V. CONCLUSION

Since most problems that the students have encountered
in their physics studies during their introductory courses
have nice closed-form solutions, many of the students are
impressed by the fact that even the “theoretical solution”
requires the use of a computer for calculation. They find
strong agreement between their finite difference method,
which is easy to understand and the Fourier series solution,
which at this point in their education seems to come from
out of the blue. For all involved, the use of the liquid crystal
to explicitly and graphically show the temperature con-
tours supplies the necessary physical basis that makes this

learning experience a success, and it is the judgment of this
author that this laboratory exercise has elements that ap-
peal to all levels of student competence.
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In order to constrain electrons to move along ohmic conductors carrying steady currents, there
must be a surface charge density that is usually very difficult to calculate. An approximate
analytic expression for this surface charge density on a conducting square ring is presented here
where the only source of emf is a changing external magnetic field. The corresponding electric
field is determined and it is checked that the energy balance for this system holds.

1. INTRODUCTION

The hypothesis of null cross section of a closed conduc-
tor carrying a steady current implies the vanishing of the
outer electric field created by this system." In fact, it can be
shown? that the electrostatic field created by the positive
ions in the conductor lattice is completely cancelled out by
the Liénard-Wiechert fields of the moving electrons.

If, on the contrary, the wire cross section is taken into
account, a surface charge density necessarily appears on
the ohmic conductor in order to constrain the total electric
field to lie along the wire. The purpose of this work is to
provide a simple example of the lowest-order contribution
to this effect.

It is usually accepted®* that steady currents in a circuit
are produced by an electric field which consists of two
parts: a conservative one with nonzero divergence E, and a
divergenceless one with nonvanishing curl E, . (These are
the two parts into which every vector field can be decom-
posed according to Helmholtz’s theorem.)

The conservative field E, is produced by a certain charge
distribution in the circuit, while E, is generated by other
means, for example by a chemical process in a battery or by
some varying magnetic field. Of course, the ultimate origin
of both fields involves charges. The field E,, is usually loca-
lized in certain parts of the circuit (batteries, generators,
etc.) and vanishes elsewhere.

The charge distributions that give rise to the conserva-
tive field E, are usually very weak in practice, but, in gen-
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eral, they are needed both to have an electric field in the
direction of the current and to constrain the charge carriers
to move along the wires.>” In fact, the field E, does not
usually lie along the wire, and it is precisely the field E,
which compensates this deviation. The experimental mea-
surements of these charge distributions are discussed in
various works.®"'°

In consequence it is pedagogically interesting to obtain
such charge distributions, which in general yield a nonvan-
ishing external electric field, even in stationary situations.
However, few explicit analytic samples are found in the
literature, mainly due to the fact that the geometry of the
circuit leads to very complicated expressions for the sur-
face and volume charge density distributions. Under cer-
tain conditions,'! it turns out that the surface charge den-
sity on a straight wire changes linearly along the
conductor. A quantitative analysis of currents in closed
circular circuits can also be done in two dimensions.'? The
examples of an infinite straight cylindrical conductor has
been worked out by several authors; the pertinent papers
are cited in Ref. 12.

We consider here a circuit of very simple geometric
shape, namely, a squared coil. An approximate analytic
expression is given for the surface charge distribution o on
the wire, if the wire’s thickness is small compared with the
remaining dimensions of the circuit. It should be stressed
that in this example the only source of emf is an external
varying magnetic field and that the charge distributions are
necessary only to constrain the total electric field to lie
along the wire.
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Fig. 1. The squared ring is placed in a uniform magnetic field region.
Notice that the origin of coordinates is on the east leg of the circuit,
similarly as in Fig. 2.

II. THE CIRCUIT

Let us consider a cylindrical region (see Fig. 1) where
there is a uniform magnetic field B,,, parallel to the cy-
linder axis. We shall assume that the field intensity is in-
creasing slowly at a constant rate dB.,,,/dt. This field can
be produced inside a very large solenoid of circular cross
section, and it is compatible with Maxwell’s equations.’?
Because of the symmetry of the system it is easy to see'
that the electric field E, induced at a point Pby the varying
magnetic field is orthogonal to the radius vector CP and
has an intensity given by

_ l dB ext
- dt

where k = 1/2 (dB,,,/dt) is constant.

We now place inside that region a squared circuit of side
2a, orthogonal to the magnetic field B,,, . The circuit has its
center on the cylinder axis and is made up of a cylindrical
wire of radius ¢ € and ohmic material of constant resisti-
vity 7, so that its total resistance is

R = y(8a/wc?). 2)

Since dB,,, /dt is constant, the induced emf'in the circuit
gives rise to a constant current:

442 dBext/dt — kamc? . (3)

R
The field lines of the chrent density vector J are con-
fined within the wire, lying parallel to its axis. Under the
hypothesis of a very thin conductor we can assume that J is
constant over a cross section and, because of charge conser-
vation, that it has the same modulus in every cross section:

J = ka/7. : (4)

Since the material of the circuit is ohmic, the resulting
electric field everywhere points in the direction of J. Thus
there necessarily appears a charge distribution on the coil
that generates an electric field E, at every point such that
the compound field E = E_ + E, will lie along the wire in
the direction of J.

By using results (1) and (4) and Ohm’s law, E = #J, we
can see that, under the approximation ¢ €a, the compon-

= ki, ()

I=

139 Am. J. Phys., Vol. 60, No. 2, February 1992

ents of both fields in the directions parallel and orthogonal
to the current are

E"" = ka, Enl = kZ, (5)
Ec" = 0, Ec‘l = — kZ. (6)

Obviously Egs. (5) and (6) hold only for the East leg of
the circuit, but analogous expressions are valid for the re-
maining parts. It goes without saying that the whole analy-
sis is not valid near the four corners of the square, where
fields and charge distributions presumably have a compli-
cated structure. Moreover, as we shall see in the next sec-
tion, the charge distribution on each of the circuit legs gen-
erates a field outside the conductor. The effect of this field
on the other sides of the coil has not been taken into ac-
count since it is negligible except in the neighborhood of the
corners if, as assumed, ¢ €a. See the Appendix. Note also
that in our particular case E,, = 0, but that in general the
electrostatic field has a nonvanishing component in the
current’s direction.

In the previous discussion, the magnetic force on the
charge carriers has not been taken into consideration, i.e.,
F = gvXB has been ignored. If it is considered, there ap-
pears inside the wire another transverse electric field'® that
is orthogonal to the current direction and has the value
E,, = vB. It will give rise to additional surface and volume
charge distributions,® but for a copper conductor, with
charge carrier density n=~8X10*®* m ~> and resistivity
7=1.75X 10~ '® Om, and a magnetic field as highas 0.1 T
we have that E, /E. = (B /nen)a/z=4.5X 10~ %a/z. So
this magnetic contribution may be neglected save in the
immediate vicinity of z = 0. For simplicity, we will ignore
in the following this minute and independent Hall effect.
Consequently, there is no volume charge density as the cur-
rent is stationary and therefore

divE=7divJ=0. (7N

III. THE SURFACE CHARGE DENSITY

To obtain the charge distribution that yields a field orth-
ogonal to the wire of value E, = — kz, we first recall the
result of a somewhat similar but simpler problem. The sur-
face charge density on an infinite conducting cylinder, ini-
tially discharged, under the effect of an external uniform
electric field E, orthogonal to its axis is given by'¢

o= 26,E, sin ¢, 8)

the whole cylinder being equipotential and having in its
interior a constant electric field produced by o and of value
— E, that cancels out the external field. We have taken
E, = Ej in the coordinate system depicted in Fig. 2.

Now, if we tentatively substitute kz for E, in (8), the
resulting charge distribution produces a field E_ that satis-
fies the requirements in Eq. (6). This will be directly pro-
ven in the Appendix, but let us give now a more systematic
way of finding the surface charge density.

First of all, we realize that — kzj is not a conservative
field. In fact, within the wire the conservative field is more
precisely given by E. = — kzj — kyk, which is conserva-
tive. Everywhere within the wire || < ¢, so we may choose
to absorb the — kyk term into the other term of order
(¢/a) which we have been ignoring to this point and write

E, = —kzj + O(c/a)
= — kz(sin @u, + cos gu,) + O(c/a). )]
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Fig. 2. Cartesian and cylindrical coordinates in the wire’s East leg.

In order to elucidate the order of each quantity, we shall
use [instead of the polar coordinates (p,¢,2)] the dimen-
sionless variables (g,,Z), where

ﬁ=£=£, E-:_z_, €=i, (10)
¢ a

€a a
so that the interior of the cylinderis — 1 <p,Z < 1, and our
conservative field

E, = — kaz(sin @u, +cos gu,) + O(e) (11)
can be written as
E,= —grad V
= —;1;(%“” —})—%u‘p+e%k), (12)
where
V = €ka’zp sin ¢ + O(€?). (13)

Obviously, this internal potential satisfies Laplace’s
equation:

VY =

L[L2 (00 10, 202
éils BV @) Fop | #

The lowest order of the potential outside the conductor
must satisfy
14 2V,

19 (%),

pad\ dp/ p ap’
The solutions of this equation which are periodic in ¢ can
be written as'’

=0. (15)

Vo= (ao+boInp) + 3 (a,p~ "+ b,p")

n=1
X (¢, cos ng + d, sin ne), (16)

wherea,, b,, ¢,, and d, are arbitrary functions of . Since
we expect the potential to decrease as p increases, we must
take b, = 0. Furthermore, the continuity of the potential at
the surface of the conductor (p = 1,|z| < 1) gives

V="V, + O(6) = e(ka’z/p)sin ¢ + O(€). (17)
Therefore, for |z| < a, the external conservative field will be
E, = (kzc*/p?) (sin gu, — cos gu,) + O(c/a), (18)
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Fig. 3. Field lines of the electrostatic field created by the surface charge
distribution on the east leg. A plane z = const > 0 is displayed.

that vanishes in the limit ¢ — 0 as expected. "> The field lines
of the partial field E_ given by (9) and (18) can be easily
computed and are depicted in Fig. 3 in a plane
z=const>0.

Comparing (9) and (18) we see that the parallel com-
ponent of the electric field is continuous at the surface,
while the discontinuity in the orthogonal component gives
the expected surface charge density:

o = 2¢€pkz sin ¢ + O(c/a). (19)

IV, POYNTING THEOREM

It follows from (5) and (18) that the lowest-order ap-
proximation to the total electric field E=E_ + E, at any
exterior point, but very close to the conductor surface, is

(20)
while the magnetic field is given, to the same approxima-
tion, by
B = (uol /2mc)u, + B, i
= — (uokac/2n)u, + B, i. 21)

Let us consider a cylinder X of unit length having the
same axis and radius as the wire. The outgoing flux of the
Poynting vector through X is

E = 2kz sin pu, — kak,

wk 2a*c®

§ sds =L (ExByas = - TEEE,
p3 Ho /= Uj

which, as required by the Poynting theorem on the energy,
is opposite to the value R7 %, where R is the ohmic resistance
of the piece of wire enclosed by Z.

(22)
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APPENDIX: ELECTRIC FIELD PRODUCED BY
THE SURFACE CHARGE DENSITY

In this appendix we shall perform a direct computation
of the electric field produced by the surface charge distribu-
tion given by (19). In this way we shall be able to recover
results (9) and (18) and to prove that for |z|>a,
E,. = O(c/a). This result is beyond the scope of the
method used in Sec. II1. It shows that the electrostatic field
produced by the charge distribution in a circuit’s leg satis-
fies E,, = O(c/a) everywhere outside it. This fact gives
support to the approximation in which we neglect the ac-

|

Z'[e(X — cos @)i + €(y —sin @)j + (Z — Z')k] a5

tion on each leg of the electrostatic field produced by the
others.

The electric field created at a point r by a surface charge
distribution o is

1 J' o(r')(r—r')ds
dmeyJs  r—r

For a cylinder of radius ¢ we have r' = ccos @i
+ csin @ + 2’k and ds’ = ¢ dgp dZ'. In the dimensionless
variables X = x/c¢, ¥ = y/c, and Z = z/a, the inner region of
the cylinder is given by the conditions 0<¥* 4+ 7* <1,
|z| < 1, and expression (A1) takes the form

E.(r)=

(AD)

kae (*7 , .
E dpsing
0

c=2ﬂ'

For a>0and |z| #1 we have

. 1 EZE'dE' _ 22
I f =001 - z2h=Z,
) ey a0y
1 e = e
i ' (z—-7)dz —0, A3
51_1.1(1) Jl, [€a + G —7)]?? (A3)

where @ stands for the Heaviside step function. Thus

E, = 61 — [z2))*%Z

T

XJ'Z" sin @(X — cos @)i + sin @(y — sin @)j
o (x — cos @)? + (J — sin @)?
Xdg + 0(e). (A4)
The following two integrals can be readily computed in the
complex plane:
J‘Z" sin ¢(X — cos @)dg
o (X —cos @)’ + (¥ —sing)?
0, if ¥ 4+7<1;
T L/ i PP,
J'z" sin @(¥ — sin @)dp
o (X —cos@)? 4+ (§ — sin @)>

___[——17, if > +75<1;
= r@E PV E+P R+,
and one obtains expressions (9) and (18) for the electric
field created by the charge distribution, and E, = O(c/a),
for |z| > a.

(AS)
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(A2)

1 {E[(X —cos @)> + (F—sin@)?] + (Z—Z)* P

r
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