Surface charges and energy flow in a ring rotating in a magnetic field
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An ohmic ring that rotates with constant angular velocity in an external uniform magnetic field is
considered as a simple model for a current generator. Under the assumption that all quantities vary
slowly in time, the lowest-order approximation to the surface charge density is found. The flux of
the Poynting vector through the loop surface is also computed. Unlike in the examples that are given
in textbooks, this flux is not always incoming: It has the outgoing direction around the loop parts

where the electrons are moving against electrostatic forces.
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1. INTRODUCTION

The surface charge distributions on conductors carrying
steady currents have been analyzed from both the theoretical
and the experimental point of view."? In general, these sur-
face charges have a twofold task: They constrain the charge
carriers to move along the wires and they contribute to make
sure that the current is the same in all sections of the circuit,
even in those points where there is no other force acting on
the conducting electrons. This last aspect has been exten-
sively analyzed for stationary currents in infinitely long
wires.>"!° The analysis of the surface charge density has also
a pedagogical interest because it is the link between electro-
statics and electric circuits. Furthermore, the surface charges
produced on the circuitry can damage the electronic
equipment.'® Nevertheless, only a few complete circuits have
been considered in detail, the reason being probably the
computational difficulties that arise in such a study. Heald”
considered a couple of infinite circuits. Later, the present
authors?! analyzed in a first-order approximation the surface
charge density on a squared loop located in a magnetic field
varying linearly in time. In that example, the surface charges
were needed only to guide the electrons along the loop. More
recently, Saslow?” has considered in detail the surface
charges of a circuit in which a spherical battery is embedded
in an infinite conducting medium.

In this paper we calculate the lowest-order approximation
to the surface charge distribution on a circular loop which is
rotating in a uniform external magnetic field. Unlike in the
aforementioned examples, in this case the current is (slowly)
changing in time and the surface charges are necessary both
to guide the electrons and to establish the same current in-
tensity everywhere.

On the other hand, different textbooks>>** show that the
flux of the Poynting vector entering a part of the circuit
exactly balances the power lost there by Joule effect. Heald”
has analyzed several elementary models in order to clarify
the essential features of energy flow in circuits involving
electromagnetic inductions. He has stressed the difficulty of
calculating the electric field and Poynting vector in circuits.

Since the ultimate source of the power lost in a resistance
is a battery or another source of e.m.f,, it would be interest-
ing to show explicitly the flow of the electromagnetic energy
from the battery to the conductor where it is dissipated. We
use the aforementioned system as a simple but plausible
model for an alternating current generator, in which it is
shown that the electromagnetic energy flows from some
parts of the circuit to the remaining ones.

The problem is described in Sec. II while Sec. III is de-
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voted to the explicit calculations of the surface charge den-
sities under the appropriate assumptions. In Sec. IV the
Poynting vector field is computed and the energy balance is
performed.

II. THE CIRCUIT

Let us consider a circular loop made of ohmic material of
resistivity 7. We shall assume that the radius a of its cross
section is much smaller than the loop radius R. '

The loop is rotating inside a uniform magnetic field B with
a constant angular velocity w around a diameter perpendicu-
lar to the external magnetic field B. This diameter is taken
along the OZ axis in Fig. 1.

The induced e.m.f. is given by

dd
&=— —=—-7R’K+0(e),
dr

All the approximations throughout this paper will be ex-
pressed in terms of the small parameter e=a/R <1, and only
lowest order contributions will be kept.

The magnetic flux is considered positive if the external
magnetic field B has a positive projection in the positive
direction of the OX axis. According to the usual convention
we will say that the current is positive when it flows in the
direction of increasing ¢.

If the wire resistance is .%, the current in the loop is

= & ma’RK

TR 27

and when K>0 it will be negative and will flow against the

positive direction depicted in Fig. 1. To write down Eq. (2)
we have assumed that w is small enough to have

K=wB cos wt. (1)

+0(e) (2)

2mc

R<—=\, €)
where A is the wavelength of an electromagnetic wave of
angular frequency w. In this way, we can assume in a first
approximation that the system is quasistationary.

The lowest order of the current density inside the wire is
uniform and equal to j=—KR/2%n+O(€). According to
Ohm’s law, the net force per unit charge acting on every
charge carrier is

F_ 1KR+O 4)
;—77]— 2 (€)

and points along the wire direction. On the other hand, by
using the electric field E inside the conductor and the exter-
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Fig. 1. An ohmic ring is rotating inside a uniform external magnetic field B
with constant angular velocity w around the OZ axis. Diagrams on the right
display the ring and a top view showing the relative position of the magnetic
field with respect to the ring plane. The left picture represents its cross
section, at a different scale. The two set of coordinates, (x,y,z) and (p,6,¢),
are also shown, where n is the unit vector toward the center of the ring.

nal magnetic field B, we can express this force as follows:
F
“‘1* =E+vXB. 3)

In our first-order approximation, we neglect in expression (5)
the magnetic field created by the induced current and con-
sider that the velocity v is due exclusively to the ring motion.
To go beyond this approximation we should take into ac-
count the motion of the electrons inside the wires, which
would give new contributions to both factors in the last term
of (5) through the Hall effect and through the (small) mean
velocity of the electrons.

II1. SURFACE CHARGE DENSITY

To simplify the analysis we shall consider a given but
arbitrary instant of time and locate the laboratory frame in
such a way that the ring is contained on the YZ plane at that
instant of time. The Z axis is chosen in the direction of the
angular velocity and the magnetic field B lies parallel to the
XY plane (see Fig. 1). We shall also use a second set of
orthogonal coordinates, (p,8,¢), defined as follows:

x=r sin #=€eRp sin 6,

y=(R—r cos #)cos ¢=R(1—ep cos #)cos o, (6)
z=(R—r cos 6)sin p=R(1—e€p cos #)sin ¢.

These equations define a pure mathematical transforma-
tion and not a change of reference frame. Angle ¢ character-
izes each cross section of the ring and the points of a given
cross section are described by their polar coordinates (r,6)
(see the left most picture of Fig. 1). The radial coordinate r is
written in terms of the wire radius a and the dimensionless
variable p, r=ap. Vector n is the unit vector directed toward
the ring center O.

The ohmic material lies inside the region 0<p=1, while
p>1 represents the outer part of the ring. The above trans-
formations (6) are not globally invertible. For instance, all
points of the ring’s symmetry axis belong to every cross
section and thus ¢ is not defined for them. Even more, cross
sections corresponding to the values ¢ and ¢+ are exactly
on the same plane, so that every point of this plane has a
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double representation in terms of these coordinates. This dif-
ficulty is easily avoided by restricting transformations (6) to
a tube surrounding the ring, of radius less than R.

To have a self-consistent perturbation scheme we will fur-
ther restrict the transformation equations to the neighborhood
of the tube: We shall always assume that p is of the order of
the unity in an expansion in powers of e. Notice that, in
particular, points close to the ring center O correspond to
values p==1/€ and lie, in consequence, outside the domain of
validity of coordinates (p,6,¢). The analysis will be valid
only near (or inside) the ring.

As depicted in Fig. 1 the vXB vector lies on the YZ plane,
and its modulus is vB cos wt, where v=wR cos ¢ is the
velocity of the corresponding cross section. In coordinates
(p,0,¢) the vXB force per unit charge has the following com-
ponents:

(vxB),=—KR cos’ p+0(e),
(vXB),=KR cos ¢ sin ¢ cos §+0(e), @

(vXB)y=—KR cos ¢ sin ¢ sin 6+0(e).

According to (4), (5), and (7), the surface charges must nec-
essarily create inside the conductor the following electric
field:

E,=KR(cos* ¢—3)+0(e),

E,=—KR cos ¢ sin ¢ cos 0+ 0(e), ®)

E4s=KR cos ¢ sin ¢ sin 8+0(e€).

Notice that the longitudinal component of the electric field is
opposite to the current when cos® ¢>>1/2 and that the mag-
nitude of the field has a constant value KR/2.

In these coordinates the divergence operator is

1

V-E= eRp(l—ep cos 6)

[ (p(1—e€p cos O)E,)

((1 €p cos 0)Eo)+e (pEw)] ©)

and to lowest order in € is given by

J J
T (ap (pEp)+aaEe+0(e)), (10)

In this lowest-order quantity there is no ¢ contribution.

Calculation using Eqs. (8) shows that the divergence of E
vanishes inside the conductor, to order ¢, so that no volume
charge distribution appears inside the conductor at this low-
est order and thus it turns out that this internal electric field
will be produced by the surface charge distribution. On the
other hand, if we take into account the explicit form of the
gradient operator in these coordinates, the electrostatic field
should be derived from a potential V satisfying the following
conditions:

o 1 w__1av.
¢ R(1—ep cos 8) dp §3$+ (e),
1ov (11)
P~ €R dp’
4
%" €Rp 96"
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By putting V=V, + €V, +O(¢€?), it is easy to conclude
from (8) and (11) that the potential inside the conductor,
p=1,is

V=—iKR? sin 2¢(1—2ep cos 9+ eU(¢))+O(€?).
(12)

To determine the function U(¢p) we should go beyond the
lowest order approximation. Fortunately, we do not need it to
compute the lowest order of the surface charge density.

To find the electrostatic potential outside the conductor,
we note that Laplace’s equation reads as follows:

Viv= 6—211—27 [VIV+eViV+0(e2)]=0, (13)
where
V3V=li(p£)+—1faz—z (14)
pap\" dp| p°936°’
and
Viy= sin 6 i‘i—cos 9 v ) (15)
p a0 ap

In consequence the two lowest orders of the outer potential
must satisfy the following equations:

ViVo=0, ViV,=0, Viv,=0. (16)

Since V2V in (13) is precisely the two-dimensional La-
placian operator in polar coordinates, the general solution of
V2V=0 can be written as follows:*

o

V=(ag+byIn p)+ X, (ap "+b,p")
n=1

X (¢, cos n@+d, sin n6), (17

where a,, b,, ¢, , and d,, are arbitrary functions of the ab-
sent variable ¢. By assuming that the fields decrease with
distance outside the conductor, we conclude that 5,=0. On
the other hand, by using the continuity of the potential
through the conductor surface p=1 and the expression (12)
for the inner potential, it is very easy to see that the outer
potential is, for p=1,

V=—1KR? sin2¢[1—2(€/p)cos 6+ eU(p)]+O(€).
(18)

It can be easily checked that the condition ViV,=0 is
satisfied by both inner and outer potentials. Of course, ex-
pression (18) for the potential is valid only for e<1 at points
outside but close to the ring.

The surface charge density will be given by the jump of
the radial component of the electrostatic field:

T=¢& lim(Ep|p=1+5—Ep|p=1-5)
80

=~—8£1im(i‘i —i‘i ) (19)
€R 5—0 ap p=1+68 ap p=1-8
The result is

o=¢oKR sin 2¢ cos 8+0(e). (20)

Notice that o and the electric field £ in this lowest order
approximation are independent of the radius a of the cross
section and of the resistivity of the material, which appears
only in the induced current. It is easy to see by integrating
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Fig. 2. Field lines when €=0.05, of the extrapolated Poynting field N, on
the YZ plane. The Poynting field far from the ring, and especially near the
center, may be quite different from that shown here; see text.

expression (20) over the ring surface that the total charge on
the conductor vanishes.

IV. ENERGY ANALYSIS

The e.m.f. can also be computed from a microscopic point
of view, as the line integral of the force per unit charge
acting on the charge carriers:

, F
£= iadl— ffJC(E+va)-dl— i(va)-dl, 21

because the curl of the electric field vanishes in our approxi-
mation. This calculation leads to the expression (1) for the
e.m.f..

From (1) we see that the total power supplied to the mov-
ing charges and dissipated by Joule effect is

“I=1>%=mwKRI. (22)

Let us consider now a ring element of length di=Rd¢.
The external magnetic field exerts on it a force dF=I/dIXB,
so that to maintain its motion with constant angular velocity,
the total mechanical force in the direction perpendicular to
the ring is dF, =—dF and since this current element is mov-
ing at the speed v the external power supplied to this element
is

dF, -v=I(vXB)-dl=KR?I cos* ¢dp+O(e). (23)

This value is, of course, equal to Jd % where d£=vXB-dl
is the e.m.f. corresponding to this element. The contribution
of the conservative electric field to Eq. (21), E-dl, is respon-
sible for the change in the electrostatic potential of the
charge carriers when they traverse this element.

According to (22) the power dissipated by the Joule effect
in this element is

2 op g2 3P _ 1 2
FAdR=1"% s—=z KR*Idp+ O(e). (24)
2w 2
The Poynting vector
1 1
N=N1+N23 NIE_EXB9 NZE——EXBIs (25)
Mo Mo

can be easily computed on the conductor surface. In our
lowest order approximation, the magnetic field is the sum of
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the external field B and the usual azimuthal field
B;= pol/27r created by a cylindrical current. The contribu-
tion to the Poynting vector due to the external magnetic field,
N,, gives no net contribution to the power entering any
closed surface, because outside the currents creating B the
vector field N, is divergenceless.

As for the electric field, only its tangent component at
p=1 is necessary and it can be obtained from (18). The fields
contributing to the N, vector are E_ =KR cos2¢/2,
E,=—KR cos 2¢ cos ¢/2 and B¢=B;= uyl/2ma. The con-
tribution to the net flux of the term E B in the ring direction
vanishes. In consequence, the Poynting vector flux through
the closed surface d2 of this current element is given by the

E B, part:

1
3@ N-dS= f]g N,-dS= = KRl cos 2¢ de+0(e).
s ds 2

(26)

It should be stressed that according to this result the energy
is flowing out of the conductor for — #/4<p</4 and 37/4
<@<5m/4, while it is entering the remaining parts of the
conductor at exactly the same rate.

Comparing (23), (24), and (26), we see that the energy
conservation law holds locally: The external power supplied
to the element exactly balances the sum of the power dissi-
pated by Joule effect and the (positive or negative) electro-
magnetic power leaving it.

It would be interesting to draw the current lines of the
Poynting vector. Since the current lines of N; correspond to
a divergenceless vector field they are closed and give no net
flux through closed surfaces. In consequence, to ease the
understanding of the figure, we have omitted them. Unfortu-
nately we only know the vector N, in the surroundings of the
ring. To have a qualitative idea of the energy flow we have
constructed a new vector field by extrapolating the expres-
sion of N, to the whole plane. The field lines of this new
vector are then readily obtained by using a numerical
program?’ to integrate their differential equations and are
displayed in Fig. 2. They will approximate the field lines of
the vector N, at points close to the ring. Far from the ring
(and especially near the ring center) the true field lines might
happen to be very different from those depicted in the figure.
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