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The necessary attribution of linear and angular momenta to the electromagnetic field, even in
quasistatic situations, is illustrated by discussing the dynamical conservation laws of an
interacting system composed of two point charges and a magnetic dipole. The evaluation of the
trajectories gives an interesting example for numerical computation.

L INTRODUCTION

Let us consider the static electromagnetic field created
by charges at rest and stationary currents. We have at every
point in space an electric field E as well as a magnetic field
B, which satisfy

divE = p/€,,
divB =0,

where p and j are the charge and current density, respec-
tively. Both fields are independent of each other, as follows
from the fact that Egs. (1a) and (1b) are uncoupled.

However, in order to maintain the stationary configura-
tion, it is necessary to act upon the sources with some exter-
nal forces in such a way that, when these are withdrawn
and the system becomes isolated, the fields will no longer be
either independent or static and the particles and currents
will be affected by electromagnetic forces.

For isolated systems, the linear and angular momenta
and energy conservation laws are considered fundamental
laws, i.e., independent principles, and since electromagnet-
ic interactions do not satisfy Newton’s third law, in order
for the conservation principles to still hold in this case,
those quantities must be assigned to the electromagnetic
fields, giving rise to Poynting’s theorems and to the energy-
momentum tensor formalism.

When studying the static electromagnetic field, students
become puzzled and usually have difficulties accepting
that a static field can carry linear and angular momenta.
Thus it is useful, at a pedagogical level, to analyze in detail
some examples in order to show the coherence of the theo-
ry. Angular momentum conservation has been considered
in different devices such as cylindrical wires and sole-
noids*”> (their difficulties having been quoted by
Romer®’) and spherical conductors and magnetized
spheres.®®° However, less attention has been paid to con-
servation of linear momentum.'>'! A related subject is the

calculation of the angular momentum of the electron
field.'o-'2

curl E =0, (1a)
curl B =y, j, (1b)
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In this context, special attention has been paid to the so-
called Feynman paradox.’* A simplified version of it was
first analyzed by Aguirregabiria and Hernandez.'* Later,
it was studied by Lombardi,'* Bahder and Sak,'® and
Ma.

The common feature of the above-quoted examples is
that one starts with some system in which there is a stored
linear (or angular) momentum with no linear (or angular)
mechanical momentum. At the end of the process, when
the electromagnetic momentum vanishes, the system con-
tains mechanical momentum that clearly matches with the
initial electromagnetic one, such that the corresponding
conservation law holds. However, no analysis is done on
the intermediate situations.

This is precisely the aim of the present work, in which
the motion of two charged particles, interacting with each
other and with a magnetic dipole moment, is analyzed in
detail. It is illustrated how, when the corresponding quan-
tities are attached to the electromagnetic field, the men-
tioned conservation laws are the first integrals of the dy-
namical equations of charges and currents. The trajectories
are computed numerically, checking at every time the con-
servation of energy and of linear and angular momenta.

The article is organized as follows. First, we consider a
system that has electromagnetic angular momentum, con-
sisting of two particles with equal charge that interact with
a third one characterized by its magnetic dipole moment.
In Sec. III the system is quite similar, except that the
charges have opposite values, giving rise to a nonvanishing
electromagnetic linear momentum. Finally, the last part is
devoted to discussion and comments.

II. STATIC SYSTEM OF PARTICLES WITH
ANGULAR MOMENTUM

A. Dynamical equations

Let us consider two equal pointlike charged particles of
charge g and mass M placed initially on the X axis at x, = 7,
and x, = — r,, respectively.
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At the origin there exists a third particle, characterized
by its magnetic dipole moment m = mk, with k being the
unit vector along the Z axis.

The two charged particles are initially held at rest by
means of some external forces. At a certain time these
forces are simultaneously removed and the charges start
moving, describing symmetric trajectories, while the di-
pole remains at rest at the origin. At a later time, positions
and velocities of particles are given by

r,= —rL=r(t) =x()T+ y(t)], (2)

V= —V,=v(t) =x()T + p(2)], (3)
where, as usual, the dot means time derivative, and 7 and j
are, respectively, the unit vectors along the X and Y axes.

We assume that velocities are small enough to neglect
the magnetic interaction among the charges, radiation, and
retarded effects, and to have a quasistationary system.
Thus the interaction between charges is given by Cou-
lomb’s law. In fact, it is not much more difficult to include
the magnetic interaction between charges in the following
analysis, but we will not do it in order to keep simpler ex-
pressions while retaining a very good level of accuracy.

We also assume that the magnetic moment remains con-
stant in time. This approximation can be justified if, for
instance, we imagine that the magnetic moment is due to an
electric current in a closed loop with arbitrarily small radi-
us. We can assume that in the limit the magnetic flux
through the loop is null and so is its coefficient of induc-
tance.

Due to the symmetry of the system, we shall only ana-
lyze the motion of particle 1. The force acting on this parti-
cle is due to the electric field of particle 2 and the magnetic
field of the magnetic dipole at rest in the origin, i.e.,

Fo @ X40 _pomg_ X
1677'60 (x2 +y2)3/2 477. (x2 +y2)3/2
Thus the dynamical equations are

i=(x*+y) (Cx— Gy, (5a)
j=(x*+y) 7 (Cy+C,x), (5b)
where

C, = ¢*/16meM, and C, = pymq/4wM.

Multiplying (5a) by x and (5b) by y and adding both
equations, the following result is reached by integration:

JE 4+ + C/ (4 )2 =E, (6)

where E is a constant of the motion. Subtracting Eq. (5a)
multiplied by y from (5b) multiplied by x, and integrating,
we arrive at

xp—yx+C/ (X +y)? =L, @)

with L being another constant of the motion.
The mechanical angular momentum of the system with
respect to the origin at any arbitrary time is

L, o = 2rXMv =2M(xy — yx)k, (8)

and because of (7), it is no longer conserved, even though
the system is isolated.

B. The total angular momentum of the system

In the total energy conservation law (6), besides the me-
chanical energy, we also consider the electrostatic energy
stored in the field. In the same way, in the angular momen-
tum conservation law we must take into account the angu-
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lar momentum of the static electromagnetic field.

In fact, the general expression for the angular momen-
tum with respect to the origin of an electromagnetic field is
given by

L. =f rXe,(EXB)dV. 9)
-

If the currents are stationary and the charge distribution
is static, then (9) reduces to'*

L. :f rxpA dV, (10)

where p is the charge density at point r and A is the vector
potential (in the Coulomb gauge, V-A = 0) at the same
point. This expression is completely natural in the usual
interpretation of A in field theories and agrees with the
discussions (restricted to the analysis of the linear momen-
tum) given by Konopinski.'® When the charges are point-
like, (10) leads to

Lem =Zl'.»>(q,-A(l‘,~), (11)

where r; is the position vector of charge g; and A(r; ) is the
value of the vector potential at that point. In our exam-
ple, the system has at the initial time, when r,(0)
= —r,(0) = ry=7,i, an angular momentum

L..(0) = 2rysXqA(ry). (12)

The vector potential created by a dipole moment at any
point r is given by

A(r) = (uo/4m)mXr/P, (13)
- so that
L.. (0) = (uy/2m) (mg/ry)k, (14)

which agrees with the result obtained-by Furry'® and Law-
20
son.

Since the particles travel with small velocities, the situa-
tion can be considered quasistationary, and when the parti-
cles are, respectively, at r, =r and r, = —r, the angular
momentum L_, (¢) reads

Lem (1) = Zl'qu(l‘) = (”qu/277) [k/(xZ +y2)1/2]‘
(15)

The mechanical angular momentum is (8), and at any
time ¢ the conservation of angular momentum requires that

Lmech(t) +Lem (t) =Lem (0), (16)
which is equivalent to Eq.(7).

Energy conservation allows us to write

Emech(t) +Eem(t) '_"Eem (0), (17)

where E ., (¢) is the kinetic energy at time tand E,, (0) is
the interaction energy at the initial time. Under the accept-
ed conditions for the dynamics, the energy E.,, (¢) is de-
rived from the Coulomb interaction and (17) can be ex-
pressed in the form of the first integral (6).

C. Particle trajectories

The dynamical equations (5) have bounded and un-
bounded solutions. Trajectories in which the radial coordi-
nate remains bounded are characterized by (see Appen-
dix)

272 E<2L>. (18)

The particle trajectories can be easily computed by nu-
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(c)

(b}

(a)

Fig. 1. Trajectories for two protons interacting with a magnetic dipole, for
three different initial conditions: (a) 7, =0.03 m, (b) r, = 0.04 m, and
(c) r, =0.045 m.

merical methods. This is an interesting and unusual exam-
ple that can be used as part of classroom demonstrations on
numerical simulation, as we now show.

Let us apply the above results to the particular case in
which the charges are protons and the magnetic dipole is a
sphere of 1-mm radius with a magnetization of 1.59 x 10°
Am~'. Then, the constants appearing in (5) are
C,=0.0345m?s~? and C, = 0.0063m> s~ ', and the con-
dition for bounded motion is that 7,<0.044 m.

In Fig. 1 the motion of the two particles is depicted for
three different initial positions. For trajectory ¢, r, = 0.045
m, and thus this motion is unbounded and the particles
escape. It must be stressed that it can be shown numerically
that the velocities always remain rather small (below 2
m s~ '), so that.one can expect the approximations made
so far to be very good.

During the numerical calculations, the addition of the
two terms on the left-hand side of both (6) and (7) can be
monitored, checking that this sum remains constant, or
alternatively, one can use this constancy as a quality test of
the numerical integration method.

IIX. STATIC SYSTEM OF PARTICLES WITH
LINEAR MOMENTUM

Let us assume now that particle 1 has charge + ¢, while
charge 2 is — ¢ with the magnetic dipole moment at the
origin, as before, and with the particles at rest under the
action of some external forces at the same initial configura-
tion.

In this situation the angular momentum of the system is
zero, but the linear momentum is not, since there exists a
linear momentum associated with any electromagnetic
field given by

Pem =J GO(EXB)dV; (19)
R

which, in the stationary case and for point particles,
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yields?!

| PAwar=3 gam), (20)
R* o
leading, in this particular case, to the expression

P... (0) = (uynq/2wr})j. 21

When the external forces are suppressed, the charges
move under the action of their mutual Coulomb interac-
tion (constancy of the magnetic dipole moment and low
velocities are assumed, and retarded effects and radiation
ignored as in the earlier case) and under that of the dipole
magnetic field. Now, there exists a nonvanishing magnetic
force on this dipole, and in order to hold it at rest at the
origin some external force has to be exerted in order to
balance the action produced by the charges.

In this low-velocity approximation, the magnetic field
created by a pointlike charge at a point R is

B = (ug/47) (YXR/R?), (22)

The magnetic field created by the charges at time ¢ at the
point of coordinates (O,w) is

B(O,w) = (pog/2m){[x(w — p) + yx1/
[x* + (w —»)*1*}k. (23)

The force of a magnetic field on a magnetic dipole is

F =V(m-B), (24)
and because of the symmetry of our problem, it is oriented
in the Y direction. Thus

F=-2[mBOw)]._d, (25)

dw

while the external force on the dipole, which must be oppo-
site to this one, is given by

Foo = — F = (uomg/2m)
X{L(2? — x¥)x = 3xpp)/ (X% + 37}, (26)

Since Coulomb forces satisfy Newton’s third law (ac-
tion—reaction principle), the dynamical equation of the
charges along the Y axis is

V= (uomq/4mM) [x/ (x> + y*)3?]. (27)

It is easily seen that this dynamical equation is equiva-
lent to the linear momentum evolution law:
_dP@®)

ext ’

dt

where the total linear momentum at any arbitrary time ¢
will be the sum of two terms: the mechanical one of the
charges plus the electromagnetic one of the field, i.e.,

P(t) = Pren (1) + P, (2)

={My + (ugmg/2m) [x/ (x> + y*)**1}.  (29)

Figure 2 depicts the particle motion for a proton and an
antiproton interacting with the same magnetic dipole as in
Sec. I1. Asin the previous case, we see that in the numerical
integration the actual velocities remain small enough to
justify the use of the quasistatic approximation.

It has been pointed out by Furry’® and Coleman and
Van Vleck? that in some circumstances there is a “hidden
momentum” in a magnet. In the case discussed above, we
have ignored it because, since the magnetic dipole moment
remains constant and is held at rest, its constant contribu-

(28)
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{a)

{b)

Fig. 2. Proton and antiproton motion interacting with a magnetic dipole
for two different initial positions: (a) 7, = 0.035 m and (b) r, = 0.07 m.

tion does not change the conservation laws. Alternatively,
the previous analysis could be seen as a demonstration of
the constancy of this “hidden momentum.”

IV. DISCUSSION AND COMMENTS

‘We can also understand the existence of the stored angu-
lar momentum L., (0) of the first system (Sec. II) by pay-
ing attention to the way the system can be built through a
similar method to the one used by Calkin?! for the calcula-
tion of the linear momentum.

First, we can bring the two charges from infinity to their
final points, with a small enough constant velocity to con-
sider just their Coulomb interaction. In this case, because
the two forces are opposite and directed toward the origin,
no angular momentum is involved.

Once the two charges are held at rest, we can carry along
the Y axis the magnetic dipole, with very low velocity.
When it is at the point of coordinates (0,£), it creates a
potential vector A(r,) on the first charge:

A(r)) = (um/Am) [(ET+ 1))/ (r5 + 5], (30)

and since £ changes with time, A does also and a force of

— g d A/dt is operating on particle 1. To hold the particle
at rest, another external force opposite to this one must be
applied, giving rise to a torque with respect to the origin of
value M, = gr, d4, /3t. So the following angular momen-
tum is being stored in this process:

L., =2k f M, dt= 2quro%’—'—d§

= 2qrod k = (pomq/2mry)k, 31

according to Eq. (12) or (14).

In the case of the system analyzed in Sec. Iil, the linear
momentum stored while building up the system in a similar
way will be

A
Pﬁzfqa s dg = o4,
w  OE 27
which is, in fact, (20) or (21).

(32)
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1 2 3 4

Fig. 3. Graph of function f{u) = (u — 1)/’

APPENDIX

We can obtain the conditions obeyed by the bounded
orbits mentioned in Sec. II by making use of the conserva-
tion laws (6) and (7) by means of a method similar to the
one glssed when discussing the orbits of the Kepler prob-
lem.

In polar coordinates, the constants of the motion of (6)
and (7) are

E=4P+r8% +C/r, (A1)
L=7r0 + Cyr. (A2)
Since at time ¢ =0, i, = f, = 0, we get C, = Er, and
C, = Lr,, and that u=r/ry,>1, because from (Al), we
have r>r,. So we get from (A1) and (A2) that
1 ,.0 u L*u—1
E=—ri’ + = .
2% u—1 22 &
The first term of the right-hand side is always positive,
and if E has to remain positive, the following must hold:
2rRE/L*> (u — 1)/u*>0. (A4)
The function f(u) = (1 — 1)/4> has a maximum of val-
ue f(3) = # for u = 3 (see Fig. 3). Thus bounded motions
will take place when
0<rRE/L*<2/27. (A5)

In terms of the constants C; and C,, the above condition
reduces to
r,<(2C2/271C)"2. (A6)

If this condition does not hold, particles will necessarily
separate indefinitely from each other.

(A3)
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A bare multipole potential ®(r) = (4 /r'*")P,(cos 8), concentric with a spherical cavity
embedded within a dielectric, has its potential within the dielectric changed, not by the factor
€~ ', but rather by the factor F(/) = (2/+ 1)/[I + (I + 1)€]. Moreover, a multipole source
potential in the dielectric ®(r) = (A7) P,(cos ) has its potential within a concentric spherical
cavity changed by a factor €F(/). The result is that the interaction between two multipoles in
widely separated cavities is modified by a factor € ' times a factor eF(/) for each multipole. By
decomposing the bare potential of a point monopole source into its cavity multipole components,
screening each component separately, and then resumming, it is shown why the method of images
works both for point charges with semi-infinite dielectrics and for line charges with dielectric
circular cylinders—but not for point changes with dielectric spheres.

I. ON DIELECTRIC SCREENING AND THE
METHOD OF IMAGES

‘When charge is placed within a cavity, the resulting po-
tential depends both upon the dielectric properties of the
system and upon the geometry. For point sources and sim-
ple cavity geometries, it is possible to solve for the potential
exactly. The results are not always obvious. Consider the
following.

Since a point charge in a dielectric has its electric field
decreased by a factor € 7', and since all multipoles consist
of a sum of point charges, it appears reasonable to assume
that all multipoles have their electric fields decreased by
the same factor. However, if this were so, then a point
charge placed off-center within a spherical cavity embed-
ded in a dielectric would be solvable by the method of im-
ages, whereas Landau and Lifshitz remark that there is no
closed-form solution for this case.! This dielectric screen-
ing effect should not be confused with local field effects,?
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where one breaks up the response of a dielectric into the far
part (which is treated macroscopically) and the near part
(which is treated microscopically).** It is solely a macro-

' scopic question that is under consideration.

Consider a spherical cavity of radius R within an infinite
dielectric of dielectric constant e. If a multipole / is at the
center of the cavity, with bare potential

D, (r) = (4 /P 1)P,(cos 6), (D

. then the effect of t/l\le dielectric is to respond with a surface

charge density o(£2) on » = R, having the symmetry of the
multipole. This causes the net potential to take the form

(r<R) ®(r)=(A4/F*'+ Br)P,(cos §), 2)
(r>R) ®(r)=(C/F*1)P,(cos §), (3)

where B and C — A are nonzero because of the effect of

a(ﬁ). Matching the boundary condition that the tangen-
tial component of the electric field E = — V& is contin-
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