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By using the homomorfism between SL(2, C) and SO(3, 1) we obtain explicit an-
alytic expressions for the composition law of the Lorentz group in terms of the
physical parameters, relative velocity and orientation among inertial observers.
This proves to be appropriate to analyze the group contractions.

1 Poincaré group

It is the group of linear transformations of Minkowski’s space-time that leaves
invariant the separation between any two close space-time events ds2 = dxµdxµ.
We shall consider the contravariant components xµ ≡ (ct, r), and x′ = gx is ex-
pressed as xµ′

= Λµ′
ν x

ν +aµ
′
, in terms of a constant matrix Λ and a constant

translation four-vector aµ ≡ (cb,a). We take for the covariant components of
Minkowski’s metric tensor gµν ≡ diag(1,−1,−1,−1). Then dxµ′

= Λµ′
νdx

ν

and ds2 = gµ′ν′dxµ′
dxν′

= gσρdx
σdxρ implies for the matrix Λ

gµνΛ
µ
σΛ

ν
ρ = gσρ. (1)

Relations (1) represent 10 conditions among the 16 components of the matrix
Λ, so that each matrix depends on 6 essential parameters. These parameters
can be chosen in many ways. We shall take 3 of them as the components of the
relative velocity v between inertial observers and the other 3 as the orientation
α of their Cartessian frames, expressed in a suitable parametrization of the
rotation group.

Therefore, every element of the Poincaré group P will be represented by
the 10 parameters g ≡ (b,a,v,α) and the group action on a space-time point
x ≡ (t, r) will be interpreted in the form x′ = gx:

x′ = exp(bH) exp(a · P ) exp(β ·K) exp(α · J)x,

as the action of a rotation followed by a boost or pure Lorentz transformation
and finally a space and time translation. It is explicitely given on the space-
time variables by

t′ = γt+ γ(v ·R(α)r)/c2 + b (2)

r′ = R(α)r + γvt+ γ2(v ·R(α)r)v/(1 + γ)c2 + a (3)
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where β is the normal parameter for the pure Lorentz transformations sub-
group, that in terms of the relative velocity among observers v is expressed as
β/β tanhβ = v/c as we shall see below and where the dimensions and domains
of the parameters b ∈ R, a ∈ R3, parameter v ∈ R3, with the upper bound
v < c, and α depends on the parametrization we use for the rotation group.
We shall use for α the tanα/2 parametrization, i.e., µ = n tanα/2 where n
is the unit vector along the rotation axis and α the rotated angle. The factor
γ(v) = (1− v2/c2)−1/2.

The composition law of the group is obtained from x′′ = Λ′x′ + a′ =
Λ′(Λx+a)+a′ or x′′ = Λ′′x+a′′, that reduces to Λ′′ = Λ′Λ and a′′ = Λ′a+a′,
i.e., the composition law of the Lorentz transformations that we will find in
next section and a Poincaré transformation (Λ′, a′) of the four vector aµ. In
this parametrization g′′ = g′g, is1

b
′′
= γ′b+ γ′(v′ ·R(µ′)a)/c2 + b′, (4)

a
′′
= R(µ′)a+ γ′v′b+

γ
′2

(1 + γ′)c2
(v′ ·R(µ′)a)v′ + a′, (5)

v
′′
=

R(µ′)v + γ′v′ + γ
′2

(1+γ′)c2 (v
′ ·R(µ′)v)v′

γ′(1 + v′ ·R(µ′)v)/c2)
, (6)

µ
′′
=

µ′ + µ+ µ′ × µ+ F (v′,µ′,v,µ)

1− µ′ · µ+G(v′,µ′,v,µ)
, (7)

where F (v′,µ′,v,µ) and G(v′,µ′,v,µ) are the real functions:

F (v′,µ′,v,µ) =
γγ′

(1 + γ)(1 + γ′)c2
[v × v′ + v(v′ · µ′) + v′(v · µ) + v × (v′ × µ′)

+(v × µ)× v′ + (v · µ)(v′ × µ′) + (v × µ)(v′ · µ′) + (v × µ)× (v′ × µ′)] ,
(8)

G(v′,µ′,v,µ) =
γγ′

(1 + γ)(1 + γ′)c2
[v · v′ + v · (v′ × µ′) + v′ · (v × µ)

−(v · µ)(v′ · µ′) + (v × µ) · (v′ × µ′)] . (9)

The unit element of the group is (0,0,0,0) and the inverse of (b,a,v,µ)
is

(−γb+ γv · a/c2,−R(−µ)(a− γvb+
γ2

(1 + γ)c2
(v · a)v),−R(−µ)v,−µ).
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2 Lorentz group

The Lorentz group L is the subgroup of transformations of the form (0,0,v,µ),
and every Lorentz transformation Λ(v,µ) will be interpreted as the compo-
sition of a rotation followed by a boost in the way Λ(v,µ) = L(v)R(µ) as
mentioned before where L(v) is a boost or pure Lorentz transformation and
R(µ) a spatial rotation.

In the 4-dimensional representation of the Lorentz group on Minkowski
space-time, a boost is expressed as L(β) = exp(β · K) in terms of the di-
mensionless normal parameters βi and of the 4× 4 boost generators Ki given
by

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 ,

so that the final expression for L(β) is
C (β1/β)S (β2/β)S (β3/β)S

(β1/β)S 1 + β1β1(C − 1)/β2 β1β2(C − 1)/β2 β1β3(C − 1)/β2

(β2/β)S β2β1(C − 1)/β2 1 + β2β2(C − 1)/β2 β2β3(C − 1)/β2

(β3/β)S β3β1(C − 1)/β2 β3β2(C − 1)/β2 β3β3(C − 1)/β2


where S = sinhβ and C = coshβ and β = (β2

1 + β2
2 + β2

3)
1/2. What is the

physical interpretation of the βi? Let us assume that observers O and O′

relate their space-time measurements x and x′ by xµ′
= L(β)µ

′

νx
ν . Observer

O sends at time t and at a later time t + dt two light signals from a source
placed at the origin of its Cartessian frame. These two signals when measured
by O′ take place at points r′ and r′ + dr′ and at instants t′ and t′ + dt′,
respectively. Then they are related by

cdt′ = L0
0cdt, dxi′ = Li′

0cdt

but the quotient dxi′/dt′ is just the velocity of the light source, i.e. of the origin
of O frame as measured by observer O′, and then vi = cLi

0/L
0
0, such that

the relation between the normal parameters and the relative velocity between
observers is

v

c
=

β

β
tanhβ

and therefore tanhβ = v/c. The function coshβ ≡ γ(v) = (1− v2/c2)−1/2 and
when expressed the transformation in terms of the relative velocity it takes the
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form of the symmetric matrix:

L(v) =



γ γvx/c γvy/c γvz/c

γvx/c 1 +
v2x
c2

γ2

γ + 1
vxvy
c2

γ2

γ + 1
vxvz
c2

γ2

γ + 1

γvy/c
vyvx
c2

γ2

γ + 1 1 +
v2y
c2

γ2

γ + 1
vyvz
c2

γ2

γ + 1

γvz/c
vzvx
c2

γ2

γ + 1
vzvy
c2

γ2

γ + 1 1 +
v2z
c2

γ2

γ + 1

 (10)

The inverse transformation L−1(v) = L(−v).
The composition law is obtained by the homomorphism between the Lorentz

group L and the group SL(2, C) of unimodular complex matrices. A rotation
of angle α along a rotation axis given by the unit vector n is given by the 2×2
unitary matrix exp(α · J),

R(α) = cos(α/2)σ0 − in · σ sin(α/2), (11)

that in terms of the vector µ = tan(α/2)n it looks:

R(µ) =
1√

1 + µ2

(
σ0 − iµ · σ

)
, (12)

where σ0 is the 2×2 unit matrix and σi are Pauli spin matrices. A pure Lorentz
transformation of normal parameters βi is represented by the hermitian matrix
exp(β · K), where the K generators are represented by the 2 × 2 hermitian
matrices Ki = σi/2. This matrix is:

L(β) = cosh(β/2)σ0 +
σ · β
β

sinh(β/2), (13)

such that in terms of the relative velocity parameters it gives

L(v) =

√
1 + γ

2

(
σ0 +

γ

1 + γ

σ · v
c

)
. (14)

Then, every element of SL(2, C) is parametrized by the six real numbers
(v,µ), and interpreted in the way

A(v,µ) = L(v)R(µ), (15)

We thus see that every 2× 2 matrix A ∈ SL(2, C) can be written in terms
of a complex four-vector aµ and the four Pauli matrices σµ, as A = aµσµ, and
detA = 1 leads to (a0)2 − a2 = 1. The general form of (15) is

A(v,µ) =

√
1 + γ

2(1 + µ2)

[
σ0

(
1− i

µ · u
1 + γ

)
+ σ ·

(
u+ u× µ

1 + γ
− iµ

)]
, (16)
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where vector u = γ(v)v/c.

Conversely, since (1/2)Tr (σµσν) = δµν , we obtain aµ = (1/2)Tr (Aσµ)
and if we express (16) in the form A(v,µ) = aµσµ we can determine µ and u
from the components of the complex four-vector aµ, and it leads to:

µ = − Im a

Re a0
(17)

u = 2(Re a0Re a+ Im a0Im a+Re a× Im a), (18)

where Re aµ and Im aµ are the real and imaginary parts of the corresponding
components of the four-vector aµ. When Re a0 = 0 expression (17) is defined
and represents a rotation of value π along the axis in the direction of vector
Im a.

If we represent every Lorentz transformation in terms of a rotation and a
boost in the reverse order, Λ(v,µ) = R(µ)L(v), then the general expression
of A is the same as (16) with a change of sign in the cross product term u×µ.
Therefore, the decomposition is also unique, the rotation R(µ) is the same as
before but the new Lorentz boost is given by

u = 2(Re a0Re a+ Im a0Im a+ Im a× Re a),

where the only difference is that the third term is reversed.

The orthogonal 4× 4 rotation matrix takes the form(
1 0
0 R(µ)

)
, (19)

where R(µ) is a 3× 3 orthogonal matrix. When expressed a Lorentz transfor-
mation in the form Λ(v,µ) = L(v)R(µ), then by construction the first column
of Λ(v,µ) is just the first column of (10) where the velocity parameters v are
defined and therefore L(v) is known and we can multiply on the left such that
L(−v)Λ(v,µ) = R(µ) is in fact a rotation matrix of the form (19). If expressed
in the reverse order Λ(v,µ) = R(µ)L(v), then it is the first row of Λ that coin-
cides with the first row of (10) and it turns out that for a fixed arbitrary general
Lorentz transformation we have L(v)R(µ) = R(µ)L(v′) with the same rotation
on both sides as derived in (17) and L(v′) = R(−µ)L(v)R(µ) = L(R(−µ)v),
i.e, the velocity v′ = R(−µ)v. In any case, the decomposition of a Lorentz
transformation as a product of a rotation and a boost is a unique one, in terms
of the same rotation R(µ) and a boost to be determined, depending on the
order we take these two operations.
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3 Contractions

A group contraction is a change of parametrization in terms of some arbitrary
parameter ϵ, followed by a limit ϵ → 0. The necessary condition that this
limit gives rise to a new group composition law 2 is that the manifold spanned
by the unchanged parameters defines a subgroup of the original group. The
Poincaré group has two important rotational invariant contractions. The set
of elements of the form (b,0,0,µ) is a subgroup of P and therefore if we define
the new parameters b0 = b, ϵa0 = a, ϵv0 = v, µ0 = µ, in the limit ϵ → 0, eqs.
(4)-(7) transform into

b′′0 = b′0 + b0, (20)

a
′′

0 = R(µ′
0)a+ v′

0b0 + a′
0, (21)

v
′′

0 = R(µ′
0)v0 + v′

0, (22)

µ
′′

0 =
µ′

0 + µ0 + µ′
0 × µ0

1− µ′
0 · µ0

. (23)

This corresponds to the composition law of the Galilei group that can also be
obtained by the limit c → ∞ that leads from the Poincaré group P to the
Galilei group, so that the group action (2)-(3) is transformed into

t′ = t+ b, (24)

r′ = R(µ)r + vt+ a. (25)

Simmilarly, the set of elements of the form (0,a,0,µ) is another subgroup
of P so that the change of parameters ϵb0 = b, a0 = a, ϵv0 = v, µ0 = µ, and
by the substitution v/c2 = w, in the limit ϵ → 0 leads to

b′′0 = b′0 + b0 +w′
0 ·R(µ′

0)a0, (26)

a
′′

0 = R(µ′
0)a+ a′

0, (27)

w
′′

0 = R(µ′
0)w0 +w′

0, (28)

µ
′′

0 =
µ′

0 + µ0 + µ′
0 × µ0

1− µ′
0 · µ0

. (29)

This is the composition law of the Carroll group 3 that can also be obtained as
the limit of the Poincaré group when c → 0, v → 0 faster than c, but v/c2 → w,
where the real parameters w with dimensions of inverse of velocity are defined.
In this case the action of the group on the space-time is transformed into

t′ = t+w ·R(µ)r + b, (30)

r′ = R(µ)r + a. (31)
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A physical difference between these three groups we can find is the follow-
ing. In the Poincaré group all inertial observers measure different discrepancies
δt′ ̸= δt and |δr| ̸= |δr′| about the temporal and spatial separation between
arbitrary space-time events. In the Galilei limit δt′ = δt while |δr| ̸= |δr′| in
general, so that time intervals are absolute measurements while space intervals
are relative to each observer. In the Carroll limit we have the converse δt′ ̸= δt
in general, while |δr| = |δr′| where space intervals are absolute since the iner-
tial observers have their relative motions frozen in the limit v → 0, but they
still produce different time measurements characterized by the parameter w,
so that we can consider the Carroll group as the other non-relativistic limit
of the Poincaré group that describes only the physics of tachyons. In fact, it
has been obtained as the c → 0 limit, together v → 0. Therefore, all physical
phenomena travelling at velocities below c, including the relative motion of in-
ertial observers, have been reduced to static systems, remaining for description
only those phenomena with velocities above c.
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