
Partial Differential Equations Approximation methods

1. Newton’s method We want to solve the algebraic equation g(x) = 0 by means of an
iterative numerical method. Let us write the sequence of approximations in terms of a
recurrence relation: xn+1 = xn + ∆n. If we indeed desire the successive approximations
to be improving, we need the values of g(xn+1) to be small. On the other hand, we know
that g(xn+1) = g(xn) + g′(xn)∆n +O(∆2

n). Let us then define ∆n = −g(xn)/g′(xn), and,
therefore,

xn+1 = xn −
g(xn)
g′(xn)

.

Using the previous method to compute the solutions of the equation x2 − 3x+ 2 = 0
Compute that solution of equation x− 2 sinx = 0 which is close to x0 = 2.

2. Solve the equation x3 + (4 + ε)x2 + 5x + 2 = 0 using a perturbation method close to
the point x0 = −2 (ε is a small number). What would happen if we tried a perturbation
expansion close to the point x0 = −1? (Hint: look into the equation (x+ 1)2 + εx2 = 0 in
order to have a better grasp of what is going on here.)

3. Would you be able to solve equation z2 − 2εz − 2ε = 0 using an ordinary perturbation
expansion in powers of ε? Why or why not? Try using a change of variable of the form
z = εpw.

4. Use a perturbation expansion to solve the following problem:

y′′ + (1 + εx)y = 0 , y(0) = 0 , y′(0) = 1 .

Is the expansion valid if x > 1/ε?

5. Use a perturbation expansion to solve the following problem: to order ε2:

y′′ − y′ + εy2 = 0 , y(0) = 1 , y′(0) = 0 .

6. Use Lindstedt-Poincaré’s method to solve the following problem:

y′′ + y + εy|y| = 0 , |ε| � 1 , x > 0 , y(0) = 1 , y′(0) = 0 .

7. Let us compute the precession of the perihelion of Mercury using Binet’s generalized
equation,

d2u

dφ2
+ u =

m

h2
+ 3mu2 .

The last term is the perturbation term. m is the solar mass, and h is related to the angular
momentum of the particle. Using Lindtstedt’s method, compute the precession.

8.∗ (Tough problem) Consider an otherwise homogeneous string at one point of which a
small mass m has been attached. The ends of the string are fixed, and the joint string-small
mass system is subject to tension τ .
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1.- Show that in the small oscillation approximation the vertical displacement of the
string, u(x, t), obeys the equation

ρ(x)utt = τuxx ,

where
ρ(x) = ρ0 +mδ(x− a)

is the linear density of the joint system. ρ0 is the linear density of the homogeneous
string.

2.- Let us now investigate normal modes. That is, let us write the function u(x, t) as
v(x)e−iωt. v will then be subject to the boundary conditions v(0) = v(b) = 0. What
is the differential equation that it must obey?

3.- Let us define the functionG0(x, ξ; k) as the solution of the following problem, whenever
it exists: (

d2

dx2
+ k2

)
G0(x, ξ; k) = −δ(x− ξ) ;

G0(0, ξ; k) = G0(b, ξ; k) = 0 .

Show that the normal frequencies of the joint string-mass system obey the relation

m

τ
G0(a, a;ω

√
ρ0/τ)ω2 = 1 .

4.- Show that the n-th normal frequency will be given by the following perturbation
expansion, if indeed it is the case that m << ρ0b):

ωn =
√

τ

ρ0

nπ

b

(
1− m

ρ0b
sin2

(nπa
b

)
+O

((
m

ρ0b

)2
))

.

9. Compute the asymptotic expansion of the function

f(x) =
∫ ∞

0

dt
e−xt

1 + t2

around x =∞.

10. Consider the function

f(x) = xex
2
erfc(x) =

2√
π
xex

2
∫ ∞
x

dt e−t
2
.

Compute an asymptotic expansion around x = ∞ by integration by parts (Hint: it is
advisable to carry out the change of variables τ = t2 in the integral). Show that the
expansion is divergent for all x.
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11. Compute the asymptotic expansion of the following integral for λ→∞:∫ ∞
0

dt eλ(t(1+i)−t3) .

12. Compute the asymptotic expansion of the following integral for λ→∞:∫ ∞
0

dt e−λt
√
tet

1 + t
.

13. Compute the asymptotic expansion of the following integral for large ω:∫ 5

3

dt
cosωt
1 + t2

.

14.∗ Show that as λ→∞ it holds that

∫ ∞
−∞

dx
eiλx

(1 + x2)λ
∼

√
(2−

√
2)π

λ1/2
e(1−

√
2)λ
(

2
√

2− 2
)−λ

.

15.∗ (Very long, if the correct notation is not adequately chosen from the outset!) Apply
the method of Lindstet-Poincaré to the following system of equations and compare with
the exact solution:

ẋ =− 4y + 2z + εz ,

ẏ =4x− 4z ,
ż =− 2x+ 4y − εx .

You should check the applicability of the method before plunging into the computation
proper.

Additional material:
Some problems from the latest exams

16. (February 2006) Compute an approximation to the eigenfunctions and eigenvalues of
the operator Ly = −y′′−εx2y, y(0) = y(1) = 0, that is, those values of λ for which Ly = λy
has nontrivial solutions and the solutions themselves. x is an adimensional quantity, and
ε a very small number (|ε| � 1). Could any function defined on the interval (0, 1) be
expanded in terms of the eigenfunctions? Why? If possible, how would you compute the
coefficients?

3



2008-2009 UPV-EHU

17. (February, 2005) Compute an approximate solution of the following problem. Discuss
its range of validity.

y′′ = (1 + x)2y , y(0) = 1 , y′(∞) = 0 .

18. (September, 2005) Compute the first terms of the asymptotic expansion of the following
function as t→∞:

f(t) =
∫ ∞

1

dy
y−t−1

1 + (ln y)2
.

19. (February, 2004) Compute an approximate solution, valid for positive x, of equation

y′′ − 1
x
y′ + (1− 5

4x2
+

1
x4

)y = 0 .

(Hint: obtain the equivalent equation v′′ + φ(x)v = 0 by a change of variables y(x) =
µ(x)v(x))

20. (September, 2004) Compute an approximate solution, valid for positive x, of equation

y′′ − 2y′ +
(

2 +
2
x2

+
1
x4

)
y = 0 .

21. (September, 2003) Obtain an approximate even solution of the following equation,
valid for all x:

y′′ + (1 + εx2)2y = 0 .

22. (February, 2002) Compute the asymptotic expansion as x→∞ of the following inte-
gral. Is the expansion convergent? Explain your answer.∫ ∞

0

dx e−xt log(1 + x) .

23. (February, 2002) Consider the equation y′′ − g2(x)y = 0, with a “slow” g. If g were
constant the solutions would be exponentials.

Let ε� 1 be a positive real number. Obtain an approximate solution valid for all x,
of the following problem:

ε2y′′ = (1 + x2)2y ,
y(0) = 0 , y′(0) = 1 .
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24. (September, 2007) Compute at least the first three terms of a series expansion for large
λ of the following integral (Hint: a change of variable might prove advantageous)∫ ∞

1

dτ
τ−λ−1

1 + τ
.

25. (February, 2008) In the expanding Universe the equation of wave propagation is

1
c2
utt = a2(t)∇2u ,

where ∇2 is the Laplacian, c the speed of light and a(t) a function of time, called “scale
factor”.

Assume a physical situation in which the distance from a plane does not impinge
on wave propagation, and the plane is given by (say) a spiral galaxy. Let it be the case
that the waves are zero at the edge of the galaxy. Use separation of variables, as well as
the WKBJ method for the temporal part, to obtain the mathematical description of such
a situation. Under which conditions is the approximation a good one? Among all the
different modes, point out those for which the approximation is best, given the following
data: the radius of the galaxy is 105 light-years, Hubble’s constant (H = ȧ/a) has the
value (1.3× 1010 year)−1, and the scale factor is of the form Ct2/3.

26. (September, 2008) Compute at least the first two terms of a series expansion for large
s of the following integral ∫ 5π/8

−π/4
dt e−s cos2 t sinh t .
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