
Partial Differential Equations Fourier Analysis

1. Compute the Fourier series for each of the following functions. Assume that the functions
are periodically extended out of the stated intervals.

a) f(x) = sin2 x, −π ≤ x ≤ π T = 2π

b) f(x) =
{

0 −π ≤ x < 0 T = 2π
x 0 ≤ x < π

c) f(x) = (1− x2) − 1 ≤ x ≤ 1 T = 2

2. Consider an even function f(t), piecewise continuous and periodic, its period being T .
Which of the following expansions is (or are) correct expressions for the Fourier series of
f(t)?

a)
a0

2
+
∞∑

n=1

an cos(nωt), donde ω = 2π/T, an =
2
T

∫ T

0

f(x) cos(nωx)dx

b)
b0
2

+
∞∑

n=1

bn cos(nωt), donde ω = 2π/T, bn =
2
T

∫ 3T/4

−T/4

f(x) cos(nωx)dx

c)
c0
2

+
∞∑

n=1

cn cos(nΩt), donde Ω = π/T, cn =
1
T

∫ 2T

0

f(x) cos(nΩx)dx

d)
∞∑

n=−∞
dne

inωt, donde ω = 2π/T, dn =
1
T

∫ T

0

f(x)e−inωxdx

Compute in each case the four first terms of the expansion of the constant function
f(t) = 1

3. Consider functions f(x) whose values in the interval (0, π) match those of the cosine
function. a) Plot one such function f(x), periodic of period π, and compute its Fourier
series expansion. b) Find a Fourier series only with sines and another with cosines for
functions f(x), and plot them. Will the partial sums give rise to Gibbs’ phenomenon?

4. From a function f(x) defined for 0 ≤ x ≤ L, we can obtain both a sine or cosine series by
using the odd and even extensions of F , respectively. These are not the only possibilities;
here we shall show how to compute other Fourier series that agree with f(x) on its domain

a) Extend f to (L, 2L] in some way. Next extend the new function to (−2L, 0) as an
odd function, and, hence, to the whole real line as a periodic function of period 4L Show
that to this final function there corresponds a Fourier series in sines of the form

f(x) =
∞∑

n=1

bn sin(nπx/2L)

where

bn =
1
L

∫ 2L

0

dx f(x) sin(nπx/2L) .

1



2008-2009 UPV-EHU

b) Let us now extend f to (L, 2L] so that it be symmetric with respect to x = L,
that is, f(2L− x) = f(x) for 0 ≤ x ≤ L. Now extend the function to (−2L, 0) as an odd
function, and hence to the whole real line as periodic function of period 4L. Show that to
this final function there corresponds a Fourier series in sines of the form

f(x) =
∞∑

n=1

bn sin[(2n− 1)πx/2L]

where

bn =
2
L

∫ L

0

f(x) sin[(2n− 1)πx/2L]dx

Both series converge to the original function in the interval (0, L). As a matter of
fact, the second one converges to the original function in the interval (0, L] (Why?).

5. Compute the Fourier series expansion of the function f(x) = x in the interval (−π, π).
Use this expansion to prove

∞∑
n=0

(−1)n

2n+ 1
=
π

4
.

6. Compute the Fourier series expansion of the function f(x) = exp(x) in the interval
(−1, 1). What is the value of the expansion at the point x = 2?

7. Integrate term by term the expansion of the previous example. Now, by expanding in
the same interval an appropriate function, show that

∫
dx exp(x) = exp(x) + c !! Prove

the following identity:
∞∑

n=1

(−1)n

1 + n2π2
=
e+ 1/2− e2/2

e2 − 1
.

What would happen if we were to differentiate term by term the expansion of the pre-
vious example? Show that one would be led to the following nonsensical statement:∑∞

m=1(−1)m = −1/2.

8. Consider a square periodic wave, of period T . Show that low-pass filter need not be very
good in order to allow most of the power through (that is, compute how many harmonics
are required for the transmission of 90% of the power).

9. Check that the Fourier expansion of the function f(x) = |x| in the interval (−π, π) is

f(x) =
π

2
− 4
π

∞∑
m=0

cos(2m+ 1)x
(2m+ 1)2

.

Integrate term by term, and compute the following series
∞∑

m=0

(−1)m

(2m+ 1)3
.
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