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We discuss the usefulness and physical interpretation of a simple and general way of constructing
sequences of functions that converge to the Dirac delta function. The main result, which seems to
have been largely overlooked, includes most of thiinction converging sequences found in
textbooks, is easily extended, and can be used to introduce many useful generalized functions to
physics students with little mathematical background. We show that some interesting delta-function
identities are simple consequences of the one discussed here. An illustrative example in
electrodynamics is also analyzed, with the surprising result that the formalism allows as a limit an
uncharged massless particle which creates no electromagnetic field, but has a nonzero
electromagnetic energy—momentum tensor. 2@2 American Association of Physics Teachers.
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[. INTRODUCTION exists and is finite. We also consider a family of functions

) ) ) _ that depends on the parameter 0 defined as follows:
Generalized functions are useful in electrodynamics, quan-

tum mechanics, and other branches of physiégart from 9,(X)=v9(yx). 2

their usefulness for solving differential equations, they proncreasingy amounts to stretching a plot of the function in
vide a natural way to describe a distribution of point chargesine vertical direction while compressing it in the horizontal

We can understand a point charge as a continuous charggection in such a way that the integral does not change, as
distribution whose density has a known finite integral, butﬁan be seen by defining= yx:

that to a good approximation vanishes except in a very smal
neighborhood. This intuitive picture of point charges natu- * * *
rallg leads to the consideratign of sequrt)ances of gontinuous fﬁxgy(x)dx=f _y9(yx)dx= fﬁxg(y)dyz g @O
functions with finite integrals that converge to the Dirac delta
function. Our main result is that the sequergg(x) is proportional
Particular examples of such sequences of functions art the Dirac delta function ag— :
discussed heuristically in some textbooks on mathematical .
methods More advanced textbooks discuss theorems that 1M 95<(X)=Ga(X). 4
prove the convergencd. However, determining if these [
theorems are satisfied is often a daunting task for undeffhat is,
graduate students. In Sec. Il we discuss a simplified version .
of a known (':onvergencgtheoré‘lﬁ.his version appears un- lim yg(yx)= 5(X)f g(u)du. (5)
der more stringent conditions as an exercise in Ref. 5 and for .., —oo
a restricted case and with a different proof in Ref. 6. It is not _
as general as some theorems given in advanced textbooks, Th€ Proof, which can be used as a template for related
but it is easily proven, can be readily extendsee Sec. 1), results, starts by considering the integrals of the functions in
includes almost all the examples discussed in introductoryn® Sequence:
textbooks, and has an intuitive physical interpretation. X X x
We will see in Sec. IV that we can use the simplified Gy(x)EJ g,(u)du= yJ g(yu)du=J g(v)do,
theorem as the starting point for introducing the delta func- - - -
tion in a quick and intuitive way that requires little math- (6)

ematical background, but is still general enough to be of realyhere we have made the change of variahlesyu. Be-

use in practical applications. In Sec. V we show how it cancaysey>0, the limit of this sequence is easily calculated by
be used to quickly prove some interesting differential identi- gjng the last expression in E@) and the definition of the
ties involving the delta function. An application in electrody- |aaviside unit step functiof(x):

namics is discussed in Sec. VI, where we will also see that

the aforementioned theorem helps one to understand why the o )
product of generalized functions is not always well defined. 7@9(U)dv if x>0
lim G,(x)= .
[ f g(v)dv if x<0
II. THE BASIC RESULT -
Consid functi h that the int I L =0
onsider a functiorg such that the integra =0gX = )
Y 9 GX1 i ool =900 (@)
G= foc g(x)dx (1)  We have to take the derivative of the result in £@), but
—w limits and derivatives of ordinary functions rarely commute
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unless further mathematical assumptions are fulfilled. How- 1 g

ever, one of the most desirable properties of generalized
functiond is that their derivatives and limits always com-
mute, so tha(limwocGy]’zlimwxG’y, because for any 08
regular functionf(x) that decreases fast enough at infinity
we have 0.6
f [lim G(x)]f(x)dx 04
% Yy
w® 0.2
= lim f G(x)f(x)dx
o 0.0
. -1.0 0.5 0 0.5 1.0
— i !
=~ lim J_OOGV(X)f (x)dx Fig. 1. Plot of the sequence of functions« &rf(yx))/2 for y=1,...,10. They

y—®

approach the unit step functiaf(x).

=—F [lim G,(x)]f"(x)dx

‘y—>
= lim G (x)]' f(x)dx. 8 1 (= 1 v
fw[w,a TR0 ® —f e'kXdk=—|imf e dk
27 ) o 27, )y
Here we have used the fact that the limit of any sequence
h,(x) of generalized functions is defined by _lim oYX
Y
ﬁw[ lim h,(x)]f(x)dx= lim fﬁwhy(x)f(x)dx, 9 % sinu
y—® y—o® = 5(X)f Wdu= 5(X) (14)

and the derivative of the generalized functiofx) is given
by

. . We stress that to obtaipng(yx) — 8(x), the functiong need
J h (x)f(x)dx= _f h(x)f’ (x)dx. (10) not be positive(as_ required in th_e_theorem proved in Ref. 6

w % or even symmetric about the origin; we can choose any func-
. o . tion with an unit integral. Although the corresponding plots
By taking the derivative of the result in EQ7) as a gener- \would not look as esthetically pleasing as those in Fig. 2, the
alized function and remembering tha&'(x)=45(x) and |imit would be the delta function, which is symmetric,
G/(x)=g,(x), we recover Eq(5). o(—x)=4(x), and is intuitively understood as non-negative.

Although theorem(5) or related results must have been Notice also that, contrary to the intuitive idea thé(ix) is
known by many people for a long time, it seems that itsinfinite at the origin, a sequence convergingd(), that is,
generality and usefulness have been overlooked in textbookgyrresponding tg g g(u)du=1 with R=(—c°,), will be-
on mathematical methods in physics and in other physic§ e at the origin agg(0), which may converge te-o, but
textbooks that use the delta function, for example, in electroz 110 0 or even to-o. ’
dynamics. As an illustration, let us consider the Gaussian ' '

function
gx) = e * (11)
Jr ' 6
which leads to the sequence of integrals 5
g2 1+erf(yx)r—=
f g(v)dv= % ~ 6(%), 1
3
as displayed in Fig. 1 fory=1,...,10. The derivatives are
shown in Fig. 2 and converge to the delta function: 2
Y _yzxzyHOO
Y9(yx)=—=e — 3(X). (13
V7 0
-1.0 0.5 0.0 0.5 1.0

An example that provides one of the most useful represen-
tatlpns of the -delta function is the Fourier transform. If werig. 2. piot of the sequence of functions(yx) defined in Eq.(13) for
defineg(x) = sinx/mx, then y=1,...,10. Their limit is the Dirac delta(x).
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cussed in other ways in textbooks on mathematical methods
of physics? In fact, Eq.(5) contains an infinite number of
such sequences; their common limit defifep to a con-
stan} the delta function in the spirit of generalized functions
as a limit of sequences of ordinary functiotsee, for ex-
ample, Ref. 5 rather than from Schwartz's point of view,
where the delta function is more formally defined as an ob-
ject (a “distribution”) that associates with any test functibn

its value at the origin:

F f(x) 8(x)dx=f(0). (21)

1.0 05 0.0 05 1.0 On the other hand, rather than as a theorem derived from
_ o _ o the theory of generalized functions, resul and (15) can
Fig. 3. Plot of_ the derivatives of the functions plotted in Fig. 2 for  pha sed as a quick and dirty way to introduce generalized
=1,.,10 showing the convergencedt(x). functions to students of physics with little mathematical
background. Students will not object to the following calcu-
lIl. RELATED RESULTS lation of a_limit by means Of. t.he change of. variables
. . =+y(u—a), if they are told that it is correct provided that the
The theorem shown in Ed5) provides a template for function f satisfies the appropriate mathematical conditions
similar results that can be proven in much the same way. Fasf regularity and decrease at infinity:
instance, the delta function need not be centered at the ori- B
gin; one obviously has lim J yg(y(u—a))f(u)du

Lol Yy—©
lim yg(y(x—a))=4(x—a) Jf g(u)du, (15 . . .
T = lim f g(v)f| —+a dv=f(a)f g(v)dv. (22
and the equivalent formula obtained by makiang 1/y: y—oo ST Y -
1 [x—a @ Because this result does not depend on the detaflsiod g,
Im—g(T = 5(x—a)f g(u)du. (16)  we can then tell students that we can summarize all the limits
e—0 —®

of type shown in Eq(22) by means of the single expression

Moreover, we can suggest to students that they prove, in thé-5), where thes “function” only makes sense when intro-
same spirit as the derivation shown in Sec. II, that for anyduced inside an integral with anothesuitablg function:

function h(y) with finite limit a=lim,,_ .. h(y), we have o
. f f(x)8(x—a)dx=1f(a). (23
lim yg[v(x—h(v))]=5(x—a)f g(u)du. 17 o _ _
y—o - The remaining elementary properties of the delta function

fand its derivatives can be easily established as usual. One
easy student problem would be to interpret the result in Eq.
(19 in a way similar to Eq(22).
. 5, o * An illustrative example is a point chargglocated at the
l'”; Y9 (v(x=a))=4d'(x-2a) f_xg(u)du. (18 origin, by which we mean a charge densify) about which
v we know only that it is negligible except very near the ori-

Further derivatives are straightforward. An example of suchyin, but has a finite integral
a sequence of derivatives, which is useful for representing
dipples, _is displayed in Fig. 3 for the derivatives wd(yx) f p(Nd3r=q. (24)
defined in Eq(13). R3

The results are readily extensible to higher dimension
For example, in three dimensions, the equivalent of (E6)
is

We obtain another useful result by taking the derivative o
Eq. (15) as a generalized function:

SThere are infinite number of forms for it is enough to pick
one integrable functiorg(r) that decreases as=|r| in-
creases, and satisfies

o1 [r=r’ ,
||m?g< . )=5(3)(r—r )ngg(u)dBU, (19 fng(r)d‘?r:q @9

e—0

where the three-dimensional delta function is defined asn fact, for anye>0, the density(r)= e 3g(r/€) leads to

usual: the same charge,
S(r—r"=86(x—x")6(y—y')8(z—2"). (20) , ,
The proof of this result can be proposed as a problem. fRspf(r)d r= Jng(r)d r=a. (26)

and is located about the origin at distances not much larger

thane. For small enougle, p. is a good approximation to a
Although the result in Eg(5) seems to have been largely point charge whatever the profitgr) might be.

overlooked, it contains the sequences that are usually dis- Most students will agree that it makes sense to write

V. INTRODUCING THE DELTA FUNCTION
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lim p(r)=q6(r), (27)
e—0

to obtain
Iimj pr)f(r)d3r=qf(0), (29
e—0 R®

instead of using a modification of ER2). In this way, for
example, the potential at pointmay be calculated as

B pelr’) o, q
V(I’)—lll;ﬂo47780 fR3|r—r’| dr’= dmeg 1’ (29
or simply as
1 qs®(r’) s 1 q
V(r)_47780 RS |r—r’| 4e (30

Of course ife is small but nonzero, the profile function

g(r) will also appear in the form of a dipole moment, as the

following problem shows.
(i) Use a Taylor expansion and the partial derivative of Eq
(19) to prove that

pr)=0q8(r)—p-V&'3(r)+0(e?), 31

wherep is the electric dipole moment of the charge distribu-

tion p(r):

p=J rpE(r)d3r=ef rg(r)d3r
RS RS

(Note thatp vanishes in the limit—0.)
(i) Assume thaf (r) decreases fast enoughmas«, and
prove the following result by using integration by parts:
J 38°)(r) af(0)
RS X ax;
(iii) Show that if terms proportional te? are negligible,
the potential is given by

(32

f(r)d%r (33

q pr
Frs)

V(r)= ;

(34)

4meg

In Sec. V we discuss how the complete fields of electric

(and magnetic dipoles can be calculated from the corre-
sponding potential.

V. PROVING DIFFERENTIAL IDENTITIES

Some time ago Frahfrintroduced a number of novel dif-

ferential identities that are useful in electrodynamics. We will
show how Eq(19) can be used to shorten a physicist’s proof
of these identities and make them easier for students. To

illustrate the method, it will be enough to prove the follow-
ing identity®

82
B C7Xi§Xj F

1 r2s

d X
(9——3

(39
wherer?=x?+y?+z2. The origin of thed function in Eq.

(35) is of course the fact that the functio‘r@=xj/r3 to be
derived is not regular at the origin. So, we will start by con-

sidering a continuous family of regular functions that goes to

fo in the appropriate limit:
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X' €—>O
fEE(rz_‘_—Jez)s/z*fo:—s (36)
The derivative off . is readily calculated:
(9 X] I’25ij _3Xin 625” (37)

+ (r2+€2)5/2'

Notice that the first term on the right-hand side will go to the
first term in(35) ase— 0. However, the second term does not
go to zero, but can be written as

&_Xi (r2+62)3/2_ (r2+62)5/2

2

€ 1 r
(T e —9<> %9
with
1
g(f)Emm- (39

Becausef gsg(r)d®r=4/3, we recover Eq(35) if we take
the limit e—0 in Eq.(37) and use Eq(19).

The careful reader will notice that the first term on the
right-hand side of Eq(37) may also be written in a similar

way:
r2s;—3xx; 1 [r
e anl o) 0
with
r5 = 3XX; 1)

gu(f)_wr-

However, these functions do not converge to the delta func-
tion becausg; is not integrable. When we say that this limit
is obtained simply by dropping on the left-hand side, we
mean that the short-hand notatior? §; —3x;x;)/r> should

not be understood as an ordinary functigvhich would not

be locally integrable, and thus would not define a generalized
function). Instead, this notation denotes the generalized func-
tion that is defined by a careful limiting process, which can
be implemented in polar coordinates by first integrating the
angular variables to avoid the singularity at the origine
logarithmic singularity at infinity will be compensated by the
asymptotic behavior of the test functidpn

f r5,J 3xxjf( \dr
RS r°

I F f 7 r70; = 3% f(r)sinodode|r2d
=1m r)sin r r.
m ol ﬁr I ¢

(42

When we say that the sequencet(r/e) in Eq. (38) will
converge to the delta function, we mean that we need not
repeat the calculation of lip,,. 1/€3fgsg(r/€)f(r)d®r for
each choice of(r), because we have proved that the result
will always be proportional td (0).

By contracting the indices in Eq35) and changing the
sign, we can recover the elementary solution of the Poisson
equation:
VZE:

r

—4m83(r). (43
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Of course, if Eq.(35) has not been discussed, we can provewhere y=(1-0v%/c?) 2 v=c(1—y )2 r2=5%(x
Eq. (43) directly by considering the regularized function —yt)2+y?+272 andi, j, andk are the usual unit vectors
1/\r2+ €2. Another easy and interesting consequence of Edalong the coordinate axis.

(39) is the appearance of delta-function terms in the fields of We are interested in the limi¢—c, or equivalentlyy

electric and magnetic dipolés. —o. If we assumem as given, the energf=ymc® and
A 5|_m|Iar calcsulatlon can be used by students to prove thgear momentunp= ymv will diverge. But we may instead
following result. consider a family of particles with rest masses that scale as
3 1 . E
5Xi5Xj5Xk F m=vy ? (47)
3r( i Xkt jiXi+ OkiX;j) — 15K XX for a fixed value ofg, so that the energy and momentum are
- 7 finite in the limit y—oo.
Because
am|  963(r) a83(r) a83(r)
_? 5” 3 +5jk P +5ki P . © Y o 1 2
i " N
with p?=y?+ 22, we obtain from Eq(17)
VI. AN APPLICATION IN ELECTRODYNAMICS y 2
We can uses-function converging sequences to readily l'incr_3= ?5(X_Ct)’ (49)

solve problems such as “Calculate the field and Poynting’s _ . .
vectorS for a charge moving in a straight line at the speed ofso that the fields are confined to the plane passing through
light.” ® To solve this problem, consider a point chaggef ~ the charge in the direction perpendicular to the motion:

massm moving with constant velocity along thex axis. If 1 e
the particle is at the origiri0,0,0 at t=0, the electric and E= 5 —2d(x—ct)(yj+zk), (50
L : ] mTEQ P
magnetic fields at any other point and time are
1 e B= 20 8 six—ct)(—zj+yk) (51)
S =——dx—ct)(—z .
:Fsor—3[(x—vt)l+yj+2k], (45) 2 p2 1Ty
We have made use of the identity{ ct) §(x—ct)=0.
_ Mo yeO However, the problem requires more careful analysis. Be-
4 o3 (=2Z+yk), (46) cause the electromagnetic energy—momentum t&hsor
1(E?+c?B?) c(EXB)
T:80 (52)
C(EXB)  —[EE;+c?BB;—15;(E?+c?B?)]

is quadratic in the fields, it contains squares of delta funcfor some constand. In the limit y> 1, the massless particle
tions, which are notoriously ill-defined objects, as can behas no charge and carries no electromagnetic field, but sur-
seen by usingsfunction converging series. Ifyg(yx) prisingly has a relic electromagnetic energy—momentum ten-
—8(x) [rg(u)du, its square would be expected to diverge, sor:

11 00
Y292 (yx)— y8(x) JRQZ(U)dUHw, (53 1 3¢ 1100
T=———-5d(x—ct 55
4778032,)3( o 0 0 o0 59
even if g2 is integrable. In our example the energy— 000 O
momentum tensor contains diverging terms of the form
¥?/r®, and thus in the limit —c, we will have an infinite !N fact, because
density of energy, momentum, and stress. This limit casts
serious doubts on the physical existence of the lumnitc, * _Vd (7 1 dx— 3_77 (56
which is consistent with the lack of massless charged par- | __ 89X~ e (XP+y?+7%)3 x= 8p>’
ticles.
Nevertheless, a more interesting limit is obtaieflwe  we obtain as a consequence of Etj),
further assume that the charge also scales as
lim-% = 27 s(x—ct) (57)
im—5 = =— 8(x—ct).
e?=y g’ (54) T
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