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The braking force acting on a conducting disk rotating under the influence of an external magnetic
field of axial symmetry is calculated in a quasi-static approximation and the role played by the
charge distributions induced in the disk is shown. The two cases of infinite and finite radius are
considered to analyze the influence of edge effects and we obtain a general expression for the
braking torque when the magnetic field has axial symmetry. The particular case of a uniform
external magnetic field is used to show the working of a simplified model of a cylindrical battery.
Analytical results are compared with those obtained by other authors. ©1997 American Association of

Physics Teachers.
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I. INTRODUCTION

It is well known that, when a conductor is moving in
stationary magnetic field, electric currents are induced wit
it and dissipate energy by the Joule effect. This loss of
ergy manifests itself by the existence of a force on the b
that produces a braking of the motion. This force is produ
by the action of the external magnetic field on the induc
currents. Though this effect is the basis of some technol
cal applications,1 most textbooks on electromagnetism2 ei-
ther do not mention this subject or discuss it only at a qu
tative level or as suggested problems. One exception is
book by Smythe,3 in which a quantitative analysis can b
found.

Wiederick et al.1 analyzed in detail the motion of a thi
aluminum disk of very large radius rotating in an almo
uniform magnetic field of rectangular cross section. La
Heald4 improved these calculations by suppressing the e
lier hypothesis that the induced current is uniform in t
rectangular ‘‘footprint’’ of the magnetic field.

Marcusoet al.5,6 made use of a method of successive a
proximations to solve Maxwell’s equations in order to co
pute the braking force on a rotating disk under the action
a static external nonuniform magnetic field. The braki
torque was compared with the experimental results for d
of aluminum and copper, obtaining very good agreement
cept near the disk border. Cadwell7 has recently analyzed th
effect of magnetic damping on an aluminum plate moving
a horizontal air track as it passes between the poles
horseshoe magnet.

Related works are those of Saslow8 and MacLatchyet al.,9

who calculated, among other things, the braking force ac
on a magnetic dipole falling inside a cylindrical conducto

The aim of this paper is to study the braking effect on
thin conducting disk rotating in an external, static, nonu
form magnetic field. This is done in the quasi-static appro
and in the reference frame where the electromagnet that
erates the magnetic field is at rest. We want to simplify a
generalize previous calculations and to emphasize the
played by the charge densities that arise within the mate
The induced currents may be explained in terms of a cir
with an electromotive force~emf! source connected to a re
sistor. In this case, the nature of the nonelectromagn
force and the crucial role of the induced charge distributio
are easily understood.

In Sec. II we study the case of the disk of infinite radiu
851 Am. J. Phys.65 ~9!, September 1997
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Border effects are computed in Sec. III and we comput
general expression for the torque that reduces to Smyt
expressions3 in the particular case in which the magnet
field is uniform. In Sec. IV a model for a cylindrical batter
is proposed and we make some general comments in Se

II. INFINITE DISK

Let us consider a disk of conductivitys and large radius
Rd which is rotating around a perpendicular axis pass
through the pointO8. There is an external perpendicula
magnetic field of axial symmetry applied around the pointO,
which is located at a distanceR from the rotation axis~see
Fig. 1!. Inside the disk, the applied magnetic field vanish
outside a circular region of radiusa, not necessarily small.

We will choose a coordinate system aroundO in such a
way that theXOY plane coincides with the middle plane o
the disk. LetB(r ,z) be an external applied magnetic field
cylindrical symmetry. It can be represented as

B~r ,z!5Br~r ,z! r̂1Bz~r ,z!ẑ, ~1!

where r̂ and ẑ are unit vectors in the radial direction an
along the OZ axis. In the cylindrical coordinates (r ,f)
aroundO, the velocity of a point on the disk appears as

v5v@R sin f r̂1~R cosf1r !f̂#, ~2!

wheref̂ is azimuthal unit vector.
In the laboratory frame, where the magnetic field is at re

the magnitude of the angular velocity,v, is considered con-
stant, in such a way that we can assume that the proble
quasi-static. In particular, the current density satisfies the
lowing conservation law:

div j50. ~3!

As we shall discuss in detail in Sec. V@see Eq.~59!#, we
are also assuming thatv is small enough to warrant the va
lidity of our first-order approximation.

Since the material satisfies Ohm’s law and in the qua
static approach the convective terms can be neglected
have

j5s~E1v3B! ~4!

and the continuity equation~3! implies the presence insid
the disk of a charge density given by
851© 1997 American Association of Physics Teachers
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r5e0 div E52e0 div~v3B!52e0B–~curl v!

522e0vBz~r ,z!, ~5!

where use has been made of the fact that inside the diskB is
sourceless: curlB50. We are also assuming that the elect
permittivity and magnetic permeability of the material a
those of vacuum,e0 andm0 .

To analyze the braking effect, we have to compute
electric fieldE inside the disk. In the quasi-static approxim
tion the electric field is conservative,E52gradV, and the
potential satisfies Poisson’s equation, that in cylindrical
ordinates is written as follows:

1

r

]

]r F r
]V

]r G1
1

r 2

]2V

]f2 1
]2V

]z2 52
r~r ,f,z!

e0
. ~6!

Since we are assuming that the disk is very thin,j z

5s(Ez2vfBr)50 and, by using again curlB50, we get

]2V

]z2 52
]Ez

]z
52vf

]Br

]z
52vf

]Bz

]r
, ~7!

and, rearranging terms in the expression for¹2V,

1

r

]

]r F r
]V

]r G1
1

r 2

]2V

]f2 52vBz1vf

]Bz

]r
. ~8!

From now on, we shall use the hypothesis of a very sm
disk thicknessh to keep only the lowest order in an expa
sion in powers ofh. In consequence, we will have

V~r ,f,z!'V~r ,f![V~r ,f,0!, ~9!

Bz~r ,z!'B~r ![Bz~r ,0!, ~10!

Br~r ,z!'Br~r ,0!50. ~11!

In the last expression we have assumed5 that the planez
50 has been chosen to haveBr(r ,0)50. In this approxima-
tion the dependence on thez variable may be ignored4 and
we get a two-dimensional equivalent problem:

1

r

]

]r F r
]V~r ,f!

]r G1
1

r 2

]2V~r ,f!

]f2

5vR
dB~r !

dr
cosf1v

1

r

d

dr
@r 2B~r !#. ~12!

Fig. 1. Rotating disk and the coordinates used in different calculations.
influence area of the external magnetic field is the circler<a.
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The structure of the right-hand side~rhs! in ~12! suggests
using the ansatzV(r ,f)5a(r )cosf1b(r), which effec-
tively separates this equation into two linear ordinary diffe
ential equations:

1

r

d

dr F r
da~r !

dr G2
1

r 2 a~r !5vR
dB~r !

dr
, ~13!

1

r

d

dr F r
db~r !

dr G5v
1

r

d

dr
@r 2B~r !#. ~14!

Since both equations are of the Cauchy–Euler type, they
be solved:

a~r !5C1r 1
C2

r
1

vR

r E
0

r

uB~u!du, ~15!

b~r !5C31C4 ln r 1vE
0

r

uB~u!du. ~16!

The integration constantsC1 , C2 , C3 , and C4 are readily
computed by using the conditions that the potential is regu
at r 50 and vanishes forr→`. The final result for the po-
tential is

V~r ,f!5v
R cosf1r

r E
0

r

uB~u!du2vE
0

a

uB~u!du.

~17!

The uniqueness theorem guarantees that this is the only r
lar solution of the two-dimensional Poisson’s equation~12!
that goes to zero asr approaches infinity.

To write the solution in a more convenient way, we w
use the vector potential in the Coulomb gauge. By us
B5curl A and the field symmetry given by~10! and~11!, it
is easy to see thatA5A(r )f̂ with

A~r !5
1

r E
0

r

uB~u!du. ~18!

In consequence, the potential~17! takes the form

V~r ,f!5v~R cosf1r !A~r !2vaA~a!. ~19!

Notice that forr .a the magnetic field vanishes, the vect
potential is

A~r !5
aA~a!

r
, ~20!

and the potential~19! can also be written in the following
form, which shows explicitly its dipolar nature forr .a:

V~r ,f!5vRaA~a!
cosf

r
. ~21!

Since the total magnetic flux through the disk surface
2paA(a), the quantityaA(a) and the expressions~19! and
~21! are independent ofa, as far as it is large enough to hav
B(r )50 for r .a.

The components of the current density~4! are easily com-
puted by using Eqs.~2! and ~19!:

j r5svR
A~r !

r
cosf, j f52svR

dA~r !

dr
sin f.

~22!

Since Eq.~18! may be written as

e

852Aguirregabiria, Herna´ndez, and Rivas
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B~r !5
dA~r !

dr
1

A~r !

r
, ~23!

we see from~20! and ~22! that for r .a, where there is no
magnetic field, the current density decreases as 1/r 2.

The torque exerted by the external magnetic field on
current density,

M5E O8P3~ j3B!d3x, ~24!

is perpendicular to the disk,M5M ẑ, and this component is
given by

M5E @R~ j f sin f2 j r cosf!2r j r #B~r !d3x, ~25!

whered3x5r dr df dz is the volume element of the disk
After performing the integrals inz andf and making use

of ~23!, we get

M52pshvR2E
0

a

rB2~r !dr, ~26!

In a similar way, it is easy to see that the force exerted by
external magnetic field on this current density,

F5E j3B d3x, ~27!

is perpendicular to the radiusR, i.e., F5F ŷ, with

F52pshvRE
0

a

rB2~r !dr. ~28!

We see that, as a consequence of the symmetry of the m
netic field, we have simplyM5R3F, as if the total force
was applied at pointO, instead of throughout the cylindrica
region r ,a.

III. BORDER EFFECTS

Until now to neglect the edge effects, we have conside
a disk of infinite radius. In what follows, we shall assum
that the radius is finite and satisfies the conditionRd>R
1a, which guarantees that the applied magnetic field v
ishes along the disk edge where the potential will sati
Laplace’s equation. Under these assumptions, the ch
density is still given by Eq.~5! and, as a consequence of th
superposition principle, the potential will be the sum of t
solution ~19! of Poisson’s equation and a solution
Laplace’s equation. The physical condition that will fix th
unique solution to the problem, is that the component of
current density in the radial direction of the disk~or, equiva-
lently, the radial derivative of the potential! vanishes at the
edge.

To take advantage of the symmetry of the new probl
we will use cylindrical coordinates (r 8,u) around the disk
centerO8 ~see Fig. 1!. They are related to the coordinate
(r ,f) by the equations

r cosf5r 8 cosu2R, r sin f5r 8 sin u, ~29!

and the potential~21! appears forr .a, and in particular
near the border, as follows:

V~r 8,u!5vRaA~a!
r 8 cosu2R

r 821R222Rr8 cosu
. ~30!
853 Am. J. Phys., Vol. 65, No. 9, September 1997
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This potential satisfies Laplace’s equation. To make its ra
derivative vanish whenr 85Rd , for all values ofu, it seems
natural to add a term with the same (r 8,u) structure but with
different constants:

Ṽ~r 8,u!5B
r 8 cosu2C

r 821C222Cr8 cosu
. ~31!

This term will automatically satisfy Laplace’s equation in th
region r .a, and the condition](V1Ṽ)/]r 850, for r 8
5Rd is fulfilled if and only if we takeB52vCaA(a) and
C5Rd

2/R. An analogous ansatz was made by Smythe3 to
compute the magnetic scalar potential.

The result we have just found and the uniqueness theo
show that to take into account the edge effects the poten
~19! must be corrected by an additional term that after us
transformation~29! appears in the form:

Ṽ~r ,f!52vRd
2aA~a!

3
Rr cosf2~Rd

22R2!

R2r 21~Rd
22R2!222R~Rd

22R2!r cosf
. ~32!

For the same reason, one has to correct the braking to
~26! with the following additional term:

M̃52sE FRS sin f

r

]Ṽ

]f
2cosf

]Ṽ

]r D 2r
]Ṽ

]r GB~r !d3x.

~33!

If one substitutes expression~32!, the integrand is a rationa
expression in cosf and sinf. After performing the integrals
in z andf one gets

M̃52pshvaA~a!
R2Rd

2

~Rd
22R2!2 E

0

a

rB~r !dr, ~34!

and by using Eqs.~18!, ~20!, and ~26! we finally get the
general expression for the total braking torque if the exter
magnetic field has axial symmetry:

M1M̃52pshvR2E
0

a

rB2~r !drF12L
a2Rd

2

~Rd
22R2!2G ,

~35!

whereL is a dimensionless coefficient that measures the p
file of the external magnetic field:

L5
2@*0

arB~r !dr#2

a2*0
arB2~r !dr

. ~36!

This coefficient is a functional ofB(r ) and takes values in
the range between 0 and 1. For instance, its maximum v
is 1 and is obtained for a uniform magnetic field profil
while it equals 2/3 for a linearly decreasing field and
value is 3/4 for a magnetic field of parabolic shape. Its va
is 0 if the total flux of the magnetic field through the regio
r<a is zero. In consequence, for any magnetic field w
axial symmetry, the torque increases asR2 for small values
of R but near the border this parabolic increasing trend
modified by the last term in~35!. This behavior is shown in
Fig. 2, for a/Rd50.05 andL51.

In this case of a finite disk, the total braking force is al
perpendicular to the radiusR and given by F1F̃5(M
1M̃ )/R, as can be seen after a straightforward calculatio
853Aguirregabiria, Herna´ndez, and Rivas
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In the experimental setup of Marcusoet al.,5,6 a/Rd50.3
or larger, which prevents us from using our calculations
explain quantitatively the decreasing trend of the torque n
the border, because then the footprint will encompass
border and the cylindrical symmetry inside the disk will
broken. However, the tail of the displayed curve may expl
qualitatively the decreasing of the torque near the border
they observed experimentally but could not explain, ev
qualitatively, with the analytical expression they obtained

To test that behavior more accurately, magnets of v
small radiusa must be used and try to close the magne
field lines outside the disk in order to make the magnetic fl
through the regionr<a, and thus the parameterL, as large
as possible.

By using expressions~5!, ~19!, and~32! we may compute
the current densityj inside the disk. In Fig. 3 we have plotte
some current lines in the casea/Rd50.3 and for R/Rd

50.6, and 0.23, using a computer program.10 In ~a! and ~b!
we consider a uniform magnetic field~B5B0 for r ,a! and
we see that when the border effects are negligible the cur
is uniform inside the magnetic field footprintr ,a. If the
magnetic field profile is triangular,B56B0(12r /a), we ob-
tain the plots~c! and ~d!. Now, inside the circler 5a the
current is not even approximately uniform, but outside it h
exactly the same value as that in the case of the unif
magnetic field, because forr .a the potential and the curren
depend only on the total magnetic flux and we have cho
the constants in order to have the same flux in both ca
Notice that field lines in Fig. 3~a! and~b! have a discontinu-
ous normal component atr 5a due to the existence of
surface charge density distribution induced by the disco
nuity of the magnetic field.

IV. A CYLINDRICAL BATTERY

Saslow11 analyzed a spherical battery that produced a u
form nonelectromagnetic force per unit chargeF, such that
in the interior of the battery the current was given byg(E
1F). Since there are induced currents, we may consider
disk analyzed in previous sections as a circuit in which
emf is supplied by a cylindrical battery of heighth and ra-
dius a located aroundO. In our case, we may explicitly

Fig. 2. Total braking torque fora50.05Rd , L51 and different values of
R. The vertical scale is arbitrary, because there is a proportionality co
cient depending on the disc and magnetic field properties.
854 Am. J. Phys., Vol. 65, No. 9, September 1997
o
ar
e

n
at
n

y
c
x

nt

s
m

n
s.

i-

i-

e
e

identify the nonelectromagnetic forceF, because its role is
played by the vectorv3B, which happens to be nonuniform
in this case.

To simplify the following discussion, let us consider th
particular case in which the disk radius is infinite and t
external magnetic field is constant and uniform in the reg
r ,a and vanishes outside it:

B5 HB0ẑ, for r ,a
0, for r .a. ~37!

In this case the potential~19! is

V~r ,f!5H 1
2vB0~Rr cosf1r 22a2!, for r<a,
1
2vB0Ra2~cosf/r !, for r>a.

~38!

The electric field and current density are, respectively,

Er~r ,f!5H 2 1
2vB0~R cosf12r !, for r ,a,

1
2vB0Ra2~cosf/r 2!, for r .a;

~39!

Ef~r ,f!5H 1
2vB0R sin f, for r<a,
1
2vB0R~a2/r 2!sin f, for r>a;

~40!

j r~r ,f!5H 1
2svB0R cosf, for r<a,
1
2svB0Ra2~cosf/r 2!, for r>a;

~41!

j f~r ,f!5H 2 1
2svB0R sin f, for r<a,

1
2svB0R~a2/r 2!sin f, for r>a.

~42!

Since the magnetic and electric fields are discontinuou
r 5a, in addition to the volume charge density~5! which
reduces in this case to the constant valuer(r ,f)
522e0vB0 , there exists a surface charge density in t
cylinder lateral surfacer 5a, given by

fi-

Fig. 3. Some current lines inside the disk for~a! B5B0 , a50.3Rd , and
R50.6Rd ; ~b! B5B0 , a50.3Rd , andR50.23Rd ; ~c! B56B0(12r /a),
a50.3Rd , and R50.6Rd ; ~d! B56B0(12r /a), a50.3Rd , and R
50.23Rd .
854Aguirregabiria, Herna´ndez, and Rivas
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e-
sc~a,f!5e0 lim
h→0

@Er~a1h,f!2Er~a2h,f!#

5e0vB0~R cosf1a!. ~43!

The braking force and torque acting on the disk are
cording to~26! and ~28!:

F52 1
2pshvRa2B0

2, M5RF. ~44!

The power of the electric force inside the battery (r ,a)
and outside it (r .a) is

P
.
,5Er ,a

r .a

E–jd3x57
1

4
pshv2R2a2B0

2. ~45!

Of course, the total power of the conservative electric field
zero. On the other hand, the power supplied by the batte

Pm5E
r ,a

~v3B!–jd3x5
1

2
pshv2R2a2B0

2, ~46!

which is the loss of kinetic energy per unit time of the di
or, alternatively, the mechanical power2Mv produced by
some external agent to maintain the disk rotating with c
stant angular velocity.

The total current supplied by the battery is

I 5E
S
j–ds5shvRaB0 , ~47!

where the integration surfaceS is, for instance, the cylinde
cross section~r ,a, f56p/2!, or the upper half of its lat-
eral surface~r 5a, 2p/2<f<p/2!, the outer part of the
battery~r .a, f56p/2!, or any other convenient surfac
The result is, of course, independent ofS because of the
conservation law~3!.

Since the current is spread through the volume of the d
we cannot use the usual definition of resistance as an inte
along the conducting wire. Furthermore, we cannot use
expressionRe5V/I to define the external resistance of t
circuit, because our battery does not have two clear pole
define V. Nevertheless, it seems reasonable to use the
pressionP5I 2R to define the external resistance of t
‘‘circuit’’ as follows:

R.5P. /I 25p/4sh. ~48!

In a similar way, we may define the internal resistance of
battery by the relation

R,5~P,1Pm!/I 25p/4sh, ~49!

which has the same value as the external resistance.
The energy balance may also be performed in terms of

Poynting vector. Because the current density~41! and ~42!
has noj z component andj r and j f are functions independen
of z, the corresponding vector potential has the formA8
5Ar8(r ,f) r̂1Af8 (r ,f)f̂, so that these induced currents ge
erate inside the disk a magnetic fieldB85“3A8
5B8(r ,f) ẑ, with a single nonvanishing component alon
OZ given by

B8~r ,f!5H 1
2m0svRB0r sin f, for r<a,

1
2m0svRB0a2

sin f

r
, for r>a.

~50!
855 Am. J. Phys., Vol. 65, No. 9, September 1997
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Let us call E8 the electric field induced byB8, which
satisfies“3E852]B8/]t50. The lowest order terms in th
Poynting vector forr ,a will be

N5
1

m0
E3B1

1

m0
E3B81

1

m0
E83B. ~51!

The first term is linear inv, while the other two are of orde
of v2. Since the curls ofE, E8 andB vanish, the only non-
vanishing divergence ofN comes from the second term o
the rhs of~51!, which is explicitly given by

1

m0
E3B85

1

4
sv2RB0

2r @R sin f r̂1~R cosf

12r !f̂#sin f, ~52!

such that the divergence of the Poynting vector is

div N5 1
4sv2RB0

2~R12r cosf!, ~53!

which coincides with the expression2E–j , as required by
the energy conservation. Outside the battery,r .a, the Poyn-
ting vector is

N5
1

m0
E3B85

1

4
sv2a4R2B0

2 sin f

r 3

3~sin f r̂2cosff̂!, ~54!

and we also can check that, in this region

div N52E–j52
1

4
sv2R2B0

2 a4

r 4 . ~55!

Finally, it is easy to check that the flux of vectorN
through the lateral surface of the cylinder of radiusa exactly
matches the powerP. dissipated by the Joule effect in th
outer region.

V. COMMENTS AND DISCUSSION

Wiedericket al.1 consider the case where the applied ma
netic field is uniform and of valueB0 within a rectangular
region of sidesl andw. The magnet is sufficiently far awa
from the axis of rotation to consider that the veloci
throughout the rectangular region is uniform. Also, this
gion is sufficiently far from the disk border to permit one
assume that the disk is of infinite radius. With these assu
tions, they obtain by an approximate method that the brak
force is

F52ashvRB0
2lw ŷ, ~56!

where

a5
1

11R. /R,
, ~57!

and R, and R. are the resistance of the pieces of di
located, respectively, inside and outside the external m
netic field.

It is to be remarked that this coincides with our express
~44! if we take for R. and R, the values~48! and ~49!,
respectively. However, our definition ofR. and R, and
the geometry of the region where the magnetic field is
fined are different from the ones given in Ref. 1.

Marcusoet al.5 consider the action of a nonuniform mag
netic field of cylindrical symmetry confined to a circular r
855Aguirregabiria, Herna´ndez, and Rivas
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gion of radiusa as in our model~1!. When the border effects
may be considered negligible and the velocity at all points
the magnetic field region is uniform,v5vR, our expression
~28! for the braking forceFy equals their expression~50!. If
the velocity is not uniform, our expression~26! for the torque
differs from their expression~43! in a constant term tha
Marcuso et al. consider negligible in their experimenta
setup. They give no expression for the border effects.

In the particular case where the external magnetic fiel
uniform and has valueB0 for r<a, but the influence of the
border is not negligible, expression~35! reduces to

M52
1

2
shvR2pa2B0

2 S 12
a2Rd

2

~Rd
22R2!2D , ~58!

which is precisely the value given by Smythe3 for this case.
It should be stressed that our expression~35! may be used
not only for this case but also for any external magnetic fi
with cylindrical symmetry inside the disk provided it van
ishes forr .a.

In our approach, we have not taken into account the in
ence of the magnetic fieldB8 produced by the induced cur
rents in the disk. This is equivalent to consider that the
plied field B0 is such thatBmax8 !B0. From ~50!, this is
equivalent to

v!
2

m0sRa
. ~59!

For a copper disk (s55.743107V21 m21) of radius R
5100 mm anda510 mm we getv!27.75 rad/s. This re-
quirement was satisfied in the experimental setup of Marc
et al.6
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