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Velocity fields inside a conducting sphere near a slowly moving charge
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Explicit expressions for first-order electric and magnetic fields created inside a conducting
sphere by a nearby slowly moving charge are given. They are found to be independent of the
sphere radius. On the contrary, outer first-order fields, which are also computed, depend on it.
The energy dissipation by Joule effect is calculated and shown to agree with the external
first-order work done on the charge to maintain its uniform motion.

L. INTRODUCTION

In most textbooks on electromagnetism the well-known
low penetration of electromagnetic waves inside conduc-
tors is discussed. However, no attention is usually paid to
the penetration of electromagnetic velocity fields, perhaps
because in most cases the charges creating them are far
away from the conductors, in such a way that velocity
fields are unimportant and only radiation fields matter.

But when charges are moving close to a conductor, they
produce a charge redistribution on the surface and currents
inside the conductor that react against the moving charges.
For instance, to test the weak equivalence principle for
antimatter, several experiments involving antiprotons, neg-
ative hydrogen ions, positrons, and electrons under the
influence of the Earth’s gravitational field are in progress in
different laboratories.! They are, in general, drift-tube ex-
periments in which a burst of particles and antiparticles are
emitted upwards or downwards and detected at the end to
show differences between particles and antiparticles under
the action of gravity. During the flight, particles are af-
fected by residual gas, radiation, gravity, driving electric
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and magnetic fields, and a frictional force due to the image
current in the nearby conductors. This image current is not
a surface effect but rather it is equivalent to a current
density distribution inside conductors that dissipates en-
ergy by the Joule effect. This has to be taken into consid-
eration to properly interpret the experimental results.

In another context, Boyer’ has suggested that the
Aharonov-Bohm effect implies the existence of classical
electromagnetic forces between charged particles and sole-
noids. These forces are a consequence of the electric and
magnetic velocity fields.

On the other hand dynamical methods to measure the
induced charge on conductors® are based upon the mea-
surement of the surface charge distribution produced by a
very close passage of charged projectiles. This surface
charge distribution, produced by internal currents induced
by the velocity fields, is not a skin-depth effect but an effect
on the bulk of the conductor.

Thus, it seems interesting to pay attention to the pene-
tration of velocity fields into conductors. In this context,
Boyer* has studied the first-order penetration of the fields
produced by a charge moving parallel to a conducting in-
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Fig. 1. Charge and image charges of the outer equivalent electrostatic
system.

finite wall filling a half-space. The shielding of the magnetic
field of a charge moving near a conducting surface has been
discussed by Furry.’ The relative importance of magnetic
skin effects in the case of a line charge moving with arbi-
trary velocity parallel to an infinite plane conductor has
been analyzed by Jones.

The aim of the present paper is to study a more realistic
situation in which all relevant quantities can still be com-
puted in explicit form. We shall consider the electric and
magnetic fields induced inside a conducting sphere by a
point charge moving at constant velocity in the radial di-
rection.

In Sec. II we consider the static situation corresponding
to the lowest order contribution. Electric field and poten-
tial are calculated in Sec. III to first order in the charge
velocity. Similarly, interior and exterior magnetic fields are
computed to the same order in Sec. IV while Sec. V is
devoted to the calculation of the energy dissipated inside
the sphere by the Joule effect and to check that the power
developed by the external force on the particle compen-
sates that energy loss. Finally, Sec. VI contains some com-
ments on the validity of our approach and on the func-
tional dependence of inner and outer fields on the sphere
radius and on the resistivity.

II. THE LOWEST ORDER FIELDS

Let us consider a point charge ¢ located at a distance x
from the center of an uncharged conducting sphere of ra-
dius a, resistivity 1), electric permittivity ¢;, and magnetic
permeability p, (see Fig. 1). The charge is moving along
the radial direction with constant velocity v=dx/dt. We
shall assume that v is small and proceed to analyze the
problem with the perturbative approach described in Boy-
er’s paper.* Every quantity (fields, potentials, charge, and
current densities) will be expanded in powers of v/c:

= 1 v\ hd 1 /v\"
=3 (C) f= B 1 1= (2)

J, being the nth derivative with respect to v/c evaluated at
v/c=0. We shall retain only up to terms of first order in

v/c, because as discussed in Sec. VI we expect them to give -

the only non-negligible contributions.

The lowest order fields correspond to the well-known
static case in which the charge is at rest (v=0). There is no
magnetic field, B‘” =0, and the electric field > vanishes
inside the conductor, the sphere being equipotential. Out-
side the sphere, E® is equal to the sum of the electrostatic
fields due to charge ¢ located at point x and two image
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charges q'=—gqa/x and ¢"=gqa/x placed at a distance
b=a*/x from the center and at center, respectively7 (see
Fig. 1). Furthermore, the surface charge density on the
sphere is obtained from the discontinuity of the electric
field and is given by

q g(x*—d*)
Amax  4ma(x*—2xa cos O+a*)/?"

90 = (1)

If the charge is now moving with small velocity, v=dx/dt,
the surface charge density is changing and there will ap-
pear inside the sphere a current density whose radial com-
ponent on the surface is given by the first-order continuity
equation

30® "

I =y =0 @)
and thus
g )P x4 x%a cos 0—5xa’+3a* cos 6 1
Jrtaf) =32 (x*—2xacos 0+a*)>* " x|

(3)

It is worth noting that we have assumed as in Boyer’s
work* that there is no surface current density because, due
to the ohmic nature of the conductor, it would imply a
singular tangential component of the electric field on the
surface that would be incompatible with the electric field
matching conditions. It turns out then that the change of
the surface charge density is the consequence of a volume
effect.

III. FIRST-ORDER ELECTRIC FIELDS

The second term of the electric field

JA JA
E=—grad ¢—E=—-grad ¢—v5)-c— (4)
is of second order in v/c, because cA4 is already of first
order. As a consequence, the first-order electric field E‘V
will be conservative (curl E‘")=0) and will be expressed in
the form E) = —grad ¢”) in terms of the first-order po-
tential ¢!’ that must satisfy Laplace’s equation.

Due to the axial symmetry and the finiteness of potential
at the origin, the solution of Laplace’s equation inside the
sphere has the following form in terms of Legendre poly-
nomials:®

$ial (rO)= 2 A,7"P,(c05 ). (%)

Thus the radial component of the interior electric field is
given by

a !1) o
Eg(r)=——3"=— % nd,""'P,(cos6).  (6)
r n=1
Under the assumption that the conducting sphere is ochmic
and has resistivity 7, we have E{)(a,0)=7;{"(4,0) on
the sphere surface, i.e.,
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EQ(a,0)=— 21 nd,a"'P,(cos )

qun (x3+x2a cos 0—5xa*+3acos 6 1 )

“4na (x¥*—2xacos 0+a*)2 X2
(N
Using the generating function for Legendre polynomials
1 - 1
f(Z,u)=m= 'Z.O 771 Pa(10), (8)
we get
*f a;f_z3+zzu——52+3u
2P a @
=2 T  hw. ©

By comparing Egs. (7) and (9) with z=x/a and u=cos 6
one can readily obtain

qun 2n+1)(n+1)
= —E—Wz——- for n>1. (10)
Since the coefficients A4, do not depend on a, we see from
Eqgs. (6) and (7) that both series have exactly the same
mathematical structure, and thus the sum of series (6) can
be obtained by merely substituting 7 for a in Eq. (7):

x3+x2r cos 0—5xr+3r cos 0

EW wn
i (x*—2xr cos +7r*)"*

rmt(r’e) =m

1
2|
(11)

Notice that we only need A4, for n>1, because the terms
between square brackets cancel for 7/x—0. As a conse-
quence, there is no 1/x? term and the field behaves as 1/x°
for large x.

The general solution of the partial differential Eq. (6) is

D (r,0) = — ngLi(r,e)mg(e), (12)

where the arbitrary function g(8) can be computed by
using the condition 4.} (0,8) =4, which follows from Eq.
(5). 4, could in principle depend on x, but if the sphere is
uncharged then 4,=0, as we shall see below when com-
puting the exterior potential. Taking this into account, one
gets for the potential inside the sphere (r<a):

qun (In(x*—xr cos 8+xz) —In(2x?) +3
¢i(nlt)("’e) = )

47 X

3x2—4xr cos 0+7
- = ), (13)
x
where

z= \x*—2xr cos O+ 7. (14)

One can check explicitly that this potential satisfies La-
place’s equation and the boundary condition for 9¢}})/dr
at r=0 given in Eq. (7). From Egs. (13) and (14) one can
easily compute the remaining component ES), of the elec-
tric field inside the sphere:

EQ(rn0) =

qu7 x2r(x2—97%)cos? O+x(57* + 10Px% +x*)cos O —r(r* +Px? +6x*) 0 5)
" 4mx°r sin 0 ( (x*—2xr cos O+7%)>"* —oos ) (
|
By using the condition that the potential vanishes at = B,
infinity, outside the conductin§ sphere the electric potential D)= 2 ST P,(cos 6) (16)

can be expanded in the form

Fig. 2. First-order current lines and equipotential surfaces inside the
sphere; equipotential surfaces close to the surface are not displayed.
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n=0
and the coefficients B, can be computed from the first-
order continuity condition ¢{(a,0) =6{})(a,8), which
gives B,=a*"*4, . The coefficient B, (and, thus, 4;) must
be null because the sphere is uncharged and, thus, in Eq.
(16) the 1/r term must vanish. So, one gets

. a 2 (12 n
¢<(=xt)(r’e)=; 2 A"(T) P,(cos 6). (17)
n=1

Recalling again that 4, does not depend on a, we see from

. Eqgs. (5) and (17) that

a 02
xt (10) == ¢{,}3(7 ,6). (18)

(Since ?-(nlt) is defined for r<a, the previous expression de-
fines ¢§xt for a*/r<a, i.e., for all r>a.)
The charge density on the surface can be computed as

the discontinuity of the normal electric field, o(08)=¢,
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[Epexi(a,0) —E,i(a,0)] by using Eq. (18). At order zero,
it is given by Eq. (1) while at first order one obtains, after
an easy calculation

oV (8) =€o(E'L) (a,0) —EL)(a,0))

=€ %¢§n‘3(a,e)—2E§;,’t(a,o) . (19)
The time derivative of this first-order density gives a
second-order contribution to the radial current density on
the surface. This could be used to compute second-order
fields, but as we shall discuss in Sec. VI one can expect that
they are absolutely negligible in all practical cases.

Current lines (and thus electric field lines) and equipo-
tential surfaces inside the sphere are drawn in Fig. 2, where
the number of current lines is proportional to the current
intensity. The difference of potential between adjacent
equipotential surfaces is constant but surfaces closer to the
charge are not displayed.

IV. FIRST-ORDER MAGNETIC FIELDS

As a consequence of the axial symmetry the magnetic
field has only a nonvanishing component, B=B,(r,0),
which does not depend on ¢. It can be computed by using
the first-order Ampére-Maxwell law

©
§ B -gr= f e
c s

2 IET)
Hal -#E: o ds.

Using as the integration surface S the spherical cap of
Fig. 3, which is concentric with the sphere and whose bor-
der C is a circumference defined by constant values or r
and 6, one gets

(20)

0)
E,

r 6 (1 v a
Ho J» (r,a)+;5 Ix

We—— | sina
0

sin 6

(r,a) |da.
(21

Inside the sphere EC)=0 and, so, there is no displacement
current. The flux of the ohmic current j{V =E{)/5 can be
easily computed from Eq. (11) to get

Fig. 3. Path and surface of integration for integrals in Egs. (20) and (21).

Hoqv
(1) —
B/ (r,0) —m cos @
x> cos 8—3x%r+3xr? cos —r°
- (x*—2xr cos 0+7*)>%

Outside the sphere, on the contrary, the only contribu-
tion comes from the displacement current term and the
Ampére-Maxwell law can be written in the form

(22)

v
2ar sin 0BLL) (7,0) =?% (D40’ +"), (23)
where @, ®’, and ®” are, respectively, the flux through §
of the electrostatic fields of g, and the two image charges ¢’
and ¢”. The flux corresponding to a charge g; located at a
distance d; from the center of the sphere along the segment
joining the latter with g can be computed using .S or any
other surface having the same border. (In fact, the disk
inside C or a spherical cap with center at the charge are
more convenient to perform this calculation.) The result is

q; rcos 6—d;
26 \/d,?——Zd,-r cos 0+7 |

Taking ¢,=q, d\=x, ¢;=¢'=—qa/x, dy=d"/x, g
=q" =qa/x, and d;=0in Eq. (24) and using Eq. (23) one
finally gets

@;

(24)

M Hogua x2 sin 0 X2 cos? 0—xr(x*P+3a*)cos 0+a*(2x*P+a*)
Bext (r,0)= . cos e+ 3/2+ 2 13372 (25)
47x*r sin 0 a(x*—2xr cos 6+7) (x*r* —2xa’r cos 0+a*)
f
It is easy to check from Eqgs. (22) and (25) that, in agree- aw E
ment with the assumption of no surface currents, the mag- 7 fj ‘EdV= f ? dav. (26)

netic field is continuous across the sphere surface 7=a. The
result in Eq. (25) was obtained by Furry® in the case of a
conductor in the form of a hollow spherical surface. Both
results agree because they are due to the same real and
image charges, but this is the only result that can be com-
pared with those in Furry’s work. For instance, the inside
magnetic fields will be completely different because in our
case there are currents in the bulk of the conductor.

V. POWER DISSIPATED BY THE JOULE EFFECT

Due to the Joule effect, inside the conducting sphere the
following power is dissipated:
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The lowest order of this expression is the second one

dW\® 27 ra 7
(W) =-n—fo f (B + B’y sin 6 dr db.
0
(27

By changing variables from (7,0) to (rz) with z=
Vx*—2xr cos 847, the integrand in Eq. (27) is a rather
lengthy but rational function. So, its integral can be per-
formed by hand or, better, by using any computer algebra
system. The result reads
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A (11x*—11x%a% +4a*)
(x*—a%)’

Y
(dt) T 4r A

(-2

Integration of this power over a finite time interval gives
rise to a first-order energy loss. To have the charge g mov-
ing with constant velocity, an external force of value —
gE,..(x,0) must be applied on it. The first-order contribu-
tion of the power of this external force is stored in the
electrostatic field in the form of potential energy while the
second-order term,

(28)

)

ext

or

supplies the energy dissipated inside the conductor by the
Joule effect. In fact, one can easily check from Egs. (13)
and (18) that this second-order external power (29) is
equal to Eq. (28).

If the charge is very close to the conductor the sphere
surface appears as a plane. If d is the distance to the sur-
face, putting x=a+d in Eq. (28) and taking the limit
when d/a—0, one gets

dw\?@ g’y
( dt ) T 8wd’’
in agreement with the result given in Ref. 1.

When the charge is far from the sphere the interior elec-
tric field is almost uniform and parallel to the charge ve-

—gEQ (x,0)v=qv (x,0), (29)

(30)

locity and when a/x—0, has the limit value
EYY)=EM cos 0 and E),= —E'V sin  where
3quy

(1) _

E Tomx’’ (31)
and the dissipated power in this limit is

dW\?D 3gvgad EV'Y ”

(7) B (32)

¥V being the volume of the sphere.

VL. FINAL COMMENTS

To estimate the convergence speed of the expansion in
powers of v/c, we can compare the induced dipole mo-
ments to orders 0 and 1. The charge distribution in Eq. (1)
has a dipole moment of value

3
o_ 12

p =—2

while the first-order dipole moment obtained from Eq.
(19) is

oy Savmed’
P =3

(33)

(34)

Their ratio is 67v/c, being r=n€yc/x. Since we assume
v/c€1, we expect that the dimensionless parameter 7 is at
most of the order of unity. For metallic conductors
(n~10~% Q m) this is true for distances x~10"° m or
greater. It turns out that we can expect that terms of order
higher than the first will be completely negligible in all
practical situations.

It is remarkable that first-order electric and magnetic
fields inside the sphere are independent of the radius q,
which is not the case for the exterior fields. On the other
hand, interior and exterior first-order electric fields depend
linearly on the resistivity 77 while magnetic fields are inde-
pendent of it.
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