d y}\left[\frac{1}{x}\right]=0 .
\end{gathered}
$$

Therefore

$$
\mu(x)=C \exp \int \frac{d x}{x}=C x
$$

and the new equation reads $x y(3 x+y) d x+x^{2}(x+y) d y=0$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

Following the usual procedure

$$
u=x^{3} y+\frac{x^{2} y^{2}}{2}+h(y)
$$

The other conditions give

$$
x^{3}+x^{2} y+h^{\prime}(y)=x^{2}(x+y)
$$

and therfore $h(y)=D$.
The solution is

$$
u=x^{3} y+\frac{x^{2} y^{2}}{2}=C
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

2nd case: integrating factor of type $\mu(y)$

- The condition for the existence of this type of integrating factor is

$$
\frac{d}{d x}\left[\frac{1}{P}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\right]=0
$$

- and the integrating factor is obtained by

$$
\mu(y)=C \exp \int \frac{1}{P}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d y
$$

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

Exercise 2.11

- Discuss whether the equation
$\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0$ accepts an integrating factor of type $\mu(y)$
- For this equation, we get

$$
\frac{\partial P}{\partial y}=3 x+2 y, \quad \frac{\partial Q}{\partial x}=2 x+y
$$

so it is not exact
Moreover,

$$
\frac{d}{d x}\left[\frac{1}{P}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right)\right]=\frac{d}{d x}\left[\frac{1}{3 x y+y^{2}}(y-x)\right] \neq 0
$$

so it does nto accept an integrating factor of the form $\mu(y)$

1.3 Integrating factor of the type

$\mu(x, y)=g(h(x, y))$

- In order to be able to get an integrating factor that depends on the variables only via an intermidiate function, it should obey

$$
\mu(h)=C \exp \int \frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q \frac{\partial h}{\partial x}-P \frac{\partial h}{\partial y}} d h,
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of
type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{c x+c y+}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

Exercise 2.12

- Solve $\left(3 x y+y^{2}\right) d x+\left(3 x y+x^{2}\right) d y=0$ using an integrating factor of the form $\mu(x+y)$

For this equation

$$
\frac{\partial P}{\partial y}=3 x+2 y, \quad \frac{\partial Q}{\partial x}=3 y+2 x, \quad \frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}=x-y
$$

We are told to use $h=x+y$, and then

$$
\begin{gathered}
Q \frac{\partial h}{\partial x}=3 x y+x^{2} \quad P \frac{\partial h}{\partial y}=3 x y+y^{2}, \\
Q \frac{\partial h}{\partial x}-P \frac{\partial h}{\partial y}=x^{2}-y^{2}=(x+y)(x-y) .
\end{gathered}
$$

Therefore,

$$
\frac{\frac{\partial P}{\partial y}-\frac{\partial Q}{\partial x}}{Q \frac{\partial h}{\partial x}-P \frac{\partial h}{\partial y}}=\frac{(x-y)}{(x-y)(x+y)}=\frac{1}{x+y}
$$

Then, bearing in mind $h=x+y$

$$
\mu(h)=C \exp \int d h / h=C(x+y)
$$

The new equation is
$(x+y)\left[\left(3 x y+y^{2}\right) d x+\left(3 x y+x^{2}\right) d y\right]=0$ and is of course exact

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}=8 x y+3 x^{2}+3 y^{2} .
$$

Now we can proceed as usual

$$
\begin{gathered}
u(x, y)=\int(x+y)\left(3 x y+y^{2}\right) d x+h(y)= \\
x^{3} y+2 x^{2} y^{2}+x y^{3}+h(y)
\end{gathered}
$$

which gives $\partial u / \partial y=x^{3}+4 x^{2} y+3 x y^{2}+h^{\prime}(y)$ and also $\partial u / \partial y=Q=4 x^{2} y+x^{3}+3 x y^{2}$, therefore $h(y)=D$. The solution reads $u=x^{3} y+2 x^{2} y^{2}+x y^{3}=C$

2.7 Linear equations

- First order linear equations have the following form

$$
y^{\prime}+A(x) y=B(x)
$$

- There are two cases
- If $B=0$, the equation is homogeneous
- If $B \neq 0$, the equation is inhomogeneous
- Linear equations accept the following integrating factor

$$
\mu(x)=\exp \int A(x) d x
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{a x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- The equation now reads

$$
e^{\int A(x)} y^{\prime}+A(x) e^{\int A(x) d x} y=B(x) e^{\int A(x) d x}
$$

- which can be rewritten as

$$
\frac{d}{d x}\left[e^{\int A(x) d x} y\right]=B(x) e^{\int A(x) d x}
$$

and then, the general solution is

$$
y=e^{-\int A(x) d x}\left[C+\int B(x) e^{\int A(x) d x} d x\right]
$$

- The general solution for the liear equation is the sum of two terms
the general solution for the homogeneous $(B=0)+$ particular solution for the inhomogeneous ($C=0$)

Exercise 2.13

- Solve $x y^{\prime}+(1+x) y=e^{x}$.
- In this case

$$
A=(1+x) / x=(1 / x)+1, \quad B=e^{x} / x .
$$

Then $\mu=e^{\int A(x) d x}=e^{\int((1 / x)+1) d x}=e^{\ln x+x}=x e^{x}$ and

$$
\begin{gathered}
y=e^{-\int A(x) d x}\left[C+\int B(x) e^{\int A(x)} d x\right]= \\
\frac{1}{x} e^{-x}\left[C+\int \frac{e^{x}}{x} x e^{x} d x\right]=\frac{1}{x} e^{-x}\left[C+\int e^{2 x} d x\right]= \\
\frac{1}{x} e^{-x}\left[C+\frac{e^{2 x}}{2}\right]=\frac{1}{x}\left[C e^{-x}+\frac{e^{x}}{2}\right]
\end{gathered}
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

2.8 Transformation methods

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable

- The difficulty in solving physical problems depends strongly on the coordinate choice
- Choosing an appropriate coordinate system helps
- In some cases it will be helpful to use transformation methods to transform either the dependent variable, the independent variable or both
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type

2.9 Homogenenous equations

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating
factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c$
2.11 Equations of
type y

$$
P(a x, a y)=a^{r} P(x, y), \quad Q(a x, a y)=a^{r} Q(x, y) \quad \forall a .
$$

then $P(x, y) d x+Q(x, y) d y=0$ is a homogeneous equation of order r
$f\left(\frac{a x+b y+c}{a x+\beta y+\gamma}\right)$
$\left(\frac{\alpha x+\beta y+\gamma}{}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- One can prove that

$$
\begin{align*}
& P(x, y) d x+Q(x, y) d y=0 \text { is homogeneous } \Leftrightarrow \\
& -\frac{P(x, y)}{Q(x, y)}=f\left(\frac{y}{x}\right) \tag{1}
\end{align*}
$$

- This is why changing the variables to $u=y / x$ happens to be halpful for this type of equations

$$
u=\frac{y}{x} \Rightarrow y=x u, \quad y^{\prime}=u+x u^{\prime}
$$

- Actually, this change of variables makes the equation separable

$$
y^{\prime}=f(u)=u+x u^{\prime}, \quad u^{\prime}+\frac{1}{x}(u-f(u))=0
$$

- and the equation becomes anquadrature

$$
\int \frac{d u}{f(u)-u}=\int \frac{d x}{x}+C
$$

Exercise 2.16

- Solve $\left(\sqrt{x^{2}+y^{2}}+y\right) d x-x d y=0$.

In this case

$$
f(x, y)=\frac{\sqrt{x^{2}+y^{2}}+y}{x}
$$

and it can be seen that it is homogeneous

$$
f(a y, a x)=\frac{\sqrt{a^{2} x^{2}+a^{2} y^{2}}+a y}{a x}=f(y, x),
$$

therefore, $f(x, y)=f(y / x)$.
Let us make the change of variables $u=y / x$

$$
f(u)=\frac{\sqrt{x^{2}+x^{2} u^{2}}+x u}{x}=u+\sqrt{1+u^{2}} .
$$

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations 2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{a x+\beta y}\right)$
2.12 Bernouilli's
$\left(\frac{\alpha x+\beta y}{}\right)$
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

The solution for our equation now reads

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

2.10 Equations of type $y^{\prime}=f(a x+b y+c)$

- Using the change of variables $u=a x+b y+c$ the equation becomes separable

Let us prove that. First,

$$
u=a x+b y+c, \quad u^{\prime}=a+b y^{\prime},
$$

and for the type of equation we are dealing with

$$
y^{\prime}=f(a x+b y+c)=f(u)
$$

SO

$$
u^{\prime}=a+b f(u) .
$$

The solution can be writen as a quadrature

$$
\int \frac{d u}{a+b f(u)}=\int d x+C
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{a x+\beta y+c}\right)$
2.12 Bernouili's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

Exercise 2.17

- Solve $y^{\prime}=(x+y+1)^{2}$

In this case $f(x, y)=f(a x+b y+c)=(x+y+1)^{2}$, so

$$
u^{\prime}=1+u^{2}
$$

Therefore

$$
\begin{gathered}
\int \frac{d u}{1+u^{2}}=\int d x+C \\
\arctan (x+y+1)=x+C,
\end{gathered}
$$

and finally

$$
y=\tan (x+C)-(x+1)
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of
type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{a x+\beta y+\gamma}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

2.11 Equations of type $y^{\prime}=f\left(\frac{a x+b y+c}{a x+\beta y+\gamma}\right)$

- There are two cases depending on the geometrical relation between the two straight lines $a x+b y+c=0$ and $\alpha x+\beta y+\gamma=0$

1st case $\alpha / a=\beta / b=k \quad$ (parallel lines)

- In this case

$$
y^{\prime}=f\left(\frac{a x+b y+c}{k(a x+b y)+c}\right),
$$

so this is the same case as the one seen in the previous section: $f(x, y)=f(a x+b y+c)$.

- The change of variables $u=a x+$ by or $u=a x+b y+c$ will help to solve the equation

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type $y^{\prime}=$
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
$f\left(\frac{\alpha x+\beta y+\gamma}{\alpha+1}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not
soluble for the
derivative

Exercise 2.18

- Solve $y^{\prime}=(x-y) /(x-y-1)$

In this eqution $a=1, b=-1$ and $u=x-y$. Then $u^{\prime}=1-u /(u-1)=-1 /(u-1)$, and

$$
\begin{gathered}
\int(u-1) d u=-\int d x+C \\
\frac{u^{2}}{2}-u=-x+C \\
\frac{(x-y)^{2}}{2}-(x-y)-C=-x, \\
(x-y)^{2}+2 y=2 C .
\end{gathered}
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of type $y^{\prime}=$
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$ 2.12 Bernouilli's equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

2.11 Equations of type $y^{\prime}=f\left(\frac{a x+b y+c}{a x+\beta y+\gamma}\right)$

2nd case $\alpha / a=\beta / b \neq k$ (not parallel lines)

- Let us suppose that the lines meet at $\left(x_{0}, y_{0}\right)$

$$
a x_{0}+b y_{0}+c=\alpha x_{0}+\beta y_{0}+\gamma=0 .
$$

- It is convenient to define $u=x-x_{0}$ and $v=y-y_{0}$:

$$
\begin{aligned}
& a x+b y+c=a x+b y+c-\left(a x_{0}+b y_{0}+c\right)=a u+b v, \\
& \alpha x+\beta y+\gamma=\alpha x+\beta y+\gamma-\left(\alpha x_{0}+\beta y_{0}+\gamma\right)=\alpha u+\beta v .
\end{aligned}
$$

- For these variables $d y / d x=d v / d x=d v / d u a n d$ the equation becomes homogeneous

$$
\frac{d v}{d u}=f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)=f\left(\frac{a u+b v}{\alpha u+\beta v}\right)=f\left(\frac{a+b v / u}{\alpha+\beta v / u}\right) .
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations 2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of type $y^{\prime}=$
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+c}\right)$ 2.12 Bernowill's
2 equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- The original equation becomes

$$
\frac{d v}{d u}=f\left(\frac{a+b v / u}{\alpha+\beta v / u}\right) .
$$

which is homogeneous

- Now, using earlier results, $z=v / u$ makes the equation separable
- In order to simplify notaion, we will denote the derivatives with respect to u with a^{\prime}

$$
\frac{d v}{d u}=v^{\prime} \text { and } \frac{d z}{d u}=z^{\prime}
$$

- We will then get

$$
v^{\prime}=z^{\prime} u+z
$$

and finally

$$
z^{\prime} u+z=f\left(\frac{a+b z}{\alpha+\beta z}\right) .
$$

Eercise 2.19

- Solve

$$
y^{\prime}=\frac{x-y+1}{x+y-3} .
$$

The crossing point is obtained from $x_{0}-y_{0}+1=x_{0}+y_{0}-3=0$ to give $\left(x_{0}, y_{0}\right)=(1,2)$. We can use the new variables $u=x-1, v=y-2$ to transform the equation into

$$
y^{\prime}=\frac{u+1-(v+2)+1}{u+1+v+2-3}=\frac{u-v}{u+v}
$$

Therefore

$$
\frac{d v}{d u}=\frac{1-v / u}{1+v / u}
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of type $y^{\prime}=$
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$ 2.12 Bernouill's equations
2.13 Riccati's equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the
derivative

Following the result in this section

$$
v^{\prime}=z+z^{\prime} u=(1-z) /(1+z) .
$$

We then get

$$
\frac{d z}{d u}=\frac{1}{u}\left(\frac{1-z}{1+z}-z\right)=\frac{1}{u}\left(\frac{1-2 z-z^{2}}{1+z}\right)
$$

and

$$
\begin{gathered}
\int \frac{1+z}{1-2 z-z^{2}} d z=\int \frac{d u}{u}+\ln C \\
-\frac{1}{2} \ln \left|1-2 z-z^{2}\right|=\ln C|u|, \quad z^{2}+2 z-1=\frac{1}{C^{2} u^{2}} .
\end{gathered}
$$

Reverting back to the original variables

$$
\begin{gathered}
\left(\frac{v}{u}\right)^{2}+2\left(\frac{v}{u}\right)-1=\frac{1}{C^{2} u^{2}}, \\
\left(\frac{y-2}{x-1}\right)^{2}+2\left(\frac{y-2}{x-1}\right)-1=\frac{1}{C^{2}(x-1)^{2}}, \\
y^{2}+2 x y-6 y-x^{2}-2 x=D^{2} .
\end{gathered}
$$

2.12 Bernouilli's equations

- These equations are of the form

$$
y^{\prime}+A(x) y=B(x) y^{n} \quad n \neq 0,1
$$

- If $n=0$, it is linear inhomogeneous equation
- If $n=1$, it is a linear homogeneous equation
- The equation can be made linear by $u=y^{1-n}$

First we have

$$
u^{\prime}=(1-n) y^{-n} y^{\prime} .
$$

Substituting in the original equation

$$
\frac{u^{\prime} y^{n}}{(1-n)}+A(x) y=B(x) y^{n}, \frac{u^{\prime}}{(1-n)}+A(x) y^{1-n}=B(x)
$$

we obtain a linear equation

$$
u^{\prime}+(1-n) A(x) u=(1-n) B(x) .
$$

Exercise 2.20

- Solve

$$
y^{\prime}-y \cos x=\frac{1}{2} \sin 2 x
$$

This is Bernouilli's equation with $n=2$.
By doing $u=y^{-1}$ we get a linear equation:

$$
u^{\prime}+(1-2)(-\cos x) u=(1-2)\left(\frac{1}{2} \sin 2 x\right) .
$$

The general solution is

$$
\begin{gathered}
u=e^{-\int \cos x d x}\left(C-\int \frac{1}{2} \sin 2 x e^{\int \cos x d x}\right)= \\
u=e^{-\sin x}\left(C-\int \sin x \cos x e^{\sin x}\right)= \\
u=e^{-\sin x}\left(C-(\sin x-1) e^{\sin x}\right)=C e^{-\sin x}+1-\sin x .
\end{gathered}
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of
type
2.11 Equations of
type y^{\prime}
$f\left(\frac{a x+b y+c}{x+\beta y+c}\right)$
2.12 Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

Finally,

$$
y=\left(C e^{-\sin x}+1-\sin x\right)^{-1} .
$$

2.13 Riccatti's equations

- These equations are of the form

$$
y^{\prime}+A(x) y+B(x) y^{2}=C(x) B, C \neq 0
$$

If $B=0$, it is a linear inhomogeneous equation if $C=0$, it is Bernouilli's equation

- There is no general method for solving it
- But if one particular solution $y_{1}(x)$ is known, the change of variables $u=y-y_{1}$ turns the equation into Bernouilli;s equation:

$$
u^{\prime}+\left(A(x)+2 B(x) y_{1}(x)\right) u+B(x) u^{2}=0
$$

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous
equations
2.10 Equations of type
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{}\right)$
2.12 Bernouill's
equations
2.13 Riccati's equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- Let us show the relation between Bernouilli's and Ricatti's equations
- Let us start with $y=u+y_{1}$. Then

$$
y^{\prime}=u^{\prime}+y_{1}^{\prime} .
$$

- Substituting in the equation

$$
\left(u^{\prime}+y_{1}^{\prime}\right)+A\left(u+y_{1}\right)+B\left(u+y_{1}\right)^{2}=C .
$$

- Expanding, we get

$$
u^{\prime}+A u+2 B u y_{1}+B u^{2}+y_{1}^{\prime}+A y_{1}+B y_{1}^{2}=C .
$$

- But y_{1} is a particular solution, so $y_{1}^{\prime}+A y_{1}+B y_{1}^{2}=C$, and therefore

$$
u^{\prime}+A u+2 B u y_{1}+B u^{2}=0
$$

Exercise 2.21

- Show that the function $y=1 / x$ is a solution for

$$
y^{\prime}=y^{2}-\frac{2}{x^{2}}
$$

and use it to find the general solution.
We have $y_{1}=1 / x$, so $y_{1}^{\prime}=-1 / x^{2}$ and subsituting

$$
y_{1}^{\prime}=-1 / x^{2}=y_{1}^{2}-2 / x^{2}=1 / x^{2}-2 / x^{2}
$$

As we have a particular solution, we can make the following change $u=y-1 / x$. As $A=0, B=-1$ and $C=-2 / x^{2}$ the new equation will be

$$
u^{\prime}-\frac{2}{x} u-u^{2}=0
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation methods
2.9 Homogeneous equations
2.10 Equations of type
2.11 Equations of type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
$\alpha x+\beta y+\gamma$
2.12 Bernouill's
equations
2.13 Riccati's equations
2.14 Envelopes and singular solutions
2.15 Equations not soluble for the derivative

This is Bernoulli's equation da with $n=2, A=-2 / x$, and $B=1$. It is convenient to define $v=u^{-1}$ Now the equation takes a linear form:

$$
v^{\prime}-(-2 / x) v=-1
$$

and the general solution is

$$
\begin{gathered}
v=e^{-\int \frac{2}{x} d x}\left[C-\int e^{\int \frac{2}{x} d x} d x\right]= \\
e^{-2 \log x}\left[C-\int x^{2} d x\right]=\frac{1}{x^{2}}\left[C-\frac{x^{3}}{3}\right]=\frac{C}{x^{2}}-\frac{x}{3} .
\end{gathered}
$$

- Let us undo the change of variables

$$
1 / u=\left(3 C-x^{3}\right) /\left(3 x^{2}\right),
$$

and finally use the original variables to get

$$
y=u+\frac{1}{x}=\frac{3 x^{2}}{3 C-x^{3}}+\frac{1}{x}=\frac{2 x^{3}+3 C}{x\left(3 C-x^{3}\right)} .
$$

2.14 Envelopes and singular solutions

- There is and interesting geometrical concept that can be ilustrated with the follwoing figure

Figure 2.4.Envelope of a family of curves and multiple points.

- The equations of the curves in the figure $\varphi(x, y, C)=0$ The curve E is not part of the family. However, the curve E touches one of the curves in the family at every single point. This is called an envelope The curve E obeys the same differential equation as the family of curves: $F\left(x, y, y^{\prime}\right)=0$.
- In orfder to calculate the equation for the envelope, we can start by studying the point P

This point obeys $\varphi(x, y, C)=0$ and $\varphi(x, y, C+\Delta C)=0$, and also the following combination:

$$
\varphi(x, y, C)=0 \text { and } \frac{\varphi(x, y, C+\Delta C)-\varphi(x, y, C)}{\Delta C}=0 .
$$

- In the limit $\Delta C \rightarrow 0$ the point P tends to be a point in the envelope, and the equations become

$$
\varphi(x, y, C)=0 \text { and } \frac{\partial \varphi(x, y, C)}{\partial C}=0
$$

- These two equations give the equation of the envelope

Exercise 2.22

- Find the envelope of $(x-a)^{2}+y^{2}=1$

The equations we have to solve are the following:

$$
\varphi(x, y, a)=(x-a)^{2}+y^{2}-1=0
$$

and

$$
\frac{\partial \varphi(x, y, a)}{\partial a}=\frac{\partial\left((x-a)^{2}+y^{2}-1\right)}{\partial a}=0 .
$$

The second equation becomes

$$
2(a-x)=0,
$$

that is, $x=a$.
Using this result in the first equation

$$
(x-a)^{2}+y^{2}=(a-a)^{2}+y^{2}=0^{2}+y^{2}=1,
$$

we get the equation for the envelope

$$
y= \pm 1
$$

2.15 Equations not soluble for the derivative

- Sometimes, the easiest way of solving a differential equation is by differentiating the equation
- The new equation will be of a higher order, so it will have more solutions than the original one, but it will include those

Example: Kepler's problem

- Let us consider a particle moving in a newtonian potential of the form $t V=-k / r$. The equation that describes the dependence of the magnitude $u \equiv 1 / r$ with respect to the angular position ϕ is ($\equiv d / d \phi$):

$$
\left(u^{\prime}\right)^{2}+u^{2}-\frac{2 \epsilon}{p} u=\frac{e^{2}-1}{p^{2}}
$$

- Bear in mind that $\epsilon=k /|k|$ and thus $\epsilon^{2}=1$.

By differentiating the equation, we get (forced harmonic oscillator)

$$
2 u^{\prime}\left(u^{\prime \prime}+u-2 \epsilon / p\right)=0 .
$$

Its solution is $u=C \cos \left(\phi-\phi_{0}\right)+\epsilon / p$
As we have one parameter too many, we should substitute this in the original equation:

$$
\begin{gathered}
0=\left(u^{\prime}\right)^{2}+u^{2}-\frac{2 \epsilon}{p} u-\frac{e^{2}-1}{p^{2}}= \\
C^{2}\left(\sin \left(\phi-\phi_{0}\right)\right)^{2}+\left(C \cos \left(\phi-\phi_{0}\right)+\frac{\epsilon}{p}\right)^{2}- \\
\frac{2 \epsilon}{p}\left(C \cos \left(\phi-\phi_{0}\right)+\frac{\epsilon}{p}\right)-\frac{e^{2}-1}{p^{2}}= \\
C^{2}-\frac{\epsilon^{2}}{p^{2}}-\frac{e^{2}-1}{p^{2}}
\end{gathered}
$$

First order
equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{\alpha x+\beta y+\gamma}\right)$
2. $\alpha x+\beta y+\gamma)$
2. Bernouilli's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

- All in all, $C=e / p$

Exercise 2.52

- Solve $\left(y^{\prime}\right)^{2}+2 y=1$

Differentiating, we get $2 y^{\prime}\left(y^{\prime \prime}+1\right)=0$, and we have two equations: $y=D$ and $y^{\prime \prime}=-1$.
The second one solves to

$$
y^{\prime}=-x+C \text { eta } y=-\frac{x^{2}}{2}+C x+D
$$

The first solution is included in this one.
We still have to check with the original equation:

$$
\begin{gathered}
0=(-x+C)^{2}+2\left(-\frac{x^{2}}{2}+C x+D\right)-1= \\
x^{2}-2 C x+C^{2}-x^{2}+2 C^{2} x+2 D-1
\end{gathered}
$$

This gives, $D=\left(1-C^{2}\right) / 2$ and this is the solution we are after

First order

equations
2.1 Geometric

Meaning
2.3 Exact equations
2.4 Integrating factor
2.5 Separable
equations
2.6 Special integrating factors
2.7 Linear equations
2.8 Transformation
methods
2.9 Homogeneous equations
2.10 Equations of type
$y^{\prime}=f(a x+b y+c)$
2.11 Equations of
type y
$f\left(\frac{a x+b y+c}{c x+\beta y+c}\right)$
2.12 Bernouill's
equations
2.13 Riccati's
equations
2.14 Envelopes and
singular solutions
2.15 Equations not soluble for the derivative

