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The braking force acting on a conducting disk rotating under the influence of an external magnetic
field of axial symmetry is calculated in a quasi-static approximation and the role played by the
charge distributions induced in the disk is shown. The two cases of infinite and finite radius are
considered to analyze the influence of edge effects and we obtain a general expression for the
braking torque when the magnetic field has axial symmetry. The particular case of a uniform
external magnetic field is used to show the working of a simplified model of a cylindrical battery.
Analytical results are compared with those obtained by other authora.99®American Association of
Physics Teachers.

I. INTRODUCTION Border effects are computed in Sec. Ill and we compute a
general expression for the torque that reduces to Smythe’s

It is well known that, when a conductor is moving in a expressionsin the particular case in which the magnetic

stationary magnetic field, electric currents are induced withirfield is uniform. In Sec. IV a model for a cylindrical battery

it and dissipate energy by the Joule effect. This loss of enis proposed and we make some general comments in Sec. V.

ergy manifests itself by the existence of a force on the body

that produces a braking of the motion. This force is produced

by the action of the external magnetic field on the induced!. INFINITE DISK

currents. Though this effect is the basis of some technologi- . . L .
cal applicationd, most textbooks on electromagnetfsei- Let us consider a disk of conductivity and large radius

ther do not mention this subject or discuss it only at a qualiRd which is rotating around a perpendicular axis passing
tative level or as suggested problems. One exception is thi@rough the pointO’. There is an external perpendicular
book by Smythé€, in which a quantitative analysis can be magnetic field of axial symmetry applied around the p@nt
found. which is located at a distand® from the rotation axigsee
Wiederick et al! analyzed in detail the motion of a thin Fig. 1). Inside the disk, the applied magnetic field vanishes
aluminum disk of very large radius rotating in an almostoutside a circular region of radiis not necessarily small.
uniform magnetic field of rectangular cross section. Later, we will choose a coordinate system arouddin such a
Heald' improved these calculations by suppressing the eafyay that thexO'Y plane coincides with the middle plane of
lier hypothesis that the induced current is uniform in thethe disk. LetB(r,Z) be an external applied magnetic field of

rectangular “footprint” of the magnetic field. e
. cylindrical symmetry. It can be represented as
Marcusoet al>°® made use of a method of successive ap- y y y P

proximations to solve Maxwell's equations in order to com-  B(r,z)=B,(r,z)i +B,(r,2)z, 1

gu;?att?f g)r(?lefmglf?qrgre]u?]?f;rftﬁglgng'ﬂsck Eg%er#]i ag:;?(?ngflvheref and z are unit vectors in the radial direction and

torque was compared with the experimental results for diskgllong the OZ axis. In the cyhndncal cqordmatesr @)

of aluminum and copper, obtaining very good agreement ex2roundO, the velocity of a point on the disk appears as

cept near the disk border. Cadweilas recently analyzed the v=w[R sin ¢f + (R cos ¢+ r);/,], 2

effect of magnetic damping on an aluminum plate moving on .

a horizontal air track as it passes between the poles of where ¢ is azimuthal unit vector.

horseshoe magnet. In the laboratory frame, where the magnetic field is at rest,
Related works are those of Sasfoand MacLatchyet al,’  the magnitude of the angular velocity, is considered con-

who calculated, among other things, the braking force actingtant, in such a way that we can assume that the problem is

on a magnetic dipole falling inside a cylindrical conductor. quasi-static. In particular, the current density satisfies the fol-
The aim of this paper is to study the braking effect on alowing conservation law:

thin conducting disk rotating in an external, static, nonuni- divi=0 3)

form magnetic field. This is done in the quasi-static approach J=4

and in the reference frame where the electromagnet that gen- As we shall discuss in detail in Sec.[gee Eq(59)], we

erates the magnetic field is at rest. We want to simplify andare also assuming that is small enough to warrant the va-

generalize previous calculations and to emphasize the roléity of our first-order approximation.

played by the charge densities that arise within the material. Since the material satisfies Ohm’s law and in the quasi-

The induced currents may be explained in terms of a circuistatic approach the convective terms can be neglected, we

with an electromotive forcéemf) source connected to a re- have

sistor. In this case, the nature of the nonelectromagnetic . _ (E+vxB) (4)

force and the crucial role of the induced charge distributions 1=

are easily understood. and the continuity equatiofB) implies the presence inside
In Sec. Il we study the case of the disk of infinite radius.the disk of a charge density given by
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The structure of the right-hand sidehs) in (12) suggests
using the ansatd/(r,¢)=a(r)cos¢+p(r), which effec-
tively separates this equation into two linear ordinary differ-
ential equations:

1d da(r)| 1 B RdB(r) 13
rar " Tar | eTeR—g a3
1d dg(r) 1d_,
Fa[r dr =w Fa[l’ B(r)]. (14)
Since both equations are of the Cauchy—Euler type, they can
be solved:
C2 wR r
a(r)=C1r+T+Tf uB(u)du, (15
0
Fig. 1. Rotating disk and the coordinates used in different calculations. The _ r
influence area of the external magnetic field is the ciretea. B(r)= CstCy Inr+ wfo uB(u)du. (16)
The integration constants,, C,, C;, andC, are readily
p=¢€g div E=— ¢y div(vxB)=—¢yB-(curl v) computed by using the conditions that the potential is regular
atr=0 and vanishes for—o. The final result for the po-
=—269wB,(r,2), ®)  tential is

where use has been made of the fact that inside theBlisk Rcosg+r (r
sourceless: cuB=0. We are also assuming that the electric V(r,p)=w —— j
permittivity and magnetic permeability of the material are r 0
those of vacuume, and uq. (17)

To analyze the braking effect, we have to compute theThe uniqueness theorem guarantees that this is the only regu-
electric fieldE inside the disk. In the quasi-static approxima- |ar solution of the two-dimensional Poisson’s equatitg)
tion the electric field is conservative,= —gradV, and the  that goes to zero asapproaches infinity.
potential satisfies Poisson’s equation, that in cylindrical co- To write the solution in a more convenient way, we will

uB(u)du—wfoau B(u)du.

ordinates is written as follows: use the vector potential in the Coulomb gauge. By using
19 V1 182V gV p(r,b,2) B=curl A and the field symmetry given b§L0) and(11), it
rrriLrT +r_2(9752+?:_e—0' (6)  is easy to see that=A(r) ¢ with

Since we are assuming t_hat the_ disk is very thip, A(r)=£ fruB(u)du. (18)
=o0(E,—v,B;)=0 and, by using again cuB=0, we get rJo

9*V JE, B, B, In consequence, the potentidl7) takes the form

92~ ez ez U4ar @ V(r )= w(R cos b+ 1)A(r) — waA(a). (19)
and, rearranging terms in the expression VoW, Notice that forr>a the magnetic field vanishes, the vector

19 V1 1 92V 9B, potential is

cor r;+r—27¢2=2w82+v¢ pral (8) aA(a)

From now on, we shall use the hypothesis of a very small Alr)= r’ 0
disk thicknessh to keep only the lowest order in an expan- 5nq the potentia(19) can also be written in the following
sion in powers oh. In consequence, we will have form, which shows explicitly its dipolar nature foe>a:

V(r,¢,2)~V(r,¢)=V(r,¢,0), €) cos ¢
B,(,2)~B(r)=By(r,0), (10 V(r ¢)=wRaA@) ——. @D
B,(r,z)~B,(r,00=0. (11 Since the total magnetic flux through the disk surface is

2maA(a), the quantityaA(a) and the expressiond9) and
(21) are independent &, as far as it is large enough to have
B(r)=0 forr>a.

The components of the current dengily are easily com-
puted by using Eq92) and (19):

In the last expression we have assufndtht the planez

=0 has been chosen to haBg(r,0)=0. In this approxima-
tion the dependence on threvariable may be ignorddand

we get a two-dimensional equivalent problem:

1o avirg)] 1 PV(r,¢) A(r) dA(r)

roar ar 12 92 jr=owR——00s¢, ]s=—0wR—5—sing.
_ g B0 1d g 12 (22)
=oR =g coséte g BN 12 gince Eq.(18) may be written as
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dA(r) A(r) This potential satisfies Laplace’s equation. To make its radial
a T (23)  derivative vanish when’ =Ry, for all values off, it seems
natural to add a term with the same (6) structure but with
we see from(20) and (22) that forr>a, where there is no (ifferent constants:
magnetic field, the current density decreases g& 1/
The torque exerted by the external magnetic field on this V(r’ 0)=B
current density, '

B(r)=

r' cosd—C
r'24+C2—2Cr’ cos6’

(31)

M= f O'Px(i xB)d° 24 This term will automatically satisfy Laplace’s equation in the
B (IxB)d, (24 region r>a, and the conditiond(V+V)/dr'=0, for r’
is perpendicular to the diski=M2, and this component is _ 1 IS fulfilled if and only if we takeB=—wCaA(a) and
given by C=R3/R. An analogous ansatz was made by Smytte
compute the magnetic scalar potential.
_ Coain A o 3 The result we have just found and the uniqueness theorem
M f [R(j sin &=]; cos¢)=rj IB(rdx, (25 show that to take into account the edge effects the potential

(19) must be corrected by an additional term that after using

30 . .
whered*x=r dr d¢ dzis the volume element of the disk. transformation29) appears in the form:

After performing the integrals iz and ¢ and making use

of (23), we get V(r,¢)=—wR%aA(a)
a 2
M= —mhszf rB(r)dr, (26) o« Rr cos ¢—(Rg—R?) 32
0 R?r?+ (R5—R?)?—2R(R5—R?)r cos ¢’

In a similar way, it is easy to see that the force exerted by the

external magnetic field on this current density, For the same reason, one has to correct the braking torque

(26) with the following additional term:

F=f i xB d3x, 2 —~ sin ¢ oV oV Y,
: @) Mz—af ( r¢£—cos¢y>—r58(r)d3x.
is perpendicular to the radilR, i.e., F=Fy, with (33)
a . . . . .
__ 2 If one substitutes expressi@@2), the integrand is a rational
F mrhwao rB(rydr. (28) expression in cog and sing. After performing the integrals

We see that, as a consequence of the symmetry of the ma'g?— z and ¢ one gets

netic field, we have simpl=RxF, as if the total force - R?R3 a
was applied at poinD, instead of throughout the cylindrical M=2mohwaA(d) —7——73 f rB(r)dr, (34
region r<a (Rg—R%)™ Jo

and by using Eqgs(18), (20), and (26) we finally get the
lIl. BORDER EEFECTS general expression for the total braking torque if the external
magnetic field has axial symmetry:
éJn;n(il nfowfto neglt(ejct the ed%e e;feilcts, we havr:-:- ﬁonsidered A 22R2
a disk of infinite radius. In what follows, we shall assume v 2 2 _ d
that the radius is finite and satisfies the conditRg=R M*M==moheR Jo ® (r)dr[l A (Rﬁ—Rz)z}’
+a, which guarantees that the applied magnetic field van- (35

ishes along the disk edge where the potential will satisfy, o4 is a dimensionless coefficient that measures the pro-
Laplace’s equation. Under these assumptions, the char

density is still given by Eq(5) and, as a consequence of theqﬁ!e of the external magnetic field:

superposition principle, the potential will be the sum of the 2[[§rB(r)dr]?
solution (19) of Poisson’s equation and a solution of = m-
Laplace’s equation. The physical condition that will fix this 0
unique solution to the problem, is that the component of therhis coefficient is a functional oB(r) and takes values in
current density in the radial direction of the digk, equiva-  the range between 0 and 1. For instance, its maximum value
lently, the radial derivative of the potentiatanishes at the is 1 and is obtained for a uniform magnetic field profile,
edge. while it equals 2/3 for a linearly decreasing field and its
To take advantage of the symmetry of the new problem,, e s 3/4 for a magnetic field of parabolic shape. Its value

we will use cylindrical coordinatesr (,6) around the disk g ¢ if the total flux of the magnetic field through the region
centerO’ (see Fig. 1. They are related to the coordinates ;<5 is zero. In consequence, for any magnetic field with

(r,¢) by the equations axial symmetry, the torque increasesRfsfor small values

r cos¢=r' cosf—R, r sing=r’ sing, (290  of R but near the border this parabolic increasing trend is

. . . modified by the last term i(35). This behavior is shown in
and the potential21) appears for>a, and in particular Fig. 2, fora/Ry=0.05 andA =1

near the border, as follows:

(36)

In this case of a finite disk, the total braking force is also
r' cosf—R perpendicular to the radiuR and given byF+F=(M

v(r',0)=wRaNa) r'’+R°—2Rr' cos " (30 +M)/R, as can be seen after a straightforward calculation.
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Fig. 2. Total braking torque foa=0.05R;, A=1 and different values of
R. The vertical scale is arbitrary, because there is a proportionality coeffi-
cient depending on the disc and magnetic field properties.

In the experimental setup of Marcustal,>® a/Ry=0.3 Fig. 3. Some current lines inside the disk f@ B=B,, a=0.3R,, and
or larger, which prevents us from using our calculations torR=0.6r,; (b) B=B,, a=0.3Ry, andR=0.2Ry; (c) B=6Bo(1-r/a),
explain quantitatively the decreasing trend of the torque neas=0.3R;, and R=0.6Ry; (d) B=6By(1—r/a), a=0.3R;, and R
the border, because then the footprint will encompass the0.2Ry.
border and the cylindrical symmetry inside the disk will be
broken. However, the tail of the displayed curve may explain
qualitatively the decreasing of the torque near the border that ) ) )
they observed experimentally but could not explain, everidentify the nonelectromagnetic fordg because its role is
qualitatively, with the analytical expression they obtained. played by the vectovxB, which happens to be nonuniform
To test that behavior more accurately, magnets of veryn this case.
small radiusa must be used and try to close the magnetic To simplify the following discussion, let us consider the
field lines outside the disk in order to make the magnetic fludParticular case in which the disk radius is infinite and the
through the regiom=<a, and thus the parametdr, as large external magnetic field is constant and uniform in the region
as possible. r<a and vanishes outside it:
By using expression&b), (19), and(32) we may compute
the current densityinside the disk. In Fig. 3 we have plotted B=
some current lines in the cas®@Ry;=0.3 and for R/Ry
=0.6, and 0.23, using a computer progréhin (a) and (b) In this case the potenti&l9) is
we consider a uniform magnetic fie(8=B, for r<a) and
we see that when the border effects are negligible the current _
. - . S ? V(r,¢)—[ 1 5
is uniform inside the magnetic field footprint<a. If the swBgRa’(cos¢/r), for r=a.
magnetic field profile is triangulaB=6By(1—r/a), we ob- (39
tain the plots(c) and (d). Now, inside the circler =a the
current is not even approximately uniform, but outside it ha

Boz, for r<a
0, for r>a.

(37

twBo(Rr cosgp+r2—a?), for r<a,

sThe electric field and current density are, respectively,

exactly the same value as that in the case of the uniform —1wBy(R cos¢+2r), for r<a,
magnetic field, because for-a the potential and the current El(r.d)=1, ) ) _ (39
depend only on the total magnetic flux and we have chosen swBoRa*(cos ¢/r?), for r>a;
the constants in order to have the same flux in both cases. L )
Notice that field lines in Fig. @) and(b) have a discontinu- E _ | 2wBoRsin ¢, for r<a, 40
ous normal component at=a que to the existence.of a o1, $)= 1wBoR(a%/r?)sin ¢, for r=a;
surface charge density distribution induced by the disconti-
nuity of the magnetic field. _ 1owByR cos¢, for r<a,
Jl’(rld)): 1 2 2 . (41)
sowBgRa‘(cos¢/re), for r=a;
IV. A CYLINDRICAL BATTERY 1 .
] —s0wBgR sin ¢, for r=a,
Saslow! analyzed a spherical battery that produced a uni- Jolr d)= lrwBoR(a@¥r?)sin ¢, for r=a. (42)

form nonelectromagnetic force per unit chafgesuch that

in the interior of the battery the current was given dE Since the magnetic and electric fields are discontinuous at
+F). Since there are induced currents, we may consider the=a, in addition to the volume charge density) which

disk analyzed in previous sections as a circuit in which theeduces in this case to the constant valgér,d)

emf is supplied by a cylindrical battery of heightand ra- =-2eywB,, there exists a surface charge density in the
dius a located aroundO. In our case, we may explicitly cylinder lateral surface=a, given by
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o(a,9)=¢€lim[E,(a+ 5,¢)—E,(a—7,¢)] Let us callE’ the electric field induced by', which

7—0 satisfiesV XE' = —¢gB'/dt=0. The lowest order terms in the
= e,wBy(R cos ¢ +a). (43) Poynting vector for <a will be
The braking force and torque acting on the disk are ac- N= 1 ExB+ 1 ExB’+ 1 E’'xB. (51)
cording to(26) and (28): Mo Mo Mo
F=— %mrhwRang, M=RF. (44) The ;irst_term is linear inw, while the oth(_ar two are of order
of w*. Since the curls oE, E’ andB vanish, the only non-
The power of the electric force inside the battery<@) vanishing divergence dil comes from the second term on
and outside it (>a) is the rhs of(51), which is explicitly given by
1 1 L, .
- i — = 2 _ —
P<= ﬁigE-deX— * 7 mohw?R%a?Bj. (45 o ExB 42 7@ RBgr[R sin ¢r +(R cos ¢
Of course, the total power of the conservative electric field is +2r)¢lsin ¢, (52
zero. On the other hand, the power supplied by the battery igych that the divergence of the Poynting vector is
1 iv N=%0w’RB3(R+2
P = f (vXB)-jd%= 5 mohw?R?a%B}, (46) div N=300"REy(R+2r cos¢), (53
r<a

which coincides with the expressionE-j, as required by

which is the loss of kinetic energy per unit time of the disk the energy conservation. Outside the batterya, the Poyn-
or, alternatively, the mechanical powerM w produced by tNng vector is

some external agent to maintain the disk rotating with con- 1 1 , Sin ¢
stant angular velocity. N=—ExB'=7 ow?a*R%B] =
The total current supplied by the battery is Ko A .
X (sin ¢r—cos ¢ ), (59
I= Lj -ds=chwRaB, (47)  and we also can check that, in this region
1 a*
where the integration surfac®is, for instance, the cylinder div N=—-E.j=— 7l awZRZBS s (55

cross sectiorfr <a, ¢= = /2), or the upper half of its lat-
eral surface(r=a, — w/2<¢$=<m/2), the outer part of the  Finally, it is easy to check that the flux of vectd
battery(r>a, ¢=*x/2), or any other convenient surface. through the lateral surface of the cylinder of radausxactly
The result is, of course, independent ®fbecause of the matches the poweP-. dissipated by the Joule effect in the
conservation law3). outer region.
Since the current is spread through the volume of the disk,
we cannot use the_usual_ definition of resistance as an integrel_ COMMENTS AND DISCUSSION
along the conducting wire. Furthermore, we cannot use the
expressionzZ.=V/| to define the external resistance of the Wiedericket all consider the case where the applied mag-
circuit, because our battery does not have two clear poles tgetic field is uniform and of valu@, within a rectangular
define V. Nevertheless, it seems reasonable to use the E)ﬁegion of sided andw. The magnet is Sufﬁcient]y far away
pressionP=122 to define the external resistance of thefrom the axis of rotation to consider that the velocity
“circuit” as follows: throughout the rectangular region is uniform. Also, this re-
_ ion is sufficiently far from the disk border to permit one to
=P 12=ml4ch. (48) gssume that the )(gisk is of infinite radius. With Fi)hese assump-
In a similar way, we may define the internal resistance of thdions, they obtain by an approximate method that the braking

battery by the relation force is
2 ~
Te=(P-+Py)/12=mlAch, (49) F=—achwRBylwy, (56)
which has the same value as the external resistance. where
The energy balance may also be performed in terms of the 1
Poynting vector. Because the current den$it$) and (42) =T (57
To .72 -

has noj, component angl, andj , are functions independent 7 7 _ _ _

of z, the corresponding vector potential has the foivh ~and .- and.7%. are the resistance of the pieces of disk
=Ar’(r,¢)F+A<’ﬁ(r,¢) (}) so that these induced currents gen_locateq, respectively, inside and outside the external mag-
erate inside the disk a magnetic fiel® =V xA’ netic field.

p . . — It is to be remarked that this coincides with our expression
=B’(r,#)z, with a single nonvanishing component along 4

4) if we take for.%2~ and.7%_ the values(48) and (49),

OZ given by respectively. However, our definition of2. and.7Z_. and
1 : < the geometry of the region where the magnetic field is de-
) 200 @R Byl SIrT ¢, forrsa, fined are different from the ones given in Ref. 1.
B'(r,¢)= (50) Marcusoet al® consider the action of a nonuniform mag-

. R , Sin 1) ; _
3 ac——, for r=a. e e . ;
200 wR By r netic field of cylindrical symmetry confined to a circular re-
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