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An elementary particle is defined as a mechanical system whose kinematical space is a
homogeneous space of the Poincaré group. Lagrangians for describing these systems depend on
higher-order derivatives and some of them are analyzed. For bradyons the Lagrangian depends
on the acceleration and angular velocity of the particle and is characterized by two parameters

m and s, the rest mass and absolute value of spin, respectively. In general the spin is of
kinematical nature, related to the rotation and internal orbital motion of the system. Two
different kinds of bradyons appear according to the spin structure. One has a spin related to
the generalized angular velocity while the other is a function of the generalized acceleration.
Photons are massless particles with spin lying along the direction of motion and energy Av,
where v is the frequency of its rotational motion. Particles moving in circles with velocity ¢ in
their center of mass frame are also predicted, showing a Dirac-type Hamiltonian. There also
appear particles with tachyonic orbital motion whose center of mass has bradyonic motion.
Transformation properties under space and time reversal are also analyzed.

I. INTRODUCTION

Many attempts can be found in the literature to describe
classical spinning particles, which in general endow the
point particle with some additional degrees of freedom to
give account of the spin structure.’

Recently,” the possible internal spaces that, in addition
to the space-time position variables, describe spinning parti-
cles, have been completely classified and analyzed.

In the approach we present here we shall describe struc-
tured particles by adding some extra degrees of freedom and
by allowing the Lagrangian to depend on higher-order de-
rivatives. Lagrangian theory was generalized by Ostro-
gradsky” and since then several contributors have claimed to
consider generalized Lagrangians for studying generalized
electrodynamics* and the classical spinning particle.’

We are thus basically working in a generalized Lagran-
gian formalism, in which dependence on higher-order de-
rivatives is assumed, and which is sketched in Sec. II. How-
ever, we assume that the dynamics is based upon the
knowledge of the action function of the system, which is a
real function defined on X X X, where X is the kinematical
space of the system that will be conveniently defined and that
is in general different from the configuration space and the
phase space of the system. This means that a particular path
followed by the system can be expressed in terms of end-
point conditions in X space, as in Feynman’s approach.
Physical considerations lead us to define in Sec. II C an ele-
mentary particle as a system for which X is a homogeneous
space of the kinematic group G. This statement restricts the
dependence on higher-order derivatives to the G structure.
In this work G will be the Poincaré group & , so that X is at
most ten dimensional, implying that the Lagrangian depen-
dence on the derivatives is at most on the acceleration and
angular velocity of the particle.

The remainder of this work shows that the proposed
formalism is not empty, by explicitly constructing several
Lagrangians. In order to work out a specific X space we
present in Sec. III a useful Poincaré group parametrization,
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where the parameters are the relative velocity and orienta-
tion and the space and time translation among inertial ob-
servers.

In Sec. IV we study the simplest case, that of a point
particle, obtaining the habitual results, but preparing the
ground for further applications. In Secs. V and VI we ana-
lyze two particular Poincaré homogeneous spaces: the most
general bradyon and the kinematical space of particles that
travel at the speed of light. In the first, two kinds of particles
come out according to the kinematical structure of their
spins. In the second group we have found the photon with its
properties of having no transversal spin arriving at H = hv
for the expression of its energy, where v is the frequency of its
rotational motion along the spin direction.

However, we have also found particles that, although
they travel at the speed of light, have a center of mass with a
straight bradyonic motion with constant velocity below c.
For these particles we have found a certain analogy between
their Hamiltonian and Dirac’s Hamiltonian, and a particu-
lar Lagrangian has been analyzed. In Sec. VII particles with
internal orbital tachyonic motion are considered, having a
center of mass that travels at velocity u<c. Section VIII is
devoted to the analysis of the previous Lagrangians under
the discrete symmetry operations of time and space inver-
sion.

Il. GENERAL FORMALISM
A. Generalized Lagrangian systems

Although the generalized Lagrangian formalism is well
known, we shall sketch it briefly in order to enhance the role
of the manifold X, the kinematical space of the system, and
the action function on X X X, which are defined later.

Let us consider those mechanical systems of » degrees of
freedom that can be described by means of a generalized
Lagrangian function L(2,¢{” (1)), i=1,..,n, s=0,1,...k,
which depends on the time ¢ and on the n generalized coordi-
nates ¢,(z), and their derivatives up to order k. Here
91y =d’q,(t)/dr’.
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The action functional is defined as

Alg()] = f "Litg® (1)), 2.1

4
where the condition that 4 be extremal for the class of paths
g, () with fixed end points [1 e., with fixed values ¢/ (¢,),
g9(8,), i=1,...,n, s=0,1,...k — 1] implies that the func-
tions g, (¢) must necessarily satisfy the Euler-Lagrange dy-

namical equations 6
( dL ) =0, i=1l..n
g

z (— 1)3 (2.2)

A generallzatlon to systems for which the order k is
different for each generalized coordinate g; can be obtained
easily, but in this work we shall consider for simplicity the
same order X in all variables.

Existence and uniqueness theorems imply that a partic-
ular solution of this 2k th-order system (2.2) is determined
by giving the 2kn values ¢/ (¢t) i = 1,...,n,5 =0,1,..,2k — 1,
at the initial time ¢,. If we fix end-point conditions, i.e., the
values ¢{(t,) and ¢!”(t,), i=1,.,n, s=0,1,.,k—1,
there will not exist, in general, a solution of (2.2), although
the variational problem (2.1) leads to the system (2.2) for
the class of paths with fixed end-point conditions. However,
if there exist solutions, perhaps nonunique, with fixed end
points, this means in some sense that the above initial condi-
tions at time ¢, can be expressed, perhaps in a nonuniform
way, in terms of the end-point conditions. Thus a particular
solution is finally expressed as a function g,(g/%(¢,),

g(8)), j=1,.,n,5s=0,1,..,k — 1, of time and of 2kn in-
dependent parameters, related to end-point conditions, and
we shall consider from now on those mechanical systems for
which this holds. A generalized Lagrangian formalism and
the existence of solutions with fixed end-point conditions are
the basic assumptions of the formalism we propose.

By considering this particular solution, the action func-
tion is defined as the value of the functional (2.1) for this
particular path. Thus the action function becomes a function
of 2(kn + 1) independent variables

A (2,97 (851297 (1))

=A(x,x;), i=1l..,n s=01,.,k—-1,

with the property A(x,x) =0

Definition: We shall call kinematical variables of the sys-
tem to the time 7 and the » generalized coordinates and their
derivativesuptoorderk — 1 ¢/,5s =0,1,....,k — 1, and they
will be denoted by x;, j =0,1,...,kn. The (kn + 1)-dimen-
sional manifold spanned by the kinematical variables is
called the kinematical space of the system X.

If the trajectories are written in parametric form
{t(7),q(7)}, in terms of some evolution parameter 7, the
Lagrangian can be expressed in terms of the kinematical
variables and their first 7 derivatives, and (2.1) appears:

AL(P (D] =J (x( y, X0 )i(r)dr
. t(r)

r

— Jni(x(r),;'c(r))df, (2.3)
where i = Li(r).
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Although (2.3) looks like a first-order system of kn + 1
degrees of freedom, we see that there exist among the
kinematical variables (k — 1)n nonholonomic differential
constraints g (r) =q¢ V() /t/(7), i=1,.,n,s

=1,...k-—-1, where the overdot means a 7 derivative.

We can see’ that-the function L is 7 independent and
homogeneous of first degree in terms of the derivatives of the
kinematical variables giving rise to a further constraint

Z—a—Lx’—F(xx)x,

2.4
9% (2.4)

which, together with the (k — 1)n differential constraints,
reduces to n the number of independent variables. The ac-
tion functional in the form (2.3) is also independent with
respect to parametric transformations, and the functions
F;(x,x) are homogeneous functions of zero degree in the
derivatives of the kinematical variables.

Conversely, if the system is described by the knowledge
of the action function 4(x,,x,), which is assumed to be a
continuous and differentiable function of the kinematical
variables of the initial and final points, then the Lagrangian
can be obtained by the limiting process:

T = 1im %4009) &
yox ayf
This can be seen from (2.3) by considering two close
points and thus

A{x(7),x(1 +dr)) = A (x(7),x(7) + x(r)d7) = L dr.

By making a Taylor expansion of 4, taking into account the
condition 4 (x,x) = 0, we get (2.5).

The function of the kinematical variables and their de-
rivatives (2.5) together with the homogeneity condition
(2.4) and the differential constraints among the kinematical
variables reduces the problem to that of a system of # degrees
of freedom, where its Lagrangian is a function of the deriva-
tives of the generalized coordinates up to order k. From now
on we shall delete the caret over the function L, and we shall
consider systems for which trajectories are written in para-
metric form.

What we want to emphasize is that the important dy-
namical object of the theory is the action function. Its knowl-
edge determines by (2.5) the Lagrangian L, and thus the
dynamical equations (2.2). Here A(x,,x,) characterizes the
dynamics globally. We have a similar situation in the quan-
tum scattering theory, in which the dynamics is globally con-
tained in the S matrix. The Feynman path integral approach
links both formalisms by relating the action function for a
particular path with the phase of the corresponding proba-
bility amplitude. In quantum mechanics all paths can be fol-
lowed, so that we have to add the corresponding probability
amplitudes; while in classical mechanics the variational for-
malism singles out just one path, and thus the action func-
tion for that path contains the required dynamical informa-
tion.

(2.5)

B. The relativity principle

Let G be the kinematical group® that acts transitively on
the space-time Y as a transformation group. The group G
defines the class of equivalent observers, called inertial ob-
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servers, for which the laws of physics are the same, and we
shall assume that a realization of G on the kinematical space
of the system X is known.

The invariance of the dynamical equations for two iner-
tial observers O and O’ related by a transformation geG,
implies® that the action function must transform according
to

A(gx,,8x,) = A(x,x,) + a(gx,) —a(gx,), (2.6)

where a(g;x) is a function defined on G X X, which verifies,
for all g,g'eG, and all xeX,

a(g'gx) + a(gx) — a(ggx) =£(g.8),
where £(g’,g) is an exponent of G."°

This function a(g;x) is called a gauge function for the
group G and the kinematical space X. Different mechanical
systems with the same kinematical space X can be character-

ized by different gauge functions.
From (2.5), the Lagrangian transforms

d(gX(T)))
dr

(2.7)

da(g;x (7))
dr ’

(2.8)

which, together with the homogeneity condition (2.4), will

lead to certain transformation properties for the functions F;

under the group G, giving us information about the structure

of these functions. Expression (2.8) is the restriction im-

posed to the Lagrangian by the relativity principle.

Among the gauge functions there exists an equivalence
relation.® Two gauge functions @, and @, are said to be equiv-
alent if

a,(gx) —ay(gx) =d(x) —P(gx) +o(g), (2.9)
where ® and o are some functions defined on X and G, re-
spectively. Thus with Gand X fixed, to every a(g;x) solution
of (2.7) up to an equivalence, the relativity principle in its
form (2.8) will give us information about the Lagrangian
mechanical systems whose dynamical laws are g invariant.

In particular if X is a homogeneous space of G then
(2.7) has the solution®

a(gx) =£&(gh,), (2.10)

where /,€G is any element of the equivalence class xeX.

In this paper G will be the Poincaré group #7, and all its
exponents are equivalent to zero'? so that, for those mechan-
ical systems for which X is a homogeneous space of #, the
action function and the Lagrangian can be taken strictly in-
variant.

L(gx<r>, — L{x(r),%(7) +

C. Elementary systems

An elementary mechanical system will be defined as
that system for which the evolution from the initial to the
final point, if no interaction is present, is necessarily free.

Let us consider a system that is observed at instant 7by a
certain inertial observer O. At instant 7 + dr some physical
observables will change their values as measured by O. How-
ever, if the system is elementary, then there will exist at in-
stant 7 + dr another inertial observer O’ for which the mea-
surements of physical observables will give the same values
as those obtained by O at the earlier time 7.
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These two inertial observers will be related by some in-
finitesimal transformation 8g(7) of the kinematical group
G. If the evolution of the elementary system is free, this
means that the corresponding infinitesimal transformation
6g(7) must be independent of 7. Otherwise we could distin-
guish one instant from another by looking at the different
change in the physical observables, and thus concluding that
this difference in the physical behavior of the system is pro-
duced by some interaction.

Thus if the evolution is free, the measurement of any
observable by observer O at instant 7 + d7 will be obtained
from its measurement at instant 7 by acting with §g in the
corresponding realization of the algebra of observables.
Since g is constant, it generates a one-parameter subgroup
of G, such that the evolution of any observable is the action of
this one-parameter subgroup on its initial value. In this way,
the free or inertial motions are identified with the one-pa-
rameter subgroups of G.

We have seen in Sec. II A that for Lagrangian systems
the dynamical information is contained in the action func-
tion, which is a function of the kinematical variables at the
initial and final points. If the evolution is free, the final point
X, is obtained by acting on x, with the corresponding one-
parameter subgroup generated by dg, and thus there exists a
finite group element g such that x, = gx,.

Conversely, if we fix x, and x, and the evolution has to
be free, then necessarily the kinematical space has to be a
homogeneous space of G. Otherwise, if X is not a homoge-
neous space of G, then in general there will not exist any
group element and any one-parameter subgroup of G that
brings x, to x,, and the evolution of the system will no longer
be free.

Definition: An elementary classical particle is that me-
chanical system for which its kinematical space X is a homo-
geneous space of the corresponding kinematical group G.

lil. THE POINCARE GROUP

The kinematical group for relativistic systems is the
Poincaré group &. The usual covariant parametrization of
2 is given by the four-vector a* of the space-time transla-
tions and the 16 elements A#, of the Lorentz transforma-
tion, and we write it as (a,A ). The composition law is given
by

(@', A')Y(a,A) = (Aa+ad,A'A),
ie.,

A"t =ANta rat AF, =N A

However, the elements A#, are not independent and they
verify the ten relations A*,7°*A} = n**, where 7*" is the
Minkowski metric tensor. This parametrization is used in
Refs. 1 and 11.

Instead of this covariant parametrization we give here
an essential parametrization in terms of ten independent pa-
rameters.'? Since every Lorentz transformation can always
be written as a product A = LR of a boost L by a rotation R,
we shall use the relative velocity vector v that characterizes L
and the three angular variables for the rotation R as the six
essential parameters without any further constraint. Now
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the formulation is not manifestly covariant but the physical
interpretation of these parameters as velocity and orienta-
tion will be shared later by the variables of the corresponding
homogeneous X spaces.

Then every element is parametrized in terms of the ten
real parameters g=(b,a,v, p), where beR, acR? represent
the time and space translation, veR?, with v <, is the rela-
tive velocity among observers, and p = e tan(a/2) is the
relative orientation of their spatial Cartesian coordinate
frames. It is parametrized by the clockwise rotation around
the direction given by the unit vector e and of value ac[0,7)
to get the O' frame from that of O. With this parametriza-
tion, p takes values on a real three-dimensional compact
manifold which we shall denote by R?.

The orthogonal rotation matrix R(p) is given by

R(p)y = [1/(1+p) ][ (1= )8, + 2up; — 265" ]i
3.1

The composition of two rotations R(p)R(p)

=R(p")is

pY= (W +p+ ' Xp)/ (1 —pp). (3.2)

The action of a group element g on the Minkowski
space-time .# is
t' =yt + Y(v-R(n)r)/c*> + b, (3.3)
r'=R(ur + vt + Y (vR(WIrNWV/ (1 +y)c* +a, (3.4)
where (t,r) and (¢',r') are the coordinates of the same space-
time event for observers O and O, respectively, where
y=(1-— v2/ct) 12,

The composition law of the Poincaré group in this
parametrization g” = g'g can be expressed'” as

b" =yb+ Y (V-R(p)a)/c* + b’ (3.5)
a” = R(W)a+yvbh+ [¥/(1 +9)c)
X(Vv-R(pn)a)y' + a’, (3.6)

V= RW)V+ YV + ¢ 2c (v -R(p)IVW/(1+¢)
Y (1 4+ (V-R(n)v)/c?)

»

(3.7

p +p+p' Xp+F,phvn)
1 —pp+ GV p'sv,p)
where F(v',i’;v,iu) and G(v',';v,p) are the functions

F(V,wvn) = [/ + 7)1+ 7)1 VXY + v(vep')
+ V' (vp) + vX (V' XP')
+ (VX)) XV + (vp) (v Xp)
+ (VX)) (Vep') + (vXp)
XX},

GV wivp) = ¥/ (1 + ) (1 + )]
X[vV + v (VXR') + V(v Xp)

= (vp) (vep') + (vXp)(v' Xp) 1.
(3.10)
The proper Lorentz group .7 is the set

{(0,0,v,p) |veR>, v < ¢, peR?2} so that every Lorentz trans-
formation is parametrized in terms of the two three-vectors v

n= , (3.8)

(3.9)
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and p, A(v,p) is a product of a pure Lorentz transformation
L(v) by the rotation R(p), and A(v,pn) = L(v)R(p). The
expression (3.7) is the relativistic addition of the two veloc-
ities v’ and R(p')v, because

L(v)R(") = L(VIR(W)L(VIR(p)
=L(V)R(W)L(WMR( ~ pn)R(P)IR(pn)
=L(v)L(R(p)V)R(n )R (p),

since R(p')L(V)R( — ') = L (R(p’)v) and the composi-
tion of the two boosts L(Vv')L(R(u')v)=L(v")R(w),
where R(w) is the corresponding Wigner rotation. The
expression (3.8) comes from R(p") = R(wW)R(p')R(pn).

The general continuous subgroups of & were classified
by Patera ez al."® and thus the homogeneous spaces of & can
be obtained as the corresponding quotient structures. How-
ever, we are interested in those homogeneous spaces that
describe particles with the maximum structure.

We devote the remaining sections of this work to ana-
lyze different homogeneous spaces; we begin with the Min-
kowski space-time to describe the simplest case, that of a
point particle.

Later on we will be interested in those homogeneous
spaces with higher dimenson, giving rise to systems with the
highest number of degrees of freedom. We shall start with
the Poincaré group itself, for describing general bradyons;
the nine-dimensional manifold X, which describes particles
that travel at the speed of light, defined as X, = Z /7,
where 7 is the one-parameter subgroup of pure Lorentz
transformations in a given direction; and finally the seven-
dimensional manifold X, = £ /SO(3) for particles with ta-
chyonic internal orbital motion.

IV. POINT PARTICLES

Let us consider first those mechanical systems for which
the kinematical space X = # /.% is the Minkowski space-
time .# . The purpose is to illustrate the method for obtain-
ing their Lagrangians for further generalizations.

An element xeX is characterized by the four real
numbers (¢(7),r(7)) that transform under & according to
the formulas (3.3) and (3.4), and which are physically in-
terpreted as the time and position of the system, respectively.
There are no constraints among these four kinematical vari-
ables and only the homogeneity condition (2.4) will reduce
the number of degrees of freedom to 3. The general Lagran-
gian for these systems can be written as

L= — Ht 4 pr, (4.1)
where H and p are defined by H= —dL /9t and
p; = 0L /37, are functions of t,r, and are homogeneous of
zero degree in terms of the derivatives #(7) and r(7).

If we assume that the parameter 7 is invariant under the
group Z, the derivatives transform as

t'(7) = y1(1) + UvR(WIK(1))/S, (4.2)
r'(7) = R(W)r(7) + pvi(7)
+ [P/(1 + ) EUvR(RIF(D))V, (4.3)

and the invariance of L under & leads for p and H to the
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transformation equations

H'(r) =yH(T) + A{v-R(n)p(7)), (4.4)
p'(7) = R(n)p(7) + ywwH(7)/?
+ [7/(1 + )l (vR(p)p(7))v, (4.5)

and thus since H and p are invariant under translations they
are functions independent of 7 and r depending only on tand
r.

From (4.2) and (4.3) we see that ¢*t2(7) — r*(r) is
group invariant and we shall consider those systems for
which this invariant remains either greater than, equal to, or
less than zero during the evolution.

If ¢?t2(r) — r*(7) >0, for re[r,,7,], then #(7) #0 for
every inertial observer and then 7(7) can be inverted to ob-
tain 7(¢) and thus we can make a time evolution description
r(t). The velocity is defined asu(7) = r(7)/t(r), and H and
p are only functions of u, with u < ¢. This particle is called a
spinless bradyon. .

If *t2(r) —r’(r) =0, for re[r,,7,], then ¢(7) and
l"(r) are different from zero for every observer. The velocity
of this system u = r/tis such that = ¢, and this particle is
called a spinless photon.

If %t ?(7) — r(7) <0, for 7€[7,,7,], then there exist ob-
servers for whom #(7) = 0 and it is not possible, in general,
to make a time evolution description. However, |r| 0 for
every observer, so that the magnitude 1 = rz /r? is homoge-
neous of zero degree and well defined. Here H and p are only
functions of 1, and the velocity of this system u = r/z is al-
ways greater than ¢, and for some observers can become infi-
nite. This system is a spinless tachyon.

Since the action function is invariant under Z,
Noether’s theorem defines the following constants of the
motion:

under time translation, the energy

H= — QE (4.6)
o’
under space translation, the linear momentum
8L
;= 4.7)
pi= Bf
under a Lorentz boost, the Poincaré momentum
w= — Hr/c* + ps; (4.8)
under a rotation, the angular momentum
J=rXp. (4.9)

From (4.4) and (4.5) (H /c)* — p? is group invariant
and from (4.6) and (4.7) it is also a constant of the motion,
and thus has to be independent of r and 7. Consequently it
defines a constant parameter that will be used to character-
ize the system.

Taking the 7 derivative in (4.8), #=0= — Hr/
+ pi and then p = Hu/c?. In the bradyonic case, u < c and
thus (H /c)? — p* = m>c?is positive and defines the constant
parameter m, the rest mass of the system. Substituting the
expression for p leads to H = mc?/(1 — u*/c*)!/? and the
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Lagrangian (4.1) becomes

L= —mc*(1 -/t
= —me(® — u?)\'* (4.10)
with the action function
A(x1,%,) = — me(c?(t, — £;)2 — (1, —1,)3)" 2 (4.11)

In the photonic case the parameter m = 0 and the La-
grangian and the action function are also identically zero.
This formalism does not predict spinless photons.

For the pointlike tachyon we get (H /¢)* = p>c*l?, the
invariant is negative and we writeitas — a® = (H /c)* — p*
This a is the absolute value of the linear momentum carried
by the particle for the observer for which H = 0, which cor-
responds to infinite speed. Thus the energy H is given by

H=plc? (4.12)
the Lagrangian for the spinless tachyon is

L=a(l -2/, (4.13)
and the action function is

A(x,x,) = a((ry — )% — (8, — 1)) V2 (4.14)

V. GENERAL POINCARE BRADYONS

Let us consider the mechanical system for which
X = 2. An element x of X will be given by the ten real
numbers, x=(t(7),r(7),u(7),p(r)) with domains R,
reR?, ueR?, u <c, and peR’. Taking into account (3.5)-
(3.8), they transform under & as follows:

t'(r) = yt(1) + AUv-R(p)r(n))/c* + b, (5.1)
r'(7) = R(p)r(r) + wi(r) + [V/(1 + p)?]
X (v R(u)r(m))v + a, (5.2)
w(r) = R(p)u(r) + yv + Pe *(vR(pw)u(n))v/(1 + 28
y(1 4+ (vR(p)u(r))/c?)
(5.3)
p'(r) = p+p(r) +pXplr) + F(v,u,u(r),p(f))
1 — pep(7) + G(v,p;u(7),p(7)) (54)

The way they transform allows us to interpret ¢(7) as the
time, r(7) as the position, u(7) as the velocity, and p(7) as
the orientation of the system.

There are three additional constraints among the x vari-
ables. The velocityu(r) = r(7)/ t/ (7), together with the ho-
mogeneity condition (2.4), reduces to six the number of de-
grees of freedom of the system. The six independent
variables are r(¢) and p(?) and the Lagrangian will depend
up to the second derivative of r and only on the first deriva-
tive of p. Since u < ¢ the system is called a bradyon.

Again assuming that the 7 parameter is group invariant,
taking the 7 derivative in both sides of (5.1) (5.4) we get that
t(r) and 1"(7-) transform like (4.2)-(4.3) anda(7) and p(7)
in a very complicated way. However, instead of the deriva-
tives (7) and p(7), we shall define two other three-vectors
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¢ and o (see the Appendix)

a(r) = 7).
c
- y(u)?  wd
Xla(7r) + —————u(7) + u(7) Xy (7)
(Y +7{u)) ¢
(5.5)
y(u)? we,
o(7) =)o, - —————" 1+ o, (5.6)

(I+yw)) &
that are the strict components of an antisymmetric tensot
0, o, = Q7 and w; = L€, 7%, and where the variables o,
and o are given by
0o =2(p+ pXp)/ (1 +p%), (5.7)
or = — [7(u)*/(1 4+ y(u))] (ax0)/c*. (5.8)
If 7 is the time, @, is the instantaneous angular velocity

and o the Thomas angular velocity. The new varibles
and o transform under #7:

@'(7) = yR(p)a(r) — [/(1 + ) )wR(p)a(r))v
+ (/o) (v X R(p)o(n)), (5.9
@' (1) = yR(w)e(7) — [¥/(1 + Y)Y vR(plo(r))y

— (/e HVXR(p)a(r)). (5.10)

The homogeneity condition in terms of the variables
(¢,r,0,p) allows us to write L in the form

L= —Tt+ Qr+ U + Vop, (5.11)
and in terms of the variables (i,i,a,w),
L= —Tt+Qr+ D+ S, (5.12)

where the functions are defined by

_ 9L o, _ oL aL

a’ T o’ da’’
Si_'a_‘LJ Ulza_l‘.y ,=_a_li.y
o' ai' dp'

and they are functions of the kinematical variables (¢,r L,p)
and homogeneous functions of zero degree in the variables
(t,r,a,@). The observable 7" has the dimensions of energy, Q
of linear momentum and D and S of angular momentum,
and, being the Lagrangian invariant under 2, they trans-
form

T'(7)
Q(n

= yT(1) + UvR(WQ(M)),
= R()Q(r) + ywT(r)/&?

+ 770+ )N vR(WQ(N)Y,
D'(7) = yR(n)D(7)
— [/ + )N vR(p)D(r))v
— (Y/eHVXR(p)S(7)),
YR(PIS(7) — [*/(1 + y)é?]
X(v-R(p)S(7))v
+ (P/ VX R(pID(1)). (5.16)
The observables D and S are the strict components of an

antisymmetric tensor S#'= —-S§" D, =85% §

= 1€, S **. We see that these functions are invariant under

(5.13)

(5.14)

(5.15)
S'(r)=
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translations and thus independent of  and r, and since, for
the bradyonic case, f %0 for every observer, they only have to
be functions of (u,p,a/t,0/t). Since for the observer for
which the system has zero velocity, u = 0, ca/ ¢ reduces to
du/dtand @/t t0 ®,/t, we say that ca/t and ®/! are, respec-
tively, the generalized acceleration and generalized angular
velocity of the system.

Noether’s theorem defines the following constants of
the motion:

energy
au
H=T-— ——uy 5.17
ar ( )
linear momentum,
4U
—_ 5.18
=Q 7t { )
Poincaré momentum
w= — Hr/c* 4+ pt + D/c; (5.19)
angular momentum,
J=rxXp+S; (5.20)

where the function U(7) is given in terms of D and S by
y@w)? uwD

Gsray & "

U =22 [per) +
v
(1 + y(u))e
Energy and linear momentum transform as in (4.4) and
(4.5). The center of mass abserver is defined as that gbserver
for which p = 0 and = = 0. These six conditions do not de-
fine uniquely an observer, but rather the class of observers
for which the center of mass is at rest and placed at the origin
of the coordinate frame. They are thus defined up to an arbi-
trary rotation and to an arbitrary time translation. We shall
call to this class the center of mass observer as is usually
done.

The observable S is called the spin of the system and is a
constant of the motion only for the center of mass observer.
Since we consider systems for which H > O we can define the
observable k = cD/H with dimensions of length such that
taking the = derivative in (5.19) we get

w=(r—K)H/+pt=0.

Thusp = (H /c?)d(r — k)/dtand defines for every observer
the position of a point g = r — k that moves at constant ve-
locity dg/d:. We see that q is the position of the center of
mass and thus k is the relative position of the system with
respect to its center of mass. The absolute value of k gives
information about a lower bound for the radius of the parti-
cle.

From these constants of the motion other constants can
be defined:

w® = pd = pS§, (5.21)
W=HJI/c—cpXn=H(S+kXxp)e (5.22)
These can be expressed in terms of the four-vector

u(r) xS(r)] .

p“=(H /c¢,p) and the antisymmetric tensor S #*in the form

w, =€, 8 *p*. Equations (5.21) and (5.22) are the
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components of the Pauli-Lubanski four-vector. From
(5.21), taking the time derivative we obtain p-dS /dt =0,
and the spin variation is orthogonal to the center of mass
motion, the helicity, or spin projection on that direction,
remaining constant.

Thusp,p* = m’c’and — w*w, = m*c’s” aretwo func-
tionally independent invariants, constants of the motion,
that define two constant parameters m and s called, respec-
tively, the rest mass and the absolute value of the spin for the
center of mass observer and we expect that the Lagrangian
will be an explicit function of them.

Let H, and p, be the energy and linear momentum for
the observer for which the variables u = p = 0. For this ob-
server they are only functions of &/t and @/t. For the general
observer for which u and p are different from zero, H and p
are obtained from H,, and p, by the transformation equations
(4.4) and (4.5) and thus

H(u,p,a/t,0/t) = y(u)H, + v(u)(wR (p)po),
p(u,p,a/t,e/t) = R(p)po + ¥(u)uH,/c?

+ [7()/(1 + y(w))c*1(u-R (p)po)u.
(5.24)

Since the first half of the Lagrangian — Tt + Q-
= — Ht + peris Poincaré invariant, substituting H and p in
terms of (5.23) and (5 24) reduces itto — Oi /y(u). Be-
cause t/y(u) = (c*t? —r?)"?/c is a Poincaré-invariant
function, H, must also be an invariant function of their argu-
ments.
Similarly, the second half of the Lagrangian D-a + S*®
=18,,Q" is itself Poincaré invariant and we have to
choose for D and S functions of (u,p,a/ t,/t) in order that
this holds. From Q1 #* we can form the two invariants €,,,,,,
Q#0°*and Q 4§47, which reduce, respectively, to aro and
a? — w?. Expressed in terms of the kinematical variables and
their derivatives these invariants are

2p(u)?[u? + w(uX @) ]
(1 + y(uw)e
(2 + 2p(u) + y(u))y(u)!
(1 4+ y(w))*c*

(5.23)

@ — o=

X (uu)? — @}, (5.25)
2 l‘ L]
_ v [ﬁ_mo y(u) (uu)(zu )
c (1 + y(w)) C
(5.26)

Thus two elementary choices for D and S: First, to choose D
and S proportional to — y(u)a/ tand y(u)w/ 1, respective-
ly, with the same proportionality coefficient, which has to be
an invariant function. In this case the spin is proportional to
the generalized angular velocity (suggesting an intrinsic an-
gular momentum of a rotating nature) and the momentum
D (and thus the relative position vector k) has opposite di-
rection to the generalized acceleration, suggesting for the
Zitterwebegung a certain kind of generalized central motion.
On the other side we can choose D proportional to the
function y(u)m/i and S to y(u)a/ t and we see in this case
that S is by no means related to the angular velocity and the
internal motion is no longer a generalized central motion.
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These two possible elementary Lagrangians expressed
in terms of the two invariants 4 and B will reduce to

Ly= —A( —c /1)

—B(@*— o?)(t?—r¥/cH) "3, (5.27)
Lp= —A(l —c %/t

+ B(aww) (12 —r2/c?) 12, (5.28)

where a®> — w? and oo are given, respectively, in (5.25) and
(5.26).

Lagrangians of the first type (5.27) can be found in the
literature. Constantelos'* quotes a Lagrangian in which
®, = 0 and thus the particle has internal orbital motion but
no rotation. The Lagrangian depends on the velocity and
acceleration of the particle but not on the angular variables.
On the other hand, Hanson and Regge'' when discussing the
relativistic spherical top, assume @ = 0 and thus the invar-
iant @®> — w? reduces to — 3. The particle has no internal
orbital motion; its position coincides with its center of mass
but it rotates with angular velocity & = /¢ since this rota-
tion is responsible for the existence of spin. However, to the
best of our knowledge, no Lagrangians of the form (5.28)
have been studied before. These two Lagrangians lead to
nonlinear dynamical equations.

The Lagrangian (5.27), for the center of mass observer,
gives rise to the equations

2B2 [ y(u)?
- o4 X8
r — y(u) +uX 0+ 7(2)
u dulu
—_— 5.29
><(c dt)c]’ ( )
2
=28° -1
=2 7(“)[7(”) 1+ 1)
x((u-n)u + ux%)] , (5.30)

where the spin S is constant. Solutions, with constant abso-
lute value of velocity and angular velocity and Q-u = 0, exist
and show the motion displayed in Fig. 1.

Similarly, the Lagrangian (5.28) also describes motions
with constant absolute value of velocity and angular veloc-
ity, where € is orthogonal to u, and in the center of mass

FIG. 1. Motion in the center of mass
(C.M.) frame of particle (5.27).
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FIG. 2. Motion in the C.M. frame of
particle (5.28).

frame they are given by

B y(u)?
== o«
" e y(u)[y(u) (1 + y(u))e’
((u-ﬂ)u+ux ‘2“)] (5.31)
du y(u)?
=2y R ruxa+ LD
¢’ (1 + 7))
x(“-d“)l] . (5.32)
c dt/c

One possible motion that verifies these is depicted in
Fig. 2.

VI. LUXONS

Now let us consider those mechanical systems whose
kinematical space X, is the nine-dimensional manifold
spanned by the variables (f,(7),r(7),u(7),p(7)) with do-
mains f€R, reR’, and peR? (as before) and ueR?, but with
u = c. These particles are usually called luxons.

This manifold X is a homogeneous space isomorphic to
Z /7", where 7" is the one-parameter subgroup of pure Lor-
entz transformations on a given direction. In fact, let
x=(0,0,u,0), where u = cis a point of this manifold X, The
stabilizer group of this point is the subgroup of pure Lorentz
transformations in the direction given by u, #”,. Thus
X.=2/7,.

Again there are three constraints between the kinemati-
cal variables, u = r/¢. The kinematical variables t,r,u trans-
form like (5.1)—(5.3), while the transformation of p is ob-
tained from (5.4) taking the limit # = ¢ on the right-hand
side:

B+ p(r) + uXp(7) + F (v,pu(r),p(n))

p'(r) =
11— p,'p(T) + Gc(v’”‘;u(T),p(T))
(6.1)
where
F.(v,p;u,p)
= [y/(1 + y)I [uXy + u(v-p) + v(up)
+uX(vXp) + (uXp) Xv 4 (up)(vXp)
+ (uxp)(vep) + (uXp) X(vXp)l, (6.2)
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G, (v,u;u,p)
= [7/(1 + )P [uv + uw(vXp) + v-(uXp)
— (up) (vop) + (uXp)(VXp)]. (6.3)

Since 4’ = u = ¢, Eq. (5.3), implies that u’ is obtained
from u by means of an orthogonal transformation:

u= = R(d)uy, (6.4)
where ¢ is given by
b= B+ F(vpu(n),0) (6.5)
1 4+ G (v,m;u(7),0)
Equation (6.1) also corresponds to
R(p’) =R($)R(p), (6.6)

with the same ¢ as in (6.5).

Since u(r) = ¢, we have to distinguish two different
kinds of systems. Taking the 7 derivative of this identity we
get u(7)-u(r) =0, and we shall next consider systems for
which a(7) = 0and those for which a(7) 70 and is orthogo-
nal to u.

A. Massless particles

If u(7) = O then u(7) is constant, the system follows a
straight trajectory with velocity ¢, and the kinematical space
reduces to the seven-dimensional manifold (¢(7),r(7),p(7)),
with z€R, reR?, peR?.

The derivatives ¢ and r transform as in (4.2) and (4.3)
and, instead of the variable p, we define the linear function of
it &, given by (5.7), which transforms under #, as

@} (1) = R(d)oy(7),

where ¢ is given again by (6.5). The invariant it
and t #£0 and r+0 for every observer.

For this system there are no differential constraints
between the kinematical variables, the Lagrangian will only
depend on the first derivatives of the variables r and p, and
the homogeneity condition (2.4) reduces to 6 the number of
degrees of freedom of the system. This condition leads to a
Lagrangian of the form

L= — Ht + pr + S,

(6.7)
2_p=0,

(6.8)
where the functions

oL JL dL
- D= S =
at 7k

will be functions of (¢,r,p), homogeneous of zero degree of
(tr ,@p), and since t 70 they can be expressed as functions of
u =r/t and = w,/t, which are, respectively, the velocity
and angular velocity of the system.

The invariance of (6.8) under & implies that these
functions transform as

i
dw;

H't=yH(T) + Y(vR(p)p(7)), (6.9)
p'(7) = R(n)p(7) + yvH(7) /¢

+ [7/(1 + )E)(vR(p)p(N)v, (6.10)
S'(7) = R($)S(7), (6.11)

and being invariant under space and time translations they
are only functions of (p,u,f) with the condition u = c.
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Noether’s theorem gives rise in this case to the following
constants of the motion:

energy, H; (6.12)
linear momentum, p; (6.13)
Poincaré momentum,

w= — Hr/c® + pt + SXu/c% (6.14)
angular momentum, J=rXp+S. (6.15)

By analogy to the above case we say that S is the spin of
the system. Taking in (6.15) the 7 derivative we obtain
Xp + S = 0and thusd S/dt = pXu. Since p and u are con-
stant vectors, the spin S has a constant time derivative. A
continuously increasing spin system is far from being what
we shall understand as an elementary particle, so that we
shall only consider that system for which the constant d S/d¢
is zero. The spin is then a constant of the motion and due
to(6.11) its absolute value is also a Poincaré-invariant pa-
rameter. In this case p and u are parallel vectors. In fact, by
taking in (6.14) the 7 derivative we get #+ =0= — Hi/
2 + pt and thus p = Hu/c%.

Another group invariant and constant of the motion is
(H /c¢)? — p?, which vanishes identically; thus the mass of
the particle is zero. Also the first two terms of the Lagran-
gian cancel out — Ht + p-i- = 0, and L reduces to the third
term L = Sewg, where S is only a function of p, u, and Q. We
see that € = S-u is another group invariant and constant of
the motion, and we expect that the Lagrangian will be depen-
dent on these two parameters S and €. If we take into account
(6.4), (6.6), (6.7),and (6.11) the general solution for Sis a
vector function of R(p)z, u, and @y/w,, where zis a constant
unit vector.

A system with a nontransversal spin will be such that
S = eSu/c, where € = + 1, and thus the Lagrangian be-
comes

L = eS(i~o,)/ct. (6.16)

From this particular Lagrangian we get H= — JL/
9t = S-Q, where Q is the angular velocity of the particle. The
linear momentum p; = L /3% = €SQ,/c and the angular
velocity lies in the direction of u. Since H has to be definite
positive, £ = eQu/c, leading to the expression H = S for
the energy. Experimentally S = fiand H = Q) = hv. Wesay
that system (6.16) is a photon of spin .S and helicity €. Thus
the frequency of a photon appears as the frequency of its
rotational motion, causing the rotation axis to lie parallel to
the velocity. We cannot define any size associated with the
photon as we did before in connection with the general Poin-
caré bradyon. It must be remarked that, although the spin
and the angular velocity are not related, they have the same
direction.

B. Massive particles

Now considering systems with u50 but orthogonal to
u, we have that the kinematical variables and the derivatives
t and f transform as before, and for @ and @, we obtain

i’ = R(é)a + R(d)u, (6.17)
o) = R($)o + 0, (6.18)
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where & is again given by (6.5) and w,:

04 = (7’ R‘?v —(r=n R‘“CZ“’ + (12fy)
x LeRuxw) ] 3) [7(1 + ﬂ)] T 619)
¢ ¢ c
Expression (6.17) can be rewritten in the form
' = R(&)W/H1 + vR(p)u/c?), (6.20)
and the homogeneity condition leads to
L= —Tt+Qrt+ Uit + Zeoo,, (6.21)
where
r= 9% g% y-%t z_ 9L
ot ar ai' dwy

and Noether’s theorem again defines the constants of the
motion:

energy, H=T— ﬂ-u; (6.22)
dt

linear momentum, p=Q — iid% ; (6.23)
Poincaré momentum,

w= — Hr/c* + pt + (SXu)/c (6.24)
angular momentum, J=rXp+S; (6.25)
where the spin S is defined by

S=uxU+Z (6.26)

The above definitions (6.22)—(6.25) lead for H and p to
the transformation equations of a four-momentum as in
(4.4)-(4.5) and for the spin to
S'(7) = yYR(p)S(1) — [V/(1 + Y)ENv-R(R)S(N))¥

+ (/) (vXR(R)(S(7) X)), (6.27)

which corresponds to the transformation equations of an
antisymmetric tensor S#* with strict components
S% = (SXu)/c, S¥ = e¥*S,.

From (6.24), by taking the 7 derivative and doing the
dot product with u, we obtain

(6.28)

H=pu+ S‘( du Xu)c‘z.

dt

In a certain sense this Hamiltonian looks like Dirac’s
Hamiltonian for a fermion H = cp-a + Bmc?, whereaand 8
are Dirac’s matrices, and, since co is identified with the local
velocity u, we have finally H = pu 4 fmc?. In the identifi-
cation the spin term gives rise to the mass term, suggesting a
mass—spin relation. However, we shall not discuss any quan-
tization procedure in this work and we delay these consider-
ations to a subsequent paper.

From (6.25) we have that d S/dt = pXu and we can
again define the center of mass observer by p = = = 0. For
this observer S is a constant of the motion and the energy
does not necessarily vanish, defining the rest mass of the
system. From (6.24), r = (SXu)/H, and thus the internal
motion lies on a plane orthogonal to S. The velocity is then
orthogonal to S, and since S, u = ¢, and H = mc? are con-
stants in this frame, the internal motion is a circle of radius
Ry =S/mc.
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Equation (6.27) can also be written

S’ =yl + vR(p)u/c?)R(d)S,
with the same R(¢) as in (6.6) and thus

S'u’ = Y1 + vR(p)u/c?)Su
and S-u=S"0'. Since, for the center of mass observer
S-u = 0 and S+du/dt = 0, the spin remains orthogonal to u
and du/dt for every observer.

The particle has mass and spin and moves in circles with
velocity ¢ in a plane orthogonal to S for the center of mass
observer. All these features are general and independent of
the particular Lagrangian (6.21). The only thing that re-
mains to be described is the angular motion. All the above
considerations do not give information about the angular
velocity of the system. Therefore the different kinds of La-
grangians of the form (6.21) will differ from each other by
describing different angular motions, which will be related
to other kinds of observables, such as, for instance, electro-
magnetic multipole momenta. However, since we are de-
scribing here free particles, we do not expect that such prop-
erties will appear in this setup.

Coming back to the general situation we see that the
term — Tt+ Qf = — Ht + pt is a Poincaré-invariant
term and then U+t 4+ Z-w, also has to be invariant. Thus the
general Lagrangian seems to be the sum of two invariant
terms depending on the two constant parameters m and s
that are functions of the variablges {(u,p) and homogeneous of
first degree in the derivatives (¢,F,i,p).

We find that the first degree term u + uXw, = (dw/
dt +uxQ)t=y transforms under Z in the form
y =R(d)y, where ¢ is given in (6.5), so that
¥ = (1 + uX ,)? is a second degree invariant term. Simi-
larly (@y01)?and u?t 2 are, respectively, third and fourth de-
gree invariant terms. We can thus find several first degree
invariant terms, and among others we quote

(6.29)

.27 <2\ 1/2 3 o
u‘t -fu me’ (@)t
me —, mct (—2) , ———20——,
@y y y
m’c® Wt? Sogu y
SZ y3 (l'l2)1/2’ c ’

where the parameters m and S have been introduced by di-
mensionality considerations.
For instance, the first degree invariant Lagrangian

s (it
(du/dt + uxQ)?
27172
__S_[(ﬂ+uxn)] : (6.30)
c L\ dt
leads for the spin S =uXU + Z to
S = me> L4/t + uxX ) (631)

(du/dt + uxQ)?’
and we see that S\u = 0. For the center of mass observer,
p = 0, where S is constant, and 7 = 0 implies that (6.24)
reads mc’r = S X u. We can eliminate u from these two equa-
tions obtainingu = — mc2S ~?SXr = N, Xr, where the or-
bital angular velocity €2, has direction opposite to the spin
and constant value mc*/S.
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FIG. 3. Relative orientation of ob-
servables in the C.M. frame.

Since Stdu/dr = 0 we get from (6.31) that

du \? du
(dt) +(dt) (ux®) =0.
If we consider a body fixed coordinate frame that rotates
with angular velocity 2, with respect to the center of mass
frame and wecall Q,, (1,,, and ), the components of {2 along
the three orthogonal directions of S, u, and the du/dt, re-
spectively, we obtain Q7c> + Q,Q,c7 =0, i.e, Q, = — Q,,
since £, Xu = du/dt.

Taking the absolute value of (6.31) we get that
|(du/dt + ux Q)| = Q,c. Then its projection on the direc-
tion of S gives S=mc(—cQ,)/Q%* and thus
Q, = -1,

Finally the condition p = Q — d U/dt = 0 leads in this
frame to

du d%u
Q%) — Q(u) —2—x0 —
u(Q) (£2-u) dtx i
dQ dQ
—uX—— ——— =0,
ux dt ¢ dt

and, since  d%u/dt’= — Qlu and dQ/dt
= (dQ/dt), + Q,XQ, where (d Q/dt), is the derivative
of  in the body fixed frame, we have

u(307 +0}) - (@+0)cq, —2 2 x0
dQ )
—uX|—
X( dt /s
- c(ﬂl—-) — (2, XN)=0.
dt /s

If we take the projection of this expression along the S

direction, taking into account that ), = — (), is constant,

we obtain (), = 0, and thus the angular velocity {2 is of con-
stant value v2(}, and in the center of mass frame it rotates
around the spin direction with angular velocity £2,. We see
that for this system S and €} are not directly related (Fig. 3).

VIl. TACHYONS

If we consider the manifold spanned by the variables
(t,r,u,p) with domains R, reR’>, peR? as before and ueR’,
u > ¢, we see that the transformation equations for p [ (5.4) ]
do not give any real limit when u > ¢ because the y(u) terms
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involved in the F and G functions are imaginary. Thus for
tachyons we are left with the seven-dimensional manifold
X. spanned by the variables (¢(7),r(7),u(7)), with €R,
reR?, uelR®, and u > ¢, which is isomorphic to the homoge-
neous space 7 /SO(3), and thus no angular variables can be
defined. The kinematical variables transform as in (5.1)—
(5.3). There exists the constraint u = ¥/ and the homogene-
ity condition (2.4) allows us to write the Lagrangian

L= — Tt + QF + Uy, (7.1)
where
T= _§£’ Qi=_a£.') U’=_(?£
ot I '

Invariance of L leads for T and Q to the transformation
equations (5.13) and (5.14) and for U to

: °R(u)U)[ &
U=p(1+ X0 P+ —1L
y( + = (WU + T e

X(vR(p) U + L (u-U)v] (7.2)

c
and thus they are functions of (u,z,f,1), being homogeneous
of zero degree in terms of the derivatives.

Noether’s theorem defines the constants of the motion
to be

energy, H=T- —d—li-u; (7.3)
dt
linear momentum, p=Q — _a;_l;J_ ; (7.4)
Poincaré momentum,
w= — Hr/c* 4+ pt + U — [Un/c?lu; (7.5)
angular momentum, J=rXp + uXxU. (7.6)

The observable U — [ (Usu)/c*]u is always different from
zerosince u > ¢, and if we define the relative position vector k
as before by Hk/c? = U — [ (U-u)/c*]u then H has also to
be different from zero for every observer. This implies that
the invariant and constant of the motion (H /¢)? — p® can-
not be negative and thus the system has a tachyonic internal
orbital motion while its center of mass has a velocity <c. The
spin of the particle S = uxXU = Hu wk/c? is a constant of
the motion in the center of mass frame for nonzero mass
particles, while for massless particles it precesses around the
linear momentum, always being orthogonal to the velocity.
The invariant Lagrangian for u > ¢ particles,

- Bt
LT =At(u2 — Cz) vz _ (—uztzz)—y-z-
dul)? (uwdu/dt)?
(%) -] 77

leads in the center of mass frame to the dynamical equations

—2B du

mr = .
(u2___c2)3/2 dt2

(7.8)

The internal motion is a central motion, and, being the spin
constant, this gives rise to a first integral S = — r)(mu, the
motion lying in a plane orthogonal to the constant vector S.
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In polar coordinates (7,6) in this plane Eqgs. (7.8) become
d?r <d0)2 m [(dr)2 r2<d6)2 2]3’2
——r|— — (= —| —c r=0,
dt? g dt + 2B L\dt +

dt
dr d6 d?0
2——tr—=
dt dt + dt?
the first integral 4@ /dt = S /mr?, and thus the radial equa-

tion (7.9) becomes

(7.9)

0, (7.10)

d’r _§* 1[(@1)2 s
dt*  mr 2B miP

dt
We see that this equation has solutions with constant
r#0 and the system in the center of mass frame follows a
circle with constant velocity u>c. A general solution of
(7.11) has not yet been obtained.
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-—cz] r=0. (7.1

VIIl. INVERSIONS

Since space and time reversal are automorphisms of &
given by

P: (ba,v,p) > (b, —a, —v,p),
T (b’a’vyp') ""( - byaa - V»ll),

we extend this action on the general kinematical space
X =2 by '

P: (t(7),r()u(r),p(7))=(t(7), — r(7), —u(7),p(n)),
T: (t(7) e (D) u{r),p(T))=( — t(r),r(7), — u(7),p(7)).

If we assume that 7 parameter remains invariant under
inversions, then we can define the P and T action on the
derivatives as

P: (2(7) B (1), 0(7),p(1)) = (t(7), — t(7), — @ (7),p(7)),
T (£(7) (1), 0(7),p(7)) = — 1(r),E(7), — @(7),p(T)),
and thus

P:(a(m),0(1))-(— a(r),0()),
T: (a(n),o(n))—={— a(7),0(7)).

Lagrangian (4.10) remains invariant under P and
changes its sign under T so that dynamical equations are
invariant under inversions. The Lagrangian (4.13) is itself
invariant.

Similarly, Lagrangians (5.27) Ly and (7.7) L are in-
variant under P and change sign under 7, and the photonic
Lagrangian (6.16) is affected by a minus sign under both
inversions.

However, the Lagrangian (5.28) Ly under parity oper-
ation has the first term invariant while the second one
changes in sign. Under time reversal we have the opposite
situation: the first term is affected by a minus sign but the
second is left invariant, so that inversions alter this system.

Finally, the Lagrangian (6.30) has the same behavior as
L under inversions. Its two terms are separately affected by
a minus sign by a different inversion, and we can see from
Fig. 3 that the internal motion is reversed but the spin re-
mains unchanged.
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APPENDIX: DEFINITION OF YARIOUS FUNCTIONS

If A is a Lorentz transformation, then AGA"=G
holds, where G is the Minkowski metric tensor written in
matrix form, i.e., diag( — 1,1,1,1), and A”is the transpose of
A.

If we form the matrix Afu(7),p(7)) it also fulfills this
condition. Taking the 7 derivative,

A(a(7),p(7))GAT (u(7),p(7))
+ A(u(r),p(m))GAT(u(7),p(1)) =0,

i.e., @ + Q7 =0, and the antisymmetric matrix {2 is a linear
function of the derivatives @ and p.

Under a Poincaré transformation, the variables u and p
transform according to (5.3) and (5.4), which is equivalent
to

A(,p’) = A(v,p)A(u,p),
and thus
A(',p") = A(vp)A(u,p),
so that
O = A,p )GA(u,p’)
= A1) A(u,p) GA(u,p) AT (v,pn)
= A(v,p)QAT(v,p),

which corresponds to the transformation properties of a ten-
sor {3+,
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Similarly, if R is an orthogonal 3 X 3 matrix, RR 7= 1.
In particular, if we define the orthogonal matrix R (p(7)),
then taking the T derivative we get
R(MRT(r) + R(R (1) =0,ie, Q + QT =0,and if we
call », the nondiagonal components of this {2 we get expres-
sion (5.7).

'A. P. Balachandran, G. Marmo, B. S. Skagerstam, and A. Stern, Gauge
Symmetries and Fibre Bundles, Lecture Notes in Physics, Vol. 188 (Spring-
er, Berlin, 1984); N. Mukunda, H. Van Dam, and L. C. Biedenharn, Lec-
ture Notes in Physics, Vol. 165 (Springer, Berlin, 1982); J. M. Souriau,
Structure des systemes dynamiques (Dunod, Paris, 1970).

ZM. V. Atre and N. Mukunda, J. Math. Phys. 27, 2908 (1986); 28, 792
(1987).

*M. Ostrogradsky, Mem. Acad. St. Petersburg 6(4), 385 (1850).

“F. Bopp, Ann. Phys. (NY) 38, 345 (1940); B. Podolsky, Phys. Rev. 62, 68
(1942); B. Podolsky and C. Kikuchi, ibid. 65,228 (1944); 67, 184 (1945).

5F. Riewe, Lett. Nuovo Cimento 1, 807 (1971).

°E. T. Whittaker, A4 Treatise on the Analytical Dyramics of Particles and
Rigid Bodies (Cambridge U.P., Cambridge, 1959), 4th ed.

"I. M. Gelfand and S. V. Fomin, Calculus of Variations (Prentice-Hall,
Englewood Cliffs, NJ, 1963); R. Courant and D. Hilbert, Methods of
Mathematical Physics, Vol. I (Interscience, New York, 1970), 8th ed.

¥H. Bacry and J. M. Levy-Leblond, J. Math. Phys. 9, 1605 (1968).

°J. M. Levy-Leblond, Commun. Math. Phys. 12, 64 (1969).

V. Bargmann, Ann. Math. 59, 1 (1954).

"'A.J. Hanson and T. Regge, Ann. Phys. NY 87, 498 (1974).

2M. Rivas, M. A. Valle,and J. M. Aguirregabiria, Eur. J. Phys. 7, 1 (1986).

133. Patera, R. T. Sharp, P. Winternitz, and H. Zassenhaus, J. Math. Phys.
17,977 (1976).

4G. C. Constantelos, Nuovo Cimento B 21, 279 (1974).

Martin Rivas 329



