We now analyze where the block comes to rest with a
constant friction force acting. The first stopping point is at
X), after a time ¢t = w/w, where

X =—(A4 - 2a-/w?). amn

‘We now solve Eq. (6) for the half-cycle return motion of the
block up the incline, subject to the conditions

The trial solution x = Ccoswt + D satisfies Eq. (6) if we
take the constants to be
w? = k/m,
D = —a4/w?, (18)
C=A-2a_jw?— ayfwl
Therefore the solution for the return motion up the incline
can be written as
x=(A4 - 2a_/w? — ay/w?) coswt — ay/w? (19)

Repetition of the analysis that led to Egs. (9) and (19) leads
to a general expression for the motion during the nth half
cycle to be

x=[4—-a/w?—(n=1) (a-+ a;)/w?] coswt
+ [a- (1 = (5)") — a+ (L.+ (-)))/20?  (20)

for the time interval (n — 1)/w <t < n/w. The block comes
to rest when the cosine is 1. Therefore the block comes to
rest at the locations

Xp=|A4-

(== @
The total elapsed time when the block is at rest at X, is
T = nm/w. (22)

In Egs. (21)-(22), n = 0 corresponds to the block starting
its oscillations, n = 1 corresponds to when it first comes to
rest, etc.

The location where the block comes to rest can also be
determined from conservation of energy. Taking the friction
force as the only external force doing work on the system
of block plus spring, we have

n2ug cosf g sm0
w?

—umgcost (x — X,,) = 3)mx? + (3)kx?
+ mgxsind - E,. (23)

The minus sign with the frictional work term results from
the friction force opposing the motion of the block along the
incline as it moves from X, to the point x. The energy terms
on the right-hand side of Eq. (23) are, respectively, the ki-

netic energy of the block, the spring potential energy, the
gravitational potential energy of the block, and finally the
energy of the system at the nth stopping point E,. The
spring has been assumed massless in Eq. (23). The energy
for the system (E,) includes the spring potential energy and
the block gravitational potential energy at the nth stopping
point of the block. This conservation of energy equation can
be solved for the location where the block next comes to rest
by setting the kinetic energy term to zero, and solving the
resulting quadratic equation for x. This solution matches
Eq. (21). The quadratic equation provides two roots. It is
worth noting they are the prior and next stopping locations
of the block.

From the above results, the followmg simple experiment
is proposed for the student to determine a coefficient of
kinetic friction. The block is started at a measured position
xg = A, up the incline and allowed to oscillate until the
block will no longer move. The time the block was moving
should be measured and/or count the number of half cycles
undergone by the block. These two measurements are re-
dundant, but can be used to check the spring constant from
the relation

T =nr/w. (24)

For an even number of half oscillations, the distance d from
the initial starting place to the final stopping place is given
by Eq. (21) to be

d = n2ugcosl/w? = 2ugcosdT2/w2(n). (25)
For an odd number of half oscillations, we have
d=2A4—2gsinf/w? — u(n 2gcosf/w?). (26)

The measurements are repeated for various values of n or
for various values of cosfl. The coefficient of kinetic friction
can be measured from the slope of a graph of d vs
2ngcosf/w?. For n an odd number of half cycles, one
graphs,

24 — 2gsinf/w? —d vs

The slopé of this is u, the coefficient of friction. The inde-
pendence of the coefficient of friction from the normal force
is usually assumed in introductory studies.? The validity of
this assumption can be assayed from the straightness of the
graphs of d obtained experimentally.

2ngcosf/w?.

'Rudolph E. Langer, Ordinary Differential Equations (Wiley, New York,
1956), pp. 163-165.

2James A. Richards, Francis Weston Sears, M. Russell Wehr, and Mark
W. Zemansky, Modern College Physics (Addison-Wesley, Reading,
MA, 1962), p. 31.

A relativistic problem: The charge distribution stability on a

conductor

A. Hernandez and M. Rivas
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The Lorentz transformation was originally introduced
to make the form of the Maxwell’s equations invariant in
all inertial frames.! Subsequently, Einstein deduced the
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transformation from the postulates of special relativity,
making clear the close relationship between relativity and
electromagnetism.
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On the other hand, if in classical electrodynamics the
inertial observers relate their space-time measurements by
means of a Galilean transformation, we arrive at contra-
dicting and paradoxical situations with the well-established
experimental data. For instance, if we assume the charge
invariance principle and that Maxwell’s equations have the
same form in every inertial frame, we arrive at the sur-
prising result that the magnetic field has the same value for
every observer.2

But, if according to experience, we accept that the
magnetic field created by moving charges of low speed is
given by the Biot-Savart law, we still are faced with anal-
ogous difficulties. When considering the charge distribution
on a conductor, this is stable for an inertial observer
standing at rest with respect to the body, but is not stable
for a moving one. As we will see below, the charge distri-
bution stability on conductors is made clear if space-time
measurements for different observers are related by means
of the Lorentz transformation instead of the Galilean
one.

Let us consider a conductor at rest in the inertial frame
R*; there exists at every point on its surface a charge density
o*, The electric field there is orthogonal to the surface and
the charge distribution is statically stable as is well
known.

Let R be another inertial frame with respect to which R*
is moving with velocity v along 0X axis, and let us assume
that space-time measurements in R and R* are related
through a Galilean transformation
y=y*

If we assume that the electromagnetism laws, and in
particular the Biot-Savart law, are valid in every inertial
frame, we will have at every point on the conductor, an
electric field E and a magnetic field B.

If v is small compared to the speed of light ¢, then E
~ E*, Let dE be the electric field at some point due to the
charge o ds of the surface element ds of the body. Then the
magnetic field 4B that this charge produces there, is given
by Biot-Savart’s law?

dB = (1/c?)v X dE, )

x = x* + vt*, z=z% =¥ )]

Thus there will appear at every point on the conductor
surface a magnetic field

B=(1/c2vXE~ (1/c?)v X E*. 3)

The unit charge on the surface will undergo a total force
due to E and B, which will have in general, a nonvanishing
component along the surface giving rise thereby to a charge
redistribution until a stable situation is attained. But if
charge invariance is assumed, the charge in a surface ele-
ment must be the same in both frames

o*ds* = ods (4)

and according to (1), ds = ds*, concluding that charge
densities must be the same. This is a paradoxical situation
since, in the R frame, charge distribution stability implies
that o and o* must be different.

An answer to the paradox readily follows if space-time
measurements are related by Lorentz transformation, and
electric and magnetic fields transform relativistically.

In fact, let R and R* be related by the special Lorentz
transformation
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x = y(x* + vr*); z = z%;

t=y(* +ox*/c?), (5

y=y*;

where
¥ = (1= oYe?),

The relationship between the fields E*, B* and E, B at
the same point, as measured by R* and R, respectively,
aret

E/=E[, E,=v[El—-vXB*;
B =Bj, By, =1v[B1L+(I/c?)vXE*],

where the symbols || and L, respectively, denote the field
components along and perpendicular to v.

For the observer in R, at every point on the conductor
surface, there exists an electric field E and a magnetic field
B, such that the Lorentz force on the unit charge is or-
thogonal to the surface, because of (5).

Owing to charge invariance, (4) holds and since ds
# ds*, the charge density in frame R, o, will be in general,
different than the rest-frame charge density o*.

Let us apply all this considerations to a charged con-
ducting ellipsoid whose equation in its proper frame is

*2 *2 *2
Hlsir=1 a>s (7
When the charge distribution attains equilibrium, the
surface charge density in R* is given by?

Q x*2 y*z 2*2)—|/2

(6)

a-* = -
4mab?\a* b b?

Q being the total charge on it.
If the ellipsoid speed v with respect to R is such that y
= a/b, then in R, it has the spherical shape
x24y24z2=p2 9)

In R* the electric field strength and charge density are re-
lated by

(8)

E* =0'*/€0. (10)

E* being orthogonal to the surface, the ficld components
at any point on the conductor are given by

E; = k2x*/a?, V= k2y*/b2, E: = k2z%/b2, (11)
where
o* x*2 y*2 2%2Y-1/2
= —t—t—— . 12
260(‘144‘[’4-*174 (12)

According to (6) there will be at every point, as measured
in R, an electric field E and a magnetic field B with com-
ponents

EX = Eiv
B, =0,

E, = vE},
B, = —(yv/c?)E?,

E. =vEZ;
B: = (yv/c?)E},
(13)

in such a way that after (9) and (11), the Lorentz force on
the unit charge on the conductor surface, has the compo-
nents

k 2y k 2z
T TS
which has the normal direction to the sphere (9).

It must be observed that the electric field on the sphere,
as measured in R, has not the normal direction, as can easily

Fy (14)
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computed by making use of (13).
By using (4) the charge density at every point as mea-
sured in R, is

o =Q/4rb?, (15)

which is the same one would have if the sphere of radius b
were at rest in R.

'W. G. V. Rosser, An Introduction to the Theory of Relativity (Butter-
worths, London, 1964), pp. 65-66 and 304.

2p. G. Bergmann, Hadbuch der Physik (Springer-Verlag, Heidelberg,
1962), Vol. IV, p. I11.

3J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), pp.
133-134.

4Reference 1, p. 310.

SW. R. Smythe, Static and Dynamic Electricity, 3rd ed. (McGraw-Hill,
New York, 1968), pp. 123-124.

Some remarks on a generalized heat conduction equation
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The classical theory of heat conduction in solids is based
on Fourier’s law of heat conduction

q(x,1) = —«kg(x,1), (1)

where q is the heat flux vector, g[= V(x,t)] is the gradient
of temperature 6, and x(>0) is a constant known as thermal
conductivity. It is further assumed that

e —eg=c(f —0p), 2

where e and e are the internal energy densities at tem-
perature 6 and 6, respectively, and ¢ (>0) is the heat ca-
pacity. In the absence of any heat sources or sinks; (1), (2),
and the balance of energy leads to

(g) V24 = Z—f, 3)

where V2 is the Laplacian. Equation (3) is a parabolic
partial differential equation for 8 in x [0,=), and therefore
gives the result that the speed of propagation of a thermal
pulse is infinite. That is, a thermal disturbance created at
any place in a body is felt instantly at any other point. This
result is unacceptable on a physical basis; also, some ex-
periments with helium'-2 at a low temperature (2.2°K) have
shown that the thermal disturbances propagate as pro-
gressive waves. This has led many researchers to seek a
theory of heat conduction with finite propagation speed. R.
J. Swenson?# has recently reviewed and discussed some of
the theories and has proposed one himself in this Journal.
In both of these papers a substantial literature in continuum
thermodynamics bearing directly on the problem of heat
conduction has escaped attention. In order to provide to the
readers of this Journal a more encompassing view of this
subject, we would like to draw attention to Refs. 5-12,
where the point of view and approach taken in developing
theories is that of modern continuum thermodynamics. As
a general reference Coleman and Noll’s paper!3 on the
thermodynamics of elastic materials with heat conduction
and viscosity is very instructive.

A thermodynamic theory must be consistent with the
requirements of the second law of thermodynamics. In
continuum mechanics the appropriate form of the second
law has been taken to be the Clausius-Duhem inequality,
although there is some controversy on what final form this
inequality should take. Some of the theories mentioned
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above are based on the exploitation of a particular form of
Clausius-Duhem inequality. The interested reader would
reap benefits from consulting Miiller,' Green and Laws,'S
Gurtin and Williams,'® and a very recent paper by Green
and Naghdi!? on the subject of the Clausius-Duhem in-
equality.

‘A comparative assessment of various theories mentioned
above is not yet available, mainly because the theories are
very new. The author!®1? has recently considered the
propagation of surface and plane waves in two important
theories—that of Lord and Shulman and of Green and
Lindsay. The former theory uses a modification of Fourier’s
law and the latter modifies the energy equation but keeps
the Fourier law. Insofar as the results from Refs. 18 and 19
are concerned, the theory of Green and Lindsay seems to
be somewhat more general in the sense that all the results
of the theory-of Lord and Shulman are obtained as a special
case and some new results are also obtained. Equally in-
teresting are the approaches that these authors have taken
in formulating their theories.

By taking the approach of continuum thermodynamics,
Gurtin and Pipkin,? and Coleman and Gurtin2° have de-
veloped consistent general nonlinear theories of heat con-
duction for rigid materials with memory. These theories
have been developed systematically and are more general
than the theory proposed by Swenson. Nunziato?! has es-
tablished a linearized form of a theory which is slightly more
general than that of Coleman and Gurtin. The expressions
for internal energy density and heat flux are given as?!

= 00 + j;m a(s)ﬁ(t - S)ds, (4)

q=—«xVl - J;m ﬁ(s)VB(t — 5)ds, (5)

where ¢ and « are, respectively, the instantaneous heat ca-
pacity and the thermal conductivity, and o and 8 denote the
energy and the heat flux relaxation functions:

B(s) = 0in (5) recovers Fourier’s law, and
a(s) = 0in (4) gives (2).

In a physical (linear) theory it is expected that the solution
exists, is unique, and depends continuously on the initial-
boundary values. These conditions also provide a means of
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