V. CONCLUSIONS

It was shown that adding an insulating layer to an object
that is to be cooled in a much colder fluid causes the cooling
to be more rapid. This effect was demonstrated with a sim-
ple experiment, suitable for an undergraduate experimen-
tal course, and is due to the fact that the insulation causes
the surface temperature to be lower. This, in turn, causes an
anticipated change of boiling heat-transfer mode, from film
to transition or nucleate regime, and the subsequent in-
crease in heat flux which shortens the cooling period.

A critical thickness of insulation was defined which ap-
proximately gives the thickness of minimum cooling peri-
od. It was found to be in good agreement with the experi-
mental data.
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The subtleties in the derivation of the retarded Liénard-Wiechert potential for a point charge are
stressed by explicitly computing and drawing the retarded shape of a moving sphere. This shape is
the effective integration region for the charge density and it is computed, with the aid of the
“information collecting sphere,” in the limit of vanishing radius (or, equivalently, from the point

of view of a remote observer).

L. INTRODUCTION

The retarded scalar potential ¢(P,T), created at time T’
and position P by a charge density distribution p(r,?), is

given by’
sp =L JP"’T;R/C) av. )
0

Here, R is the retarded distance from P to the point r at
which the source was located at the retarded time
t=T—R/c

In the case of a point charge moving with constant veloc-
ity v, for given values of Pand T the retarded distance R has
a single value, say R, over the whole charge and the corre-
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sponding potential can be written as

1 R
PT)=—" — T — 2V,
¢(P,T) pry Jp(r T c)dV (2)

One is then tempted to substitute the total charge g for
the integral appearing in the last expression. This, how-
ever, would give us an incorrect result. By using the correct
value for that integral, namely

T ——dV = 3
fp(r c) (1 —PBcos B) )

one gets the Liénard—Wiechert potential:
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1
, . : (4)
ey, Ro(1 — B cos 8)
As usual f=v/c, and @ is the angle between the particle
velocity and the vector joining the charge retarded position
with the observation point.

Most undergraduate students have major difficulties un-
derstanding where the additional factor (1 — 8 cos ) '
comes from. In fact, one might think that it would be
enough to substitute R, for R in the integrand to compute
the integral (3). But this would give the wrong result be-
cause, unlike R, in the case of a point charge p is not a
smooth function and it must be modeled by a Dirac delta
function. The latter provides the fastest method to com-
pute the right value of the integral in (3).2 But the proof is
too advanced for most students, who see the magic of gen-
eralized functions as a marvelous but mysterious trick.

From a pedagogical point of view, it may be better to
start with a finite charge distribution whose size will ulti-
mately vanish. Then, it is often hard to convince the stu-
dents that, even when the charge distribution shrinks to a
point, the left-hand side of (3) does not represent the total
particle charge because the charge density in the integrand
is taken at different retarded times and, thus, (3) is not a
simultaneous integral. Even if the charge density is as-
sumed to be constant over the particle, the effective inte-
gration region [i.e., the region where p(r,T — R /c) is dif-
ferent from 0] is not the spatial region occupied by the
charge at a single instant of time.

It is worth stressing that in this approach taking R out of
integral (1) amounts to neglecting terms of the order of
a/R,, where a is the characteristic length of the considered
charge distribution. Of course, these terms vanish in the
limit @ —» 0. But the lack of simultaneity in the integral gives
rise to a zeroth-order contribution that survives to the pro-
cess of taking the aforementioned limit.

In order to compute (3), one can change variables to
have a simultaneous integral. This gives the factor
(1 —Bcosd) ! as the Jacobian of the transformation,
but the actual computation is a bit cuambersome. The most
elegant method we know of is the use of the “information
collecting sphere” in the textbook by Panofsky and Phil-
lips.? Related but far more restrictive methods are used by
Feynman, Leighton, and Sands* and Griffiths® in the case
of rather odd charge distributions (a cubic charge moving
directly toward the observations point, and a charged rod,
respectively).

The aim of this note is to provide an elementary and
more visual computation of the integral (3) by using the
“information collecting sphere,” but applying it (for an
arbitrary direction of motion) to the most natural starting
charge distribution. Surprisingly, this happens to be a rath-
er easy task.

II. THE RETARDED SHAPE OF A MOVING
SPHERE

Let us consider a charge which when at rest is a sphere of
radius @ much smaller than any other distance in the prob-
lem and has an uniform charge density p* = 3¢/4ma’>. For
an inertial observer who sees the charge moving with con-
stant velocity v, the simultaneous shape of the sphere is that
of an ellipsoid of revolution with two principal axes of
length @ and the third one lying along the direction of mo-
tion and having a length ¥~ 'a, with y = (1 — %) ~ '~
The charge density measured by the observer is yp*. With-
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Fig. 1. The intersection of the simultaneous shape of the moving charge
and the information collecting sphere collapsing towards the observation
point P (at which it arrives at time T?).

out loss of generality we can select the coordinates in such a
way that the charge center moves along the positive direc-
tion of the x axis and the observation point P lies in the x-y
plane. We can also choose ¢ = 0 to coincide with the mo-
ment at which the center of the charge passes through the
origin of coordinates attached to the observer. The situa-
tion is depicted in Fig. 1. The simultaneous shape of the
ellipsoid is then given by

Y x—v) +y +22=d" (5)

The contribution to integral (3) corresponding to a fixed
retarded time = T — R /c is due to those points r for
which the integrand p(r,¢) is different from zero. These are
the points at the intersection of the ellipsoid (5) and the
information collecting sphere given by R = c(T — 1) or,
equivalently, by

(x — Ry cos 0)2 + (y + Ry sin ) + 22 = (R, — c1)?,
(6)

with R, = ¢T. The trace of this intersection in the plane x-y
appears as an arc in Fig. 1.

Now if we keep in mind that we are interested in the limit
of a point particle, we have |x|, [y, |z|<a, c|t|Sa and
a <R, Thus, we only need the lowest-order contribution in
a/Ryto (6):

xcos @ — ysin 0 = ct. (N

Subsequently, the information collecting sphere collapsing
with the speed of light toward a center at the observation
point P becomes in this limit rather an “information col-
lecting plane” moving with the same speed in the observa-
tion direction, as depicted in Fig. 2.

The effective integration region, which has been called in
a different context® the “apparent shape” of the sphere, is
made up of the points satisfying Eqs. (5) and (7) for all
values of ¢. Of course, these points only exist during the
time interval in which the information collecting plane is
passing through the charge, i.e., when — 7,<t<¢,, with

to= (a/c)V(1 +Bcos8)/(1 —Pcosb).

In fact, we do not need this result because the retarded
shape can be directly obtained by eliminating ¢ between
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Fig. 2. The intersection of the simultaneous shape of the moving charge
and the information collecting plane moving along the observation direc-
tion.

Fig. 3. The retarded shape of the charge approaching the observation
point with 5= 0.8 and 8 = 30°.

Eqgs. (5) and (7). The result is then very simple and reads
as follows:

0 . 68\
1/2(1—Bcos@)(l—B)(cos;x—sm;y)

.0
+7/2(1—Bcosé’)(1+ﬁ)(s1n?x

6 2
+cos;y) + 2 =ad% (8)

It is now obvious that the retarded shape is yet another
ellipsoid with one principal axis of an unchanged length
a, = a, and direction OZ, and two other axes rotated by an
angle 8 /2 (independent of v!) around the z axis and having
lengths '

a,=y 'a/y(1 —BcosB)(1 —pB)
and

a,=v" 'a/J(1 = Bcos 6)(1+p),

as shown in Fig. 3. Thus the volume of the effective integra-
tion region in (3) is V=4/3ma,a,a;=4/37a>y~"/
(1 — B cos 8), and the integral in (3) can be now readily
evaluated:

R q9
T ——)dV = *f dV=yp*V=—21 |
Jp(r c) L v p (1 — Bcos 9)

(9
This result does not depend on the radius a of the model, as
corresponds to the limit case of a point charge.

The Liénard—Wiechert potential (4) is Coulomb-like,
but the retarded distance must be used and the effective
charge is the one corresponding to the same charge density
but extended to a different volume V.
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FEYNMAN ON STUPIDITY
“...we do not know where we are stupid until we stick our necks out.”

Richard P. Feynman [Quoted in John S. Bell, “Against ‘Measurement,’ ” CERN-TH-5611,/89
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