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Abstract

The electric field that an external slowly moving charge produces inside a hollow conducting sphere is obtained. Since it is
shown that this field depends critically on the sphere thickness, this might have consequences on the screening of electronic

equipment.

Electronic equipment is usually bound in metal-
lic or plastic cases. To shield the electronics inside
plastic covers sometimes a conducting plastic mate-
rial is used, but more often one coats the inside part
of the non-conducting plastic cover with a conduct-
ing deposit, which is usually made of different metal-
lic alloys. This deposit has a thickness of the order of
0.5-50 wm and it damps the external electromagnetic
radiation over a wide frequency spectrum [1]. It is
usually argued that it also protects the device against
neighbouring electrostatic discharges. Certainly, elec-
trostatic fields do not penetrate. Nevertheless, the aim
of this Letter is to show that velocity fields will be
present inside and that this penetration depends criti-
cally on the thickness of the metallic coat.

The penetration of the electric and magnetic ficlds
produced by a point charge moving at low velocity
parallel to an infinite conducting wall has been studied
by Boyer [2]. Jones [ 3] has examined the penetration
into conductors of the magnetic fields produced by
moving charges, and the shielding of the magnetic field
of a non-relativistic charge moving near a conducting
spherical surface has been discussed by Furry [4].

Penetration of both fields, electric and magnetic, in a
solid conducting sphere has been considered recently
by the present authors [5].

In another context, one could mention that the pen-
etration of the velocity fields must be taken into ac-
count to explain several experiments designed to test
the weak equivalence principle for anti-matter [6].
On the other hand, Boyer [7] has suggested that the
Aharonov-Bohm effect implies the existence of clas-
sical electromagnetic [orces between charged particles
and solenoids, and that the electric and magnetic ve-
locity fields could be relevant in the explanation of
this effect.

In the present paper we shall study the electric field
inside a hollow conducting sphere, in the presence of
an external non-relativistic moving point charge.

Let us consider an uncharged hollow conducting
sphere of constant resistivity n and whose external and
internal radius are a and b, respectively (see Fig. 1).
A point charge g is moving along the radial direction
with constant velocity v = dx/ dt < ¢, from the cen-
ter. To zeroth order approximation in v/c, Maxwell’s
equations read
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Fig. 1. Image charges of the equivalent electrostatic problem.
curl E® =0, divD® = p®
curl HO = j O divB® =, (1)

where p(® and j» are the charge and current densi-
ties at zeroth order, respectively. To this order B(® =
0 everywhere and E®) vanishes inside the sphere of
radius a.

Outside the conductor, E‘* is the sum of the elec-
trostatic fields due to the charge g located at the co-
ordinate point x and two image charges ¢’ = —ga/x
and ¢ = ga/x placed at a distance d = a*/x from
the center and at the center of the sphere respectively
[8, p. 51]. Furthermore, the surface charge density
on the sphere is obtained by the discontinuity of the
electric field and is given by

q q(x* —a*)
dmax  4mwa(x? — 2xacos @ + a?)3/?’

(2)

If the charge is now moving with small velocity, v =
dx/ d¢, the surface charge density changes and then
necessarily inside the conductor there appears a cur-
rent density whose radial component on the outer sur-
face is given by the continuity equation, which up to
the first-order is

aV(g) =

dor(® F:loal)
(1) _ _ih o 3
at —Jr ¥ ox Jr ’ ()
and thus
15
y 4+ x%acosd — Sxa? + 34 cos @ 1
(x? — 2xacos @ + a?)5/? x2
(4)

Obviously, the current density inside the conductor but
on the inner surface is

iD(b,0) =0, (%)

by the same argument as above.
The first order term of the electric field satisfies
0
curlE(nz—&:O. (6)
ot
and will be expressed in the form E'" = —grad ¢
in terms of the scalar function ¢b(r, &), which must
satisty Laplace’s equation.
Due to the axial symmetry this function has the
following form in terms of Legendre polynomials
[8, p. 86],

¢(r.8)

=¢1(?’>9)EZ( o duE n+l)Pn(COS¢9),

n=0

b<r<a,

=¢o(r.0)

I

Z C,r"P,(cosf),

n=0
0<r<b, (7)

and must satisfy the following boundary conditions,

D] pia), (8)
ar r=a
i (r,0)|  _
T | =

By making use of the generating function for Legendre
polynomials,

1 = |
Z,U) = = P,(u), 10
it T2 1 ,,E:OZ"H W (1), (10)
we get
5 3 v
2z f+3i___z + z%u — 5z + 3u
"z dz (22 —=2zu+1)572
2 1 1
§ Bt I oo (11)
zli

By comparing (4) and (8) with (11) where z = x/a
and u = cos 4, it is easy to see that

n
B, = b2n+lAn,
y=— (12)
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g 2n+1)(n+1) 1
—E nxJHQ f = SQn+1 ’
forn = 1, (13)

Ap=0, Ay=

where s = b/a. In the limit case when b =0, B, =0
and

g 2n+1D(n+1)

A= dqr nxit?

, nzl, (14)
and we recover the results obtained in Ref. [5].

Continuity of the transversal component of the elec-
tric field across the inner surface r = b implies

()| _ i (n6)| (5
99 r=h 90 r=b
and thus
s =10,
n qunp (2n+ 1) 1
C”=A”<l+n+l)=gg nx+r 1 — g2l
n=l. (16)

The electric field in the spherical cavity has the com-
ponents

Eo (r,8) = — Z nC,r" ' P,(cos ),

n=1

1 dP,(cos @)

0 (17

Eng(r,0) == > Cp"”

n=1

and thus in the inner surface r = b, a charge density
would appear, of value

o (b,0) = €[ E1,(b,0) — Ep, (b,6)]

oo

3 qun60(2n+l)2 gl

dar xht2 | — gentl Py (cos @).

n=1

(18)

To realise the order of screening of the electric field
inside the sphere, let us compute this field at the point
r = 0. It is given by

gy 9 1
Eg(0)y=-C=—= .
o(0) 'Tar ¥ 11—

(19)

If we call the thickness t = @ — b, then for t < a
expression (19) can be written

4 34

)= dr 31’

(20)
and it must be observed that this field depends criti-
cally on the sphere thickness in such a way that the
screening decreases as the sphere becomes thinner.

We wonder if this effect could be responsible for
some damage that reportedly is done on electronic
equipment ol flight control centers during nearby
storms,

For instance, a typical lightning has values of g ~
10" Cms™', and assuming that it hits at x = 10 mof a
plastic box of 1 m size and that the metallic deposit is
a copper-nickel alloy (7 ~ 107 Q@m~") and 1 um
thick, we get an electric field inside of 10* Vm~1.
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