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Abstract. [t is stressed that every rotation can be
obtained as the composition of two rotations of angle .
This fact is used to give an alternative derivation of
Hamilton’s representation of rotations by great circle-
oriented arcs of length #/2 on the unit sphere.
Composition of rotations corresponds to addition of
consecutive arcs.

1. Introduction

The usual graphical representation of the com-
position of rotations, known as the Euler-Rodrigues
construction (Misner er a/ 1973, Altmann 1986) is
based upon the fact that every rotation of value a
around an axis can always be decomposed into two
reflections around two planes intersecting along the
axis and separated by of2. As 2 consequence of this
approach and based on Hamilton's work on quater-
nions (Hamilton 1853) one can define a new entity,
the furn, as an ordered pair of points on the surface of
the unit sphere (Biedenharn and Louck 1989). These
two points define an oriented great circle arc. Ad-
dition on the unit sphere of these turns corresponds to
the composition of rotations. We present here an
alternative derivation of this graphical representation
using the fact that every rotation of angle « can also
be constructed from two rotations of value n around
orthogonal to the rotation axis, and

separated by «/2.

2. Composition of rotations

Let us consider a rotation of value « in the clockwise
direction around an axis characterized by the unit
vector &. Its matrix representation is given by

Rio, u); = 3,008 + w1 (1 — cosa) — g usina.
H

This is the normal parametrization of the rotation
group where every rotation is represented by a vector
a = ow such that the corresponding orthogonal 3 x 3

Laburpena. Edozein biraketa = balioa duten beste bi
biraketaren konposaketa dela azpimarratzen da. Emaitza
honen ondorioz, Hamilton-ck asmatutako biraketen
adierazpidea, unitate esferako zirkulu nagusi batetan «/2
luzera duten arku norabidatuen bidez alegia, lortzen da
aukerazko metodo baten bidez. Biraketen konposaketa
ondoz-ondoko arkuen batuketari dagokio eredu honetan.

matrix is obtained from « and the three antisymmetric
generators
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by means of the exponential operation R{a)=
Rio, 1) =expla- J).

The composition of two rotations R{x, #)R(B,v) =
R(y,w) is again another rotation whose parameters
(7, w) can be expressed in terms of (x,#) and (f,v) in
a rather involved way (see appendix)

wtany/2 =

utane/2 + vian /2 + tana/2 tan §{2(u x v)
| —tanaf2tan §{2(n - v) ’

(2)
If o = fi =, expression (2) leads to
” ? r AT
Y vxXu
wtans = 3
2 wwv 3

so that w is orthogonal to both # and v and tan(y/2) =
sin ¢p/cos ¢ = tan ¢, where ¢ is the angle subtended by
u and v and thus y = 2¢.
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Figure 1. Composition of two rotations.

Conversely, we see from (3) that every rotation can
always be expressed as a product of two rotations of

value n, Ry, w)= R{m, m)R(m, v}, ¥ and v lying
arbitrarily in the plane orthogonal to w and separated
by an angle y/2 from v to &

We shall take advantage of this last conclusion to
graphically obtain the composition of two arbitrary
rotations.

Let us consider again the rotations R(x,#) and
R(f, v) which will be expressed in terms of the corre-
sponding pair of z rotations. We see (figure 1) that the
orthogonal planes to « and ¢ passing through the
point O, intersect each other along a straight line
given by the unit vector n. Thus, if in the plane
orthogonal to u and separated by o2 from » we define
the unit vector n; then according to (3), R{x,u) =
R(m,n,)R(m, ). Similarly, if in the plane orthogonal to
v we represent the unit vector #, separated by £/2 in
the opposite direction from a then R(f,v)=
R{m,n)R(zn, n;) and thus -
R{a, )R(B, v) = R(n,n,)R(m,m)R(7n, m)R(n,n;)

= R(n,.m)R(n,n;)
since 1\\1&, n)x\\u n; = 1, so that the CGmpGSihGﬁ of
the two rotations R{c, w)R(f, v) appears again as the
product of two rotations of value n so that it is a
rotation around an axis orthogonal to a, and », and
twice the angle subtended between n;, and n,.

This composition can be pictured if we represent a

rotation in the following way. Let us consider the unit
sphere (see figure 2), To every unit vector » we

Spratil (oL Ogpliv L7 i BV Lidin p=ht)

associate the correspondmg great circle, obtained by
the intersection with the sphere of the plane orthog-
onal to « passing through the centre. Now, if we draw
on this circle, at any place, an oriented arc of length
af2, this arc will represent the rotation R(x, u). Points
A and B are the end points of the corresponding unit
vectors of the couple of 7 rotations that generate
R(a, u). This oriented arc representation is the turn of
Biedenharn and Louck.

We can pass from figure 1 to figure 3, by realising
that point A represents the end point of unit vector a
and B and C respectively the end points of #, and
50 that the great circle arc from B to C corresponds to
the composite rotation.

Flgure 2. Representation of a rotation by a great circle
oriented arc on the unit sphere.

The non-commutative property of rotations is
shown, and the fact that the composite rotation in the
reverse order is of the same angle but about a different
axis.

The operations of crystal point groups (Hammermesh
1964) are orthogonal transformations. Let us consider
for instance, a body that has two rotational sym-
metries of 90° around the OY and OZ axes. Then, the
composition is again a symmetry. If we display in
figure 4 the corresponding arcs of length n/4 and the
n, m, and m, unit vectors, the great circle arc AB
represents another symmetry. We see that n = (1,0,0),
m = (1/2,1//2,0) and », = (1/4/2,0, 1,/2) and thus
n, ' n, = 1/2 = cos(nf3) and n, x n, is a vector in the
direction of w = (— 1, 1, 1), then that body also has a
symmetry of 120° around the w axis. Similarly, if we
take a 180° rotation around OZ and the same 90°
around QY, then arc AC will represent a symmetry of
180° arcund the (1,0, 1) axis.

More detailed symmetries concerning crystal point
groups can be developed in the same way but are out
of the scope of the present paper.

Flgure 3. Composition of rotations on the unit sphere.
BA + AC = BC.
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Figure 4. Two orthogonal 90° symmetries imply a 120°
symmetry around the (1, 1, 1) axis.

Appendix
If we define the following three vectors

=1 2 =tanzv v*tanzw
p=lanzw p=1any =Hang

then equation (2) reads

v=ﬂ+ﬂ+ﬂx.“. (A1)
L—p-u

Instead of obtaining (A.1) by the 3 x 3 matrix

product, we shall use the spinor representation of

rotations, such that every rotation can be expressed
{Misner et al 1973) as:

Rix, ) = cos(af2) — isin(a/2)(u * &) (A.2)

; being the Pauli matrices, in such a way that the
above definition becomes:

R(p) = R(zt,u) = —1-——(1 —iprea). (A3J)
1+ 2
It is now easier to obtain (A.1) from R(») = R{p)R(»)
with the matrices written in the form (A.3) and with
the help of the identity

(@ofb-o)=(a-Bi+i@axb-a (Ad)
In fact
"1
R(p)R(y) = —————
NAEYSIETS!
x{(N—p-p—ilp+p+pxp-6) (AS)

and
1 (d—=p-w
VIV S0+ + i)

which leads to the desired result.
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