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We discuss the usefulness and physical interpretation of a simple and general way of constructing
sequences of functions that converge to the Dirac delta function. The main result, which seems to
have been largely overlooked, includes most of thed-function converging sequences found in
textbooks, is easily extended, and can be used to introduce many useful generalized functions to
physics students with little mathematical background. We show that some interesting delta-function
identities are simple consequences of the one discussed here. An illustrative example in
electrodynamics is also analyzed, with the surprising result that the formalism allows as a limit an
uncharged massless particle which creates no electromagnetic field, but has a nonzero
electromagnetic energy–momentum tensor. ©2002 American Association of Physics Teachers.
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I. INTRODUCTION

Generalized functions are useful in electrodynamics, qu
tum mechanics, and other branches of physics.1 Apart from
their usefulness for solving differential equations, they p
vide a natural way to describe a distribution of point charg
We can understand a point charge as a continuous ch
distribution whose density has a known finite integral, b
that to a good approximation vanishes except in a very sm
neighborhood. This intuitive picture of point charges na
rally leads to the consideration of sequences of continu
functions with finite integrals that converge to the Dirac de
function.

Particular examples of such sequences of functions
discussed heuristically in some textbooks on mathema
methods.2 More advanced textbooks discuss theorems
prove the convergence.3,4 However, determining if these
theorems are satisfied is often a daunting task for un
graduate students. In Sec. II we discuss a simplified ver
of a known convergence theorem.4 This version appears un
der more stringent conditions as an exercise in Ref. 5 and
a restricted case and with a different proof in Ref. 6. It is n
as general as some theorems given in advanced textbo
but it is easily proven, can be readily extended~see Sec. III!,
includes almost all the examples discussed in introduc
textbooks, and has an intuitive physical interpretation.

We will see in Sec. IV that we can use the simplifie
theorem as the starting point for introducing the delta fu
tion in a quick and intuitive way that requires little mat
ematical background, but is still general enough to be of r
use in practical applications. In Sec. V we show how it c
be used to quickly prove some interesting differential iden
ties involving the delta function. An application in electrod
namics is discussed in Sec. VI, where we will also see
the aforementioned theorem helps one to understand why
product of generalized functions is not always well define

II. THE BASIC RESULT

Consider a functiong such that the integral

G[E
2`

`

g~x!dx ~1!
180 Am. J. Phys.70 ~2!, February 2002 http://ojps.aip.org
n-

-
s.
rge
t
ll

-
s

re
al
at

r-
n

or
t
ks,

ry

-

al
n
-

at
he
.

exists and is finite. We also consider a family of functio
that depends on the parameterg.0 defined as follows:

gg~x![gg~gx!. ~2!

Increasingg amounts to stretching a plot of the function
the vertical direction while compressing it in the horizon
direction in such a way that the integral does not change
can be seen by definingy5gx:

E
2`

`

gg~x!dx5E
2`

`

gg~gx!dx5E
2`

`

g~y!dy5G. ~3!

Our main result is that the sequencegg(x) is proportional
to the Dirac delta function asg→`:

lim
g→`

gg~x!5Gd~x!. ~4!

That is,

lim
g→`

gg~gx!5d~x!E
2`

`

g~u!du. ~5!

The proof, which can be used as a template for rela
results, starts by considering the integrals of the function
the sequence:

Gg~x![E
2`

x

gg~u!du5gE
2`

x

g~gu!du5E
2`

gx

g~v !dv,

~6!

where we have made the change of variablesv5gu. Be-
causeg.0, the limit of this sequence is easily calculated
using the last expression in Eq.~6! and the definition of the
Heaviside unit step functionu(x):

lim
g→`

Gg~x!55 E
2`

`

g~v !dv if x.0

E
2`

2`

g~v !dv if x,06
5G3H 1 if x.0

0 if x,0J 5Gu~x!. ~7!

We have to take the derivative of the result in Eq.~7!, but
limits and derivatives of ordinary functions rarely commu
180/ajp/ © 2002 American Association of Physics Teachers
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unless further mathematical assumptions are fulfilled. Ho
ever, one of the most desirable properties of generali
functions4 is that their derivatives and limits always com
mute, so that@ limg→` Gg#85 limg→` Gg8 , because for any
regular functionf (x) that decreases fast enough at infin
we have

E
2`

`

@ lim
g→`

Gg8~x!# f ~x!dx

5 lim
g→`

E
2`

`

Gg8~x! f ~x!dx

52 lim
g→`

E
2`

`

Gg~x! f 8~x!dx

52E
2`

`

@ lim
g→`

Gg~x!# f 8~x!dx

5E
2`

`

@ lim
g→`

Gg~x!#8 f ~x!dx. ~8!

Here we have used the fact that the limit of any seque
hg(x) of generalized functions is defined by

E
2`

`

@ lim
g→`

hg~x!# f ~x!dx[ lim
g→`

E
2`

`

hg~x! f ~x!dx, ~9!

and the derivative of the generalized functionh(x) is given
by

E
2`

`

h8~x! f ~x!dx52E
2`

`

h~x! f 8~x!dx. ~10!

By taking the derivative of the result in Eq.~7! as a gener-
alized function and remembering thatu8(x)5d(x) and
Gg8(x)5gg(x), we recover Eq.~5!.

Although theorem~5! or related results must have bee
known by many people for a long time, it seems that
generality and usefulness have been overlooked in textbo
on mathematical methods in physics and in other phy
textbooks that use the delta function, for example, in elec
dynamics. As an illustration, let us consider the Gauss
function

g~x!5
1

Ap
e2x2

, ~11!

which leads to the sequence of integrals

E
2`

gx

g~v !dv5
11erf~gx!

2
→

g→`

u~x!, ~12!

as displayed in Fig. 1 forg51,...,10. The derivatives ar
shown in Fig. 2 and converge to the delta function:

gg~gx!5
g

Ap
e2g2x2 →

g→`

d~x!. ~13!

An example that provides one of the most useful repres
tations of the delta function is the Fourier transform. If w
defineg(x)5sinx/px, then
181 Am. J. Phys., Vol. 70, No. 2, February 2002
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1

2p E
2`

`

eikx dk5
1

2p
lim

g→`
E

2g

g

eikx dk

5 lim
g→`

g
singx

pgx

5d~x!E
2`

` sinu

pu
du5d~x!. ~14!

We stress that to obtaingg(gx)→d(x), the functiong need
not be positive~as required in the theorem proved in Ref.!
or even symmetric about the origin; we can choose any fu
tion with an unit integral. Although the corresponding plo
would not look as esthetically pleasing as those in Fig. 2,
limit would be the delta function, which is symmetric
d(2x)5d(x), and is intuitively understood as non-negativ
Notice also that, contrary to the intuitive idea thatd(x) is
infinite at the origin, a sequence converging tod(x), that is,
corresponding to*R g(u)du51 with R5(2`,`), will be-
have at the origin asgg(0), which may converge to1`, but
also to 0, or even to2`.

Fig. 1. Plot of the sequence of functions (11erf(gx))/2 for g51,...,10. They
approach the unit step functionu(x).

Fig. 2. Plot of the sequence of functionsgg(gx) defined in Eq.~13! for
g51,...,10. Their limit is the Dirac deltad(x).
181Aguirregabiria, Herna´ndez, and Rivas
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III. RELATED RESULTS

The theorem shown in Eq.~5! provides a template fo
similar results that can be proven in much the same way.
instance, the delta function need not be centered at the
gin; one obviously has

lim
g→`

gg~g~x2a!!5d~x2a!E
2`

`

g~u!du, ~15!

and the equivalent formula obtained by makinge51/g:

lim
e→0

1

e
gS x2a

e D5d~x2a!E
2`

`

g~u!du. ~16!

Moreover, we can suggest to students that they prove, in
same spirit as the derivation shown in Sec. II, that for a
function h(g) with finite limit a5 limg→` h(g), we have

lim
g→`

gg@g~x2h~g!!#5d~x2a!E
2`

`

g~u!du. ~17!

We obtain another useful result by taking the derivative
Eq. ~15! as a generalized function:

lim
g→`

g2g8~g~x2a!!5d8~x2a!E
2`

`

g~u!du. ~18!

Further derivatives are straightforward. An example of su
a sequence of derivatives, which is useful for represen
dipoles, is displayed in Fig. 3 for the derivatives ofgg(gx)
defined in Eq.~13!.

The results are readily extensible to higher dimensio
For example, in three dimensions, the equivalent of Eq.~16!
is

lim
e→0

1

e3 gS r2r 8
e D5d~3!~r2r 8!E

R3
g~u!d3u, ~19!

where the three-dimensional delta function is defined
usual:

d~3!~r2r 8![d~x2x8!d~y2y8!d~z2z8!. ~20!

The proof of this result can be proposed as a problem.

IV. INTRODUCING THE DELTA FUNCTION

Although the result in Eq.~5! seems to have been large
overlooked, it contains the sequences that are usually

Fig. 3. Plot of the derivatives of the functions plotted in Fig. 2 forg
51,...,10 showing the convergence tod8(x).
182 Am. J. Phys., Vol. 70, No. 2, February 2002
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cussed in other ways in textbooks on mathematical meth
of physics.2 In fact, Eq. ~5! contains an infinite number o
such sequences; their common limit defines~up to a con-
stant! the delta function in the spirit of generalized functio
as a limit of sequences of ordinary functions~see, for ex-
ample, Ref. 5! rather than from Schwartz’s point of view,7

where the delta function is more formally defined as an
ject ~a ‘‘distribution’’ ! that associates with any test functionf
its value at the origin:

E
2`

`

f ~x!d~x!dx5 f ~0!. ~21!

On the other hand, rather than as a theorem derived f
the theory of generalized functions, results~5! and ~15! can
be used as a quick and dirty way to introduce generali
functions to students of physics with little mathematic
background. Students will not object to the following calc
lation of a limit by means of the change of variablesv
5g(u2a), if they are told that it is correct provided that th
function f satisfies the appropriate mathematical conditio
of regularity and decrease at infinity:

lim
g→`

E
2`

`

gg~g~u2a!! f ~u!du

5 lim
g→`

E
2`

`

g~v ! f S v
g

1aDdv5 f ~a!E
2`

`

g~v !dv. ~22!

Because this result does not depend on the details off andg,
we can then tell students that we can summarize all the lim
of type shown in Eq.~22! by means of the single expressio
~15!, where thed ‘‘function’’ only makes sense when intro
duced inside an integral with another~suitable! function:

E
2`

`

f ~x!d~x2a!dx5 f ~a!. ~23!

The remaining elementary properties of the delta funct
and its derivatives can be easily established as usual.
easy student problem would be to interpret the result in
~19! in a way similar to Eq.~22!.

An illustrative example is a point chargeq located at the
origin, by which we mean a charge densityr(r ) about which
we know only that it is negligible except very near the o
gin, but has a finite integral

E
R3

r~r !d3r5q. ~24!

There are infinite number of forms forr; it is enough to pick
one integrable functiong(r ) that decreases asr 5ur u in-
creases, and satisfies

E
R3

g~r !d3r5q. ~25!

In fact, for anye.0, the densityre(r )5e23g(r /e) leads to
the same chargeq,

E
R3

re~r !d3r5E
R3

g~r !d3r5q, ~26!

and is located about the origin at distances not much la
thane. For small enoughe, re is a good approximation to a
point charge whatever the profileg(r ) might be.

Most students will agree that it makes sense to write
182Aguirregabiria, Herna´ndez, and Rivas
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lim
e→0

re~r !5qd~3!~r !, ~27!

to obtain

lim
e→0

E
R3

re~r ! f ~r !d3r5q f~0!, ~28!

instead of using a modification of Eq.~22!. In this way, for
example, the potential at pointr may be calculated as

V~r !5 lim
e→0

1

4p«0
E

R3

re~r 8!

ur2r 8u
d3r 85

1

4p«0

q

r
, ~29!

or simply as

V~r !5
1

4p«0
E

R3

qd~3!~r 8!

ur2r 8u
d3r 85

1

4p«0

q

r
. ~30!

Of course ife is small but nonzero, the profile functio
g(r ) will also appear in the form of a dipole moment, as t
following problem shows.

~i! Use a Taylor expansion and the partial derivative of E
~19! to prove that

re~r !5qd~3!~r !2p"“d~3!~r !1O~e2!, ~31!

wherep is the electric dipole moment of the charge distrib
tion re(r ):

p5E
R3

rre~r !d3r5eE
R3

rg~r !d3r . ~32!

~Note thatp vanishes in the limite→0.!
~ii ! Assume thatf (r ) decreases fast enough asr→`, and

prove the following result by using integration by parts:

E
R3

]d~3!~r !

]xi
f ~r !d3r52

] f ~0!

]xi
. ~33!

~iii ! Show that if terms proportional toe2 are negligible,
the potential is given by

V~r !5
1

4p«0
Fq

r
1

p"r

r 3 G . ~34!

In Sec. V we discuss how the complete fields of elec
~and magnetic! dipoles can be calculated from the corr
sponding potential.

V. PROVING DIFFERENTIAL IDENTITIES

Some time ago Frahm8 introduced a number of novel dif
ferential identities that are useful in electrodynamics. We w
show how Eq.~19! can be used to shorten a physicist’s pro
of these identities and make them easier for students
illustrate the method, it will be enough to prove the follow
ing identity:8

2
]2

]xi]xj

1

r
5

]

]xi

xj

r 3 5
r 2d i j 23xixj

r 5 1
4p

3
d i j d

~3!~r !,

~35!

where r 25x21y21z2. The origin of thed function in Eq.
~35! is of course the fact that the functionf 05xj /r 3 to be
derived is not regular at the origin. So, we will start by co
sidering a continuous family of regular functions that goes
f 0 in the appropriate limit:
183 Am. J. Phys., Vol. 70, No. 2, February 2002
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f e[
xj

~r 21e2!3/2 →
e→0

f 05
xj

r 3 . ~36!

The derivative off e is readily calculated:

]

]xi

xj

~r 21e2!3/25
r 2d i j 23xixj

~r 21e2!5/2 1
e2d i j

~r 21e2!5/2. ~37!

Notice that the first term on the right-hand side will go to t
first term in~35! ase→0. However, the second term does n
go to zero, but can be written as

e2

~r 21e2!5/25
1

e3 gS r

e D , ~38!

with

g~r ![
1

~r 211!5/2. ~39!

Because*R3g(r )d3r54p/3, we recover Eq.~35! if we take
the limit e→0 in Eq. ~37! and use Eq.~19!.

The careful reader will notice that the first term on t
right-hand side of Eq.~37! may also be written in a simila
way:

r 2d i j 23xixj

~r 21e2!5/2 5
1

e3 gi j S r

e D , ~40!

with

gi j ~r ![
r 2d i j 23xixj

~r 211!5/2 . ~41!

However, these functions do not converge to the delta fu
tion becausegi j is not integrable. When we say that this lim
is obtained simply by droppinge on the left-hand side, we
mean that the short-hand notation (r 2d i j 23xixj )/r

5 should
not be understood as an ordinary function~which would not
be locally integrable, and thus would not define a generali
function!. Instead, this notation denotes the generalized fu
tion that is defined by a careful limiting process, which c
be implemented in polar coordinates by first integrating
angular variables to avoid the singularity at the origin~the
logarithmic singularity at infinity will be compensated by th
asymptotic behavior of the test functionf !:

E
R3

r 2d i j 23xixj

r 5 f ~r !d3r

5 lim
e→0

E
0

`F E
0

pE
0

2p r 2d i j 23xixj

~r 21e2!5/2 f ~r !sinu du dwG r 2 dr.

~42!

When we say that the sequence 1/e3g(r /e) in Eq. ~38! will
converge to the delta function, we mean that we need
repeat the calculation of lime→` 1/e3*R3g(r /e) f (r )d3r for
each choice off (r ), because we have proved that the res
will always be proportional tof (0).

By contracting the indices in Eq.~35! and changing the
sign, we can recover the elementary solution of the Pois
equation:

¹2
1

r
524pd~3!~r !. ~43!
183Aguirregabiria, Herna´ndez, and Rivas



v
n
E
o

th

ily
g
o

s

as

re

ugh

Be-
Of course, if Eq.~35! has not been discussed, we can pro
Eq. ~43! directly by considering the regularized functio
1/Ar 21e2. Another easy and interesting consequence of
~35! is the appearance of delta-function terms in the fields
electric and magnetic dipoles.8

A similar calculation can be used by students to prove
following result:8

]3

]xi]xj]xk

1

r

5
3r 2~d i j xk1d jkxi1dkixj !215xixjxk

r 7

2
4p

5 Fd i j

]d~3!~r !

]xk
1d jk

]d~3!~r !

]xi
1dki

]d~3!~r !

]xj
G .

~44!

VI. AN APPLICATION IN ELECTRODYNAMICS

We can used-function converging sequences to read
solve problems such as ‘‘Calculate the field and Poyntin
vectorS for a charge moving in a straight line at the speed
light.’’ 9 To solve this problem, consider a point chargee of
massm moving with constant velocityv along thex axis. If
the particle is at the origin~0,0,0! at t50, the electric and
magnetic fields at any other point and time are

E5
1

4p«0

ge

r 3 @~x2vt !i1yj1zk#, ~45!

B5
m0

4p

gev
r 3 ~2zj1yk!, ~46!
nc
b

e

–
rm

s

a
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where g5(12v2/c2)21/2, v5c(12g22)1/2, r 25g2(x
2vt)21y21z2, and i, j , and k are the usual unit vector
along the coordinate axis.

We are interested in the limitv→c, or equivalentlyg
→`. If we assumem as given, the energyE5gmc2 and
linear momentump5gmv will diverge. But we may instead
consider a family of particles with rest masses that scale

m5g21
E

c2 ~47!

for a fixed value ofE, so that the energy and momentum a
finite in the limit g→`.

Because

E
2`

` g

r 3 dx5E
2`

` 1

~x21y21z2!3/2dx5
2

r2 , ~48!

with r25y21z2, we obtain from Eq.~17!

lim
v→c

g

r 3 5
2

r2 d~x2ct!, ~49!

so that the fields are confined to the plane passing thro
the charge in the direction perpendicular to the motion:

E5
1

2p«0

e

r2 d~x2ct!~yj1zk!, ~50!

B5
m0

2p

ec

r2 d~x2ct!~2zj1yk!. ~51!

We have made use of the identity (x2ct)d(x2ct)50.
However, the problem requires more careful analysis.

cause the electromagnetic energy–momentum tensor10
T5«0S 1
2~E21c2B2! c~E3B!

c~E3B! 2@EiEj1c2BiBj2
1
2d i j ~E21c2B2!#

D ~52!
e
sur-
en-
is quadratic in the fields, it contains squares of delta fu
tions, which are notoriously ill-defined objects, as can
seen by usingd-function converging series. Ifgg(gx)
→d(x)*R g(u)du, its square would be expected to diverg

g2g2~gx!→gd~x!E
R
g2~u!du→`, ~53!

even if g2 is integrable. In our example the energy
momentum tensor contains diverging terms of the fo
g2/r 6, and thus in the limitv→c, we will have an infinite
density of energy, momentum, and stress. This limit ca
serious doubts on the physical existence of the limitv→c,
which is consistent with the lack of massless charged p
ticles.

Nevertheless, a more interesting limit is obtained11 if we
further assume that the charge also scales as

e25g21q2 ~54!
-
e

,

ts

r-

for some constantq. In the limit g@1, the massless particl
has no charge and carries no electromagnetic field, but
prisingly has a relic electromagnetic energy–momentum t
sor:

T5
1

4p«0

3q2

32r3 d~x2ct!S 1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

D . ~55!

In fact, because

E
2`

` g

r 6 dx5E
2`

` 1

~x21y21z2!3 dx5
3p

8r5 , ~56!

we obtain as a consequence of Eq.~17!,

lim
v→c

g

r 6 5
3p

8r5 d~x2ct!. ~57!
184Aguirregabiria, Herna´ndez, and Rivas
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According to Eq.~57!, there is room in the formalism o
classical electrodynamics for a family of massless unchar
particles that depends on two parameters: their mechan
energyE and the valueq, which essentially measures th
finite electromagnetic energy that remains in the limit of va
ishing charge and fields.11

To calculate the gravitational field of a massless particle
general relativity, Aichelburg and Sexl12 considered a family
of point masses that scales according to Eq.~47! and are
represented by a metric obtained from the Schwarzschild
lution by a Lorentz boost corresponding tov→c. As in the
electromagnetic case, the gravitational field is contained
the plane orthogonal to the motion of the particle. They di
careful calculation to show that

lim
v→c

F g

Ag2~x2vt !21r2
2

g

Ag2~x2vt !211
G

522 lnrd~x2ct!, ~58!

but we see that Eq.~58! is a straightforward consequence
Eq. ~17! and

E
2`

` F 1

Ax21r2
2

1

Ax211
Gdx522 lnr. ~59!
185 Am. J. Phys., Vol. 70, No. 2, February 2002
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