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Abstract Explicit expressions  are given for  the  Poincare 
group  composition  functions in terms of the physical 
parameters (space-time displacement, relative velocity and 
orientation) which relate  two  inertial  observers. By making 
use of the limiting process of group  contraction,  the 
composition  functions of the Galilei and  Carroll  groups  are 
obtained.  How  these  two  groups imply some loss of certain 
relative properties of the  Poincare  group is also  discussed. 

1. Introduction 
It is well known  that  a  'relativity principle' is a 
statement  about  the  existence of a  class  of  equivalent 
observers,  called  inertial  observers,  for  whom  the  laws 
of physics  look  the  same.  Their  relative  measure- 
ments  of  physical  observables  are  related  by  some 
mathematical  transformations and it is a  fact  that 
these  transformations  must  form  a  group  which  makes 
sense  to  the  transitive  character of the  equivalence 
among  observers  and  conversely. 

The  remarkable  fact  is  that  the  way  two inertial 
observers  relate  their  measurements of any  physical 
observable is a function  only of how  they  relate  their 
space  and  time  measurements.  This is why  a  relativity 
principle is always  associated with a  certain 
space-time  transformation  group. 

Various  transformation  groups  for defining a 
relativity principle were  elegantly  obtained  by  Bacry 
and  Levy-Leblond  (1968)  where we  find, among  others, 
the  Poincare 3, Galilei 9 and  Carroll Q groups. 

In  the Galilei relativity  principle we deal with the 
Galilei group,  which is usually  parametrised in terms 
of physical  observables  such  as  the relative  velocity 
and  orientation  and  the  space  and  time  displacements 
between  observers. It has  been  extensively  studied  and 
we just  mention  here  the excellent work (Levy-Leblond 
197 1) where  additional  references  can  be  found. 

Laburpena Bi inertzi behatzaileri dagozkien  parametro 
fisiko erlatiboak  (desplazamendu  espazio-denborala, 
abiadura  eta  orientazioa)  erabiliz,  Poincare-ren  taldearen 
konposaketa-funtzioen  adierazpen  zehatzak  ematen  dira. 
Talde-uzkurduraren bidez, Galileo  eta  Carroll-en taldeen 
konposaketa-funtzioak  lortzen  dira.  Talde  hauek,  Poincare- 
renaren  erlatibotasunaren  propietate  batzuren  galeraren 
truke nola lor daitezkeen  ere  aztertzen  da. 

In  special relativity the  group  is  the  Poincare  group 
and  several  parametrisations of it are  known,  including 
those given in terms of physical  observables.  However, 
in contrast  to  the Galilei group, no explicit formulae 
are  found in standard  textbooks for the  most  general 
composition  law of the  physical  parameters  that 
characterise  the relative situations of the  observers.  In 
fact,  frequently  only  Lorentz  boosts or infinitesimal 
transformations  are  needed  and  by  making use  of the 
powerful Lie algebra  methods  and Lie group  thebry, 
very  general  results  can  be  elegantly  reached. 

On  the  other  hand,  however,  the  example of the 
Galilei group  suggests  to us that  these explicit 
formulae  can  be useful in some  contexts.  For  instance, 
they  can allow a student with  little or no  knowledge 
of Lie groups  to  understand  some  results  which  are 
usually  attained  by  more  sophisticated  methods. 

The  aim of this  paper is to  illustrate  the  potential 
pedagogical  interest of the  general  group  law in terms 
of physical  parameters of the  Poincare  group. 

A parametrisation  of  this  group  and  the  corre- 
sponding  general  composition  law is given in 5 2, and 
it is  mentioned  how  the  Thomas  precession  can  be 
obtained a s  a direct  consequence of this  transfor- 
mation  law. 

The usefulness of the explicit expressions  for  this 
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law is explored in Q 3,  where  the Galilei and  Carroll 
groups  are  derived  from  the  Poincare  group  by using 
the limiting process of group  contraction.  Section 4 
is devoted to some  physical  comments  on  these 
three  groups  and  to  what  extent  the  groups 9 and 
e, still being, in principle,  possible  candidates  for 
implementing  a  relativity  principle,  have  however lost 
some  relativity  properties  when  compared with 9. 

2. The Poincare group 
The  Poincare  group is usually  defined  as  the  group 
of  linear  transformations of Minkowski  space-time 
which leave  the  distance ds2=gpy  dx’ d x ”  between 
two  space-time  events  invariant ( g p u  =diag(l ,  -1, 
- 1, -1) is the  Minkowski  metric  tensor). 

If xy (cl, x) are  the  coordinates of a space-time 
point,  any  Poincare  transformation  can be written  as: 

X” = AY,x’ + a’ (1) 
where a’ represents a space-time  translation  and A a 
Lorentz  transformation  which verifies: 

AP, =guo  . ( 2 )  
We shall  also  use  the  shorthand  notation (a, A) to 

describe  the  Poincare  transformation  in  equation (1). 
The  composition of two  transformations  can be 
obtained  by  acting  twice  on x in the  form (I ) ,  and 
gives the  group  law (a’,  A’)@ A )  = (A’a + a’. A’A) = 
(a” ,  A”), i.e.: =A;Pab’ +alii (3 a) 

A;’ = Ab’ A:. (3b) 

The  four-vector a’ = (cb, a )  is parametrised in terms 
of the  real  number b (with  dimensions of time),  which 
characterises  the  time  translation,  and  the  real  three- 
vector a, which is interpreted  as  the  space  translation, 
c being  the  speed of  light. 

It is well known  (Maller  1972)  that  every  Lorentz 
transformation  can  be  broken  down  into a product of 
a pure  Lorentz  transformation  and a rotation.  This 
can be  done in two  ways. We  shall  always  understand 
it in  the form A = L R .  For completeness, we show in 
the  appendix  a  possible  method  for  obtaining  this 
result. 

L is usually  parametrised in terms of the  relative 
velocity between  observers  (Moller  1972), being 
0 L‘ < c, and  its  action  on  any  space-time  point  gives: 

t’= p t x) ( 4 4  

x’=x+*pt+--- (v  * X)U (4b) 
Y 2  

(1 + ?)C2 

wherey=(l-c2/c2)”’2.  
Every  rotation will be  characterised  by  the  rotation 

axis  (more  precisely,  by  a unit vector e along it), and 
by  the  clockwise  rotated  angle a E [0, n ]  when  looking 
along  the  direction given by e. For angles  greater  than 
K we take e in the  reverse  direction.  From e and a we 
define  the  real  adimensional  three-vector p = e tan(ia) 
in terms of which  every  rotation R - R @ )  will be 

expressed in matrix  form  (Pars  1968)  as: 

where p ’ = p , ,  8; is the  Kronecker  delta  and is the 
completely  antisymmetric  tensor of order  three.  When 
a = K the  direction  of e does  not  matter  since 

R (e,  n)J = - 8;. + 2eie,. (6) 

Consequently  every  Lorentz  transformation is 
written in terms of the  three-vectors U and p, 
A b ,  p) = L ( u )  R ( p )  = A(u, O)A(O, p), and  a  general 
Poincare  transformation g €  9, depends  on  the  ten 
real  numbers (b ,  a, U, p) and its action (1 )  on  every 
space-time point  interpreted in the  order (b, a, U, p)  x 
=(b, O,O, O)(O, a, O,O)(O, 0,  U ,  O)(O, O,O,p)  x=x’ is 
given by 

t ’ = y t +  ~ c - ~ ( u  R ( p ) x )  + b ( 7 4  

x ’ = R ( ~ ) x  + pt + ~ ( U  R ( ~ ) x ) u  + U .  (7b) Y‘ 
(1 + y)c2 

So the ( c t ’ , ~ ‘ )  event is reached by successively 
applying  to (ct, x) a  rotation given by p, the  boost 
corresponding  to  the  speed U and  the  space-time 
translation (cb, a). 

The  composition of two  Poincare  transformations 
g’g = g ”  is given by 

b”= y’b + . J ’ c -~(u‘  * R(p’)a) + b’ @a) 

~ ” = R ( p ’ ) a + y ’ ~ ’ b + - - -  (U’. R ( p ’ ) a ) ~ ’ +  U ‘  (8b) 
(1 + y y  

where F and G are  the following functions of U and U‘: 

F b ‘ ,  p‘ ;  U, p)  = 
Y?‘ 

[U x U’ + U(U’ * p’ )  
(1 + y ) (  1 4- ?’)C2 

+ U ‘ ( U . p ) + U X ( U ’ X p ’ ) + ( U X p ) X U ’  

+(U. p)(v’ x p’)+ (U x p)(u’ * p ’ )  
+ (U x p)  x (U’ x p’ ) ]  (sa)  

W ‘  
(1  + y)( 1 + ? ’ ) C 2  

+ u ’ . ( v x p ) - - ( u . p ) ( u ‘ . p ’ )  

+(U x p)  (U’ x p’ ) ] .  (9b) 

G(u’. p ‘ ;  U. p) = [U * U’ + U (U‘ x p’ )  

The  (8a)  and  (8b)  transformations  come  from  (3a) 
taking  into  account (7), and  the  relations  (8c)  and  (8d) 
are  calculated in the  appendix. 

The  composition of two  rotations R ( p ’ ) R ( p ) =  
R ( p ” )  is given by 
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and  the  composition of two  pure  Lorentz  transfor- 
mations A(v‘, O)A(u, 0) = A(v“, p’/)= A(v“, O)A(O, p”)  
involves a  rotation,  called  the  Wigner  rotation 

u x  U’ 
p” = (1 + y ) (  1 + y’)ci/’Jy’ + v * v’ 

(1 1) 

around  an  axis  orthogonal  to U and U’, e”= 
U x u’lu x U’\ I and with angle a” given by 

3 

C#J being  the  angle  between v and v’, and followed by 
another  pure  Lorentz  transformation with  velocity U” 
given by  the well known  relativistic  addition of the  two 
velocities U’ and U (Mdler 1972): 

and  only if U x U’ = 0 is no  rotation  involved. 
Another  method  for  calculating  the  Wigner  rotation 

has been recently  published  (Ben-Menahem  1985). 
The  calculation  of  the  Thomas  precession  can be 

obtained  directly by making  the  substitution U+ U + du  
and U’-+- U in (1 1) and  the  result  can  be  compared 
with van  Wyk  (1  984). 

The  unit  element of the  group is (0, 0, 0,O) and  the 
inverse  of ( 6 ,  a, v, p)  is: 

( b , a , ~ , p ) - ’ = ( - y b + y ~ . ~ ~ - ~ , - R ( - p ) ( a - y ~ b  

+ ?’[(l + y)ci]”(v * u)u), - R ( - ~ ) u ,  -p) (14) 

where R ( - p ) = R ( p ) - l .  

3. Contractions of 9 
Inonu  and  Wigner  (1952)  developed  the  concept of 
group  contraction in terms of the Lie algebra  of  the 
group.  The  corresponding  version in terms of the 
composition  functions  of  the  group is summarised 
without  proofs in what follows. 

Let G be  an  n-dimensional  Lie  group,  such  that 
every  element a E G  can  be  expressed in terms of 
n continuous  parameters a i ,  i= 1 , .  . . , n, e being 
(0, 0, . . . ~ 0) the  unit  element.  The  composition  law 
is given by n differentiable  functions 4’ such  that if 
c=ab then ci=@‘(al ,  . . . , a“; b’ , .  . . b“), i= 1 , .  . . , n. 

If we change  the  parametrisation  such  that 
a’ =a‘ i = l ,  . . . ,  k 

EaJ=aj j = k +  I , ,  . . , n (15) 

and similarly for b’ and c’ in terms of pi and y‘ 
respectively,  and we take  the a’, pi, y’ as  the  new 
parameters,  the  composition  law  becomes: 

y ‘ =  @‘(a1,. . . , ak,  Eak+ I,. . . , Ean; p’, . , . , pk, 
E D “ ’ ,  . . . , & p )  i =  1 , .  . . , k (16a) 

&pk“,  . * . , & P “ )  j = k +  1, .  . . , n (16b) 

yJ=E-’4j(a1,.  . . , ak, Eak+‘, . . . , can;P1, .  . . ,pk, 

i.e. 
?‘=@‘(a’, . . . , .“;p1,. . . ,p”)  i= 1 , .  . . , n (17) 

and  these 0’ are still the  composition  functions of the 
same  group  but in another  parametrisation  depending 
on the  nonvanishing  real  number E .  

What  happens if we take  the limit E - O ?  In  general 
the l imE+o@‘=Y’ will not define the  composition 
functions  of  any  group. In fact  the  necessary  and 
sufficient condition  that  the Y‘ functions exist and 
indeed  form  the  transformation  law  of  a  group, 
is that  the  set of elements a E G  of  the  form 
a = ( a ’ ,  . . . , ak, 0, . . . , 0) be  a  subgroup H of G. 

In this  case,  the Y i  functions  represent  the 
composition  functions of a  group  CH, in general 
different from  G, which is called the  contraction of G 
with respect  to  its  subgroup H. If this  occurs,  the  set of 
elements of the  form (0,. . . , 0, a k +  l ,  . . . , a“) is an 
abelian  invariant  subgroup K of the  contracted  group 
GH and H which  remains  unchanged is isomorphic  to 
the  factor  group CH /K. 

Following  the  above  considerations, if we take  the 
Poincare  group, we  see that  the  set of elements of the 
form (b, 0, 0, p) is the  subgroup of 9’ corresponding  to 
rotations  and  time  translations. If we define the new 
parameters bo = b, p. =p,  &aO =a,  &uO =U, in the limit 
E + 0, the  equations (8) become: 

bb’=b6 +bo ( 1 8 4  
U[  = R (&)a0 + ~ 6 b o  + ai, (18b) 

These  expressions  represent  the  composition  functions 
of the Galilei group, in a  parametrisation in which an 
element is given in terms of the  ten real numbers 
(b, a, U, p)  with the  same  physical  interpretation  as 
before,  being now infinite the  range of c. 9, as a 
transformation  group,  acts on the space-time as: 

t’=t + b (1%) 
x ’ = R ( p ) x + u t + a .  (1%) 

It is in this  sense of low velocities and  small  space 
translations  that  the  Poincare  group  contracts  to  the 
Galilei group  and it is  said  that 9 is the velocity-space 
contraction of 2’. 

Similarly,  the  set of elements of the  form (0, a, 0, p )  
is  another  subgroup of 9, and by defining a. = a ,  
p. =p,  &bo = b, E U ~  = U  and  taking  the e - 0  limit we 
get from (8): 

b[ = b6 + bo + u ~ c - ~  R(p6)ao (2Oa) 

a[=R(p6)ao +ai, (20b) 

0 - R (pi,)uo + U6 W C )  - 
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which are  the  composition  functions of the  Carroll 
group  (Levy-Leblond 1965), which acts on space-time 
as  a  transformation  group: 

t '= t -t R ( p ) x  + b (2 1 4  

x ' = R ( p ) x  + U.  (2 1 b) 

?? is said  to  be  the velocity-time contraction of 9. 
That  (18)  and  (20)  are  respectively  the  composition 
functions of the space-time transformation  groups 
(19)  and  (21)  can  be easily checked  by  twice  applying 
these  transformations  to  a space-time point. 

4. Final comments 
We  have  derived  the  composition  functions of 9 and 

groups  from  those of 8 by  the limiting process of 
group  contraction,  but  to  what  extent  can  the  action of 
these  groups on space-time (19) and  (21)  respectively, 
be  obtained  from  that of 8? 

All these  three  groups  are  ten-parameter  transfor- 
mation  groups  acting on space-time.  Their  difference 
lies in the  different  conception of  space-time 
they  supply.  What is a  different  conception of 
the  space-time at  the  physical level is something 
which is related  to  how  and  how  much  any  two 
observers  disagree  about  concepts  such  as  simultaneity 
and  isotropy of pairs of events. 

Let us consider  two  events  which we  call 1 and 2, 
with space-time  coordinates x, and x2 as  measured 
by the inertial observer 0 and xi and xi respectively 
for  the  observer 0'. At = t ,  - t 2  and A x =  xI - x2 are 
the  time  and  space  intervals  between  the  two  events  for 
0 and similarly At' and Ax' for 0'. 

If the  two  events  are  simultaneous  for 0 ( A t = O ) ,  
for O', At' will be in general  non-zero  and  hence  there 
exists  a  discrepancy  between  them  about  simultaneity. 
We  can  measure this discrepancy  by defining a 
magnitude  that  represents  the loss of simultaneity  per 
unit  length. For 0' this  magnitude will be  related  to 
things like lAl'I/lAx'l, but it can  happen  that 
simultaneous  events  for 0 with the  same  value of IAx'l 
can  have different At' values.  We call the  maximum 
value of this  ratio d'. 

Taking  into  account (14) we  see  for 8 that 
A t = y A t ' - y ~ - ~ ( R ( - p ) v )   ( R ( - p ) A x ' )  and At=O 
implies A ~ ' = V C - ~  . Ax' ,  so that d ' = v c - * .  For 9 
A t = A t '  and d'=O.  In  the  Carroll  group d '=vc - ' .  
Similarly d is defined for  the  observer 0 in terms  of 
events  which  are  simultaneous  for 0'. In all three 
groups  considered d = d' .  

If the  two  events  are  isotropic  for 0 (i.e. Ax=O) ,  
in general Ax'  will be different from  zero  and 
consequently  there  exists a discrepancy  about  isotropy. 
We  can  measure  this  discrepancy  by defining a 
magnitude  related  to  the loss of  isotropy per unit  time. 
For observer 0' we  define D ' = l A x ' l / ( A t ' ( ,  and 
similarly  the  magnitude D for the  observer 0 in terms 
of events  which  are  isotropic  for 0'. For all three 
groups D = D'. 

We  thus see that  the  relative  space-time  inter- 
val measurements  are  characterised  by  the  two 
discrepancy  parameters ( d ,  D). For the  Poincare 
group we get (v/c2, v), (0, v) for  the Galilei group  and 
(v/c2, 0) for g. Thus  the  three  groups  supply  a 
different pair of discrepancies  between  observers. 

When  passing  from 9 to 9, (v /c2 ,  U) becomes 
(0, v) and this can  be  achieved  as  usual by assuming 
the limit c+  m while v remains finite. It is in this  sense 
that  the  transformation  group  equations (7) for 9 
become  those of 9, (1 9). 

Similarly,  when  going  from 9 t o - g  we pass  from 
(v/c2, U) to ( v / c 2 ,  0). This  can  be  obtained  by  the 
limiting process v - 0 ,  c-0, such  that v/c-rO while 
v /c2  remains finite, i.e. v goes  to  zero as fast  as c2 
does. By applying  this limit to (7)  we get  the 
transformation  group  equations (21) of Q .  

One  possible  physical  interpretation of these limiting 
processes is that  in  the Galilei  limit  light is assumed  to 
travel  at infinite speed, so that  the  relative velocity 
interval (0, c) is  enlarged  to [0, m), thus leaving for 
description all events  which  travel at  velocities  below c, 
including  the  relative  motions  among  observers. In  the 
Carroll limit the [0, c) interval is contracted  to  zero, 
thus  transforming [c, m) in the [0, CO) interval,  such 
that light and  observers  are all at  rest,  the  space is 
absolute  but  time is not  since  observers  have  different 
clocks,  and  only  events with  velocities above c are 
considered  for  description. 

In  other  words,  the  Poincare  group  describes 
bradyons, light and  tachyons, while the Galilei group 
describes  only  bradyons  and  the  Carroll  group  only 
tachyons. 

Appendix 
The  object  of this appendix is twofold: to  provide  a  method 
for the breaking  down of a  Lorentz  transformation in terms 
of  a  rotation  and  a  pure  Lorentz  transformation,  and to 
obtain  the  group law. This  can be achieved directly from (3) 
and (4) but it is a  rather  cumbersome  method  and we have 
preferred to present it using spinor CakUlUS. 

In the  spinor  representations of rotations we obtain 
(Misner et ai 1973) that every rotation  around axis e and 
angle a is given by the 2 x 2 unitary  matrix 

given by the 2 x  2 Hermitean  matrix 

where n = v / c  and  tanh .9= c/c being 

1 0  0 1  
4 0  1 1 3  4 0). 

i i ) ,  u , = ( l  0 - 1  O 
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Finally if every  Lorentz  transformation is interpreted as 
the  product  of  a  pure  Lorentz  transformation  and  a  rotation: 

where use has been made of the  identity: 

( u . u ) ( u . b ) = ( a . b ) u o + i ( u x b ) . u .  (27) 

Thus A(u, p)  =a”u, with U’ a  complex  four-vector which 
verifies a’a, = 1, and  is: 

Conversely, given any  2 x 2  matrix with determinant + 1  can 
always be written in the  form A = a‘u, and  det A = a’uY = 
+ 1, thus  (28)  can be inverted  and we get: 

p=-- 
Im U 

Re ao 

u = 2 ( I m u o I m u + R e u x I m u ) .  (29b) 

If A(u, p )  were interpreted in the  reverse  order, i.e. as a 
product of a  rotation  and  a  pure  Lorentz  transformation. 
then  only in (26),  (28b)  and  (29b)  the sign of the  cross 
product is changed.  We  thus see that in any  case  the  rotation 
involved is always  the  same  (29a). 

If we multiply two  Lorentz  transformations  of  the  form 
(26), A(u‘, p’)A(u,  p)=A(u”, p”), by  applying (29) we 
obtain U” and p” in terms  of U’, p’, U and p and  expressing 
the  result in terms of U,  U’ and U” since 

we get the  result  (8c)  and (8d). 
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