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i

� If I can't picture it, I can't understand it.
You know, it would be su�cient to really understand the electron.

A. Einstein1

� Everything should be as simple as possible, but not simpler.

A. Einstein?, William of Ockham?2

� If a spinning particle is not quite a point particle, nor a solid three dimensional top, what
can it be? What is the structure which can appear under probing with electromagnetic
�elds as a point charge, yet as far as spin and wave properties are concerned exhibits a
size of the order of the Compton wavelength?

A.O. Barut 3

� The picture on the front page represents the circular motion, at the speed of light, of the
center of charge of the electron in the center of mass frame. This motion is not modi�ed
by any interaction. The center of mass is always a di�erent point that the center of charge.
The radius of this motion is R = ℏ/2mc, half Compton's wavelength, as is sugggested by
Barut. The frequency of this motion, when the center of mass is at rest, is ω = 2mc2/ℏ.
This frecuency, twice the frequency postulated by De Broglie, decreases when the center
of mass moves. The local clock is going slower when moving. In this way, elementary
matter has an internal periodic motion, and thus a frequency, like waves. We can also
associate to matter a wavelength, as the displacement of the center of mass during a
complete turn of this internal motion. The spin S has two parts: one Z associated to this
relative internal motion and another W in the opposite direction related to the rotation
of a local Cartessian frame associated to the center of charge. This frame is not depicted
in the �gure. The magnetic moment of the electron is produced by the motion of the
charge and is related to the orbital part Z of the angular momentum but when expressed
in terms of the total spin S, which is half the orbital Z, is when we obtain the concept of
gyromagnetic ratio g = 2.

� Classical particle physics, when using so extensively the point particle model to describe
experiments, which are always performed with spinning particles, is making a simpli�ca-
tion, opposite to the espirit of the above quotations. We have to use spinning particle
models to analyze real experiments, because in nature there are no spinless elementary
particles.
In this sense, General Relativity as a theory of gravitation, also makes a simpli�cation
when assuming that spacetime has a Riemannian metric structure. This assumption is
unnecessary because spacetime has a more general Finslerian metric structure associated
to the variational formalism, as we discuss in section 1.6. To assume that the metric is
Riemannian is equivalent to consider a low velocity limit of a more general gravitational
theory.

1H. Dehmelt, Proc. Natl. Acad. Sci. USA, 86, 8618�19 (1989).
2See the discussion in http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363, about the au-

thorship of this sentence.
3A.O. Barut, Brief History and recent developments in electron theory and Quantumelectrodynamics, in The

electron, New Theory and Experiment, D. Hestenes and A. Weingartshofer (ed.), Kluwer Academic Publishers,
Dordrecht (1991).
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Preface

The present notes contain some basic materials, physical and mathematical, of the general
formalism for analyzing elementary particles, which under the general name of Kinematical

Theory of Elementary Spinning Particles, I have been working during the last years. The
term kinematical makes reference to its close relationship with the kinematical group of space-
time transformations associated to the Restricted Relativity Principle, which de�nes how two
arbitrary equivalent observers relate their relative space-time measurments, which a theoretical
framework must necessarily satisfy.

In a certain sense it is a revision of the basic fundamentals of the Lagrangian formalism
which leads to Euler-Lagrange equations, Noether's theorem, etc., but looking for solutions
which go through the postulated initial and �nal states of the variational formalism. This
produces a classical formalism which is going to be expressed in terms of the set of the two end
point variables of the dynamical evolution. This distinguishes this approach from the usual non-
orthodox variational approach which expresses the solution in terms of the boundary variables
at the initial time. This formalism is, therefore, closer to the quantum mechanical dynamical
theory and it is through Feynman's path integral approach that we can �nd the bridge between
them.

These end point variables of the variational formalism, which I propose to call them kine-

matical variables, in the case of elementary particles will necessarilly span a homogeneous
space of the kinematical group. This is why we call kinematical space the manifold of the bound-
ary variables in this variational approach. In this way, the kinematical group not only re�ects
the spacetime symmetries of the system. It also supplies the necessary variables to describe
elementary matter. It is crucial for the description of matter to improve in our knowledge of
this kinematical group. In the present notes we shall deal mainly with the Galilei and Poincaré
groups, but the formalism is so general that it can be accomodated to any further group we
consider as the basic symmetry group of matter.

Another advantage of expressing the orthodox variational formalism in terms of the bound-
ary kinematical variables is that the formalism is equivalent to a geodesic formalism on the
kinematical space. This manifold for any arbitrary Lagrangian system is always a metric

Finsler space. In this sense when we consider the interaction of any mechanical system what
produces, from the mathematical point of view, is a change of the Finsler metric of the kine-
matical space. When we consider the relativistic point particle, the kinematical space is the
spacetime manifold with a constant Minkowski metric. This metric is considered Riemannian
but it is in fact a constant Finslerian metric which is modi�ed by any interaction. The postulate
of General Relativity that gravity produces a pseudo-Riemannian modi�cation of Minkowski
metric is an unnecessary restriction.

The formalism is very general, but at the same time is very restrictive, because once this
kinematical group is �xed the kind of classical variables which de�ne the initial and �nal states
of an elementary particle in a variational approach, are restricted to belong to homogeneous
spaces of the group. This kinematical group is the fundamental object of the formalism and
must be de�ned as a preliminary statement.

1



2 PREFACE

For the Galilei and Poincaré groups, a general spinning elementary particle is just a localized
and orientable mechanical system. By localized we mean that to analyse its evolution in space
we have just to describe the evolution of a single point r, where the charge is located and
in terms of which the possible interactions are determined. This point r also represents the
centre of mass of the particle for spinless particles, while for spinning ones must necessarily be a
di�erent point than q, the centre of mass, very well de�ned classically and where we can locate
the mass of the particle. It is the motion of the charge around the centre of mass which gives
rise to a classical interpretation of the zitterbewegung, or trembling motion in Schroedinger's
words, and also to the dipole structure of the particle. By orientable we mean that in addition
to the description of the evolution of the center of charge we also need to describe the change
of orientation of the system by analyzing the evolution of a local comoving and rotating frame
attached to that point. This local frame has no physical reality such that we can select it in an
arbitrary way at any time, thus supplying an additional symmetry group.

If we consider that the kinematical group is Weyl group W, then an elementary particle
in addition of being a localizable and orientable system, it is also reescalable. It contains
an additional degree of freedom which represents a phase or a change of scale. This means
that the most general spacetime symmetry group of the dynamics must contain additional
transformations, like local rotations and scale changes. It is possible to �nd a Lagrangian
invariant under the group W ⊗ SU(2)⊗ U(1).

The notes pretend to be selfcontained and in this way we have included at the end of the
chapters some mathematical appendices which contain not very well spread materials. The
lecture notes are organised as follows. We begin with a Preamble, which could have been
written as late as the end of the XIX-th century, and which suggests that the center of charge
of an elementary particle moves in a helical motion at the speed of light, so that this point
will satisfy, in general, fourth order di�erential equations. This implies that in a Lagrangian
approach we shall have a Lagrangian depending up to the acceleration of this point. We are in
the framework of generalized Lagrangian systems.

Instead of postulating models of elementary particles with two separate centers we shall an-
alyze what are the basic fundamental principles that a theory of matter should satisfy. Among
these fundamental principles we consider the variational formalism and that is the reason we
shall study in the �rst chapter the formalism of generalized Lagrangian systems, mainly to en-
hance the role of the kinematical variables in de�ning a concept of elementary particle. Chapter
two will be devoted to the analysis of several relativistic and nonrelativistic models, to show
how the standard methods of analyzing symmetries leads to the de�nition of the relevant ob-
servables. In particular, we shall pay attention to the de�nition of the spin. The spin, as any
other observable, will be de�ned in the classical case in terms of the degrees of freedom and
their derivatives, and we shall analyze its mathematical structure.

The next two chapters will cover the quantization of the formalism and the analysis of some
relativistic and nonrelativistic examples. The separate fourth chapter is devoted to the model
which satis�es Dirac's equation. Special attention is paid to the analysis of Dirac's algebra and
its relationship with the classical observables and to show a geometrical interpretation of the
di�erence in chirality between matter and antimatter. This chapter ends with the analysis and
enlargement of the spacetime symmetry group of the Dirac particle, going from the Poincaré
group to the eleven parameter Weyl group. We shall �nd a plausible Weyl-invariant interaction
Lagrangian which describes a short and long range interaction between two Dirac particles,
which has a Coulomb-like behaviour when the spin of the particles is supressed. It also shows
that equal charged spinning particles can form metastable bound states provided some boundary
conditions are ful�lled. The strength of this interaction is independent of the mass of the
particles and is determined by the value of the �ne structure constant, when the analysis of this
material system is performed in terms of dimensionless variables.
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The electromagnetic structure of the model which satis�es Dirac's equation when quantized,
is analyzed in a separate �fth chapter. It is not a static electromagnetic �eld for the center of
mass observer but its time average value has a Coulomb-like behavior in any direction for the
electric �eld and the time average magnetic �eld is the �eld of a static magnetic dipole at the
origin. The main di�erence of these �elds when compared with the point particle �eld is that
the �elds do not diverge at the origin.

Finally, some physical features which are related to the spin of the elementary particles,
are described. The electron, because it has an internal frequency it can be considered as a
clock. Can we measure this internal frequency? We shall propose to enlarge the energy range
of an experiment to determine indirectly the value of this frequency. We shall analyze the
gyromagnetic ratio and the dipole structure of the electron, which in the quantum case has
a relationship with the Darwin term of Dirac's Hamiltonian. We shall also see how the spin
structure allows us to justify in a classical framework the tunnel e�ect, which will be responsible
of the gyant magnetoresistence of several materials. We are entering what in technological terms
is called spintronics. Compton's e�ect analyzes the scattering of photons by free electrons
by using only the energy and linear momentum conservation laws. But the electromagnetic
interaction also conserves the total angular momentum. This additional conservation implies to
consider both spins of either electron and photon. If we are able to control the spin orientation
of the free electrons we can determine the frequency of the scattered photon. To end this section
we shall consider the possibility from the classical point of view that under certain conditions
two electrons with their spins parallel to each other can form a metastable bound state of spin 1
and charge 2e, and therefore the justi�cation of the formation of a Bose-Einstein condensate at
�nite temperature. A consequence of this pairing is the analysis of the quantum Hall e�ect. As
a �nal example we shall consider the spin structure of the proton, considered as a bound system
of three Dirac particles, the quarks. We shall see that the proton spin crisis can be related to
the lacking of a term in the spin of the proton, because Dirac spin operator represents the spin
of a Dirac particle with respect to its center of charge and not with respect to the center of
mass.

In some places, the lectures will be complemented with numerical simulations whenever the
theoretical solution is not available or very di�cult to interpret because of the mathematical
complexity. A numerical computer program, appropriate for the anaylis of dynamical systems,
is Dynamics Solver, created by Juan María Aguirregabiria 4, which has been very fruitful for
many of the numerical analysis contained in these notes. I am very glad for his kindness to show
me the way to manage it. In the whole text, mathematical expressions which contain greek or
latin characters in bold face, like a or α, they must be undertood as three-dimensional vector
magnitudes, while letters like a or α represent, in general, real numbers.

Things should be done simply but not simpler. Simpli�cation has to be done when analyzing
some problems and according to the values of the physical variables, and not in the preliminary
steps of the formalism. That is why assumptions about that the dynamical equations of physics
are second order di�erential equations, have to be justi�ed on physical grounds. It works with
spinless point particles but in Nature do not exist spinless elementary particles. We have to
reject the point particle model as a fundamental model for elementary particles and its use to
understand some mechanical e�ects. We shall see that the center of charge of the electron is a
di�erent point than its center of mass and satis�es fourth order di�erential equations.

Martín Rivas
Bilbao, March 2024.

4J.M. Aguirregabiria,Dynamics Solver, available through the web page of his autore, at the sever of the
Theoretical Physics Department of the University of the Basque Country, <http://tp.lc.ehu.eus/jma.html>
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Preamble: Helical motion of the center

of charge

In this preliminary chapter we shall give three di�erent kinds of arguments suggesting that
the center of charge and the center of mass of an elementary particle are two di�erent points.
The center of charge moves in a helical motion at the speed of light, and it thus satis�es,
in general, a fourth order di�erential equation. This analysis selects the relativistic formalism
instead of the nonrelativistic one, and the fact that the dynamical equations of a point are fourth
order di�erential equations, as di�erential geometry shows, opposite to the usual suggestion of
second order di�erential equations of many classical mechanics books.

This means that a Lagrangian formalism for describing elementary particles has to depend,
at least, up to the acceleration of the position of the charge, to properly obtain fourth order
dynamical equations. By this reason, we shall start our formalism by describing in chapter 1,
the way the generalized Lagrangian formalism produces the general results of Euler-Lagrange
equations, the conserved quantities through Noether theorem, and the generalized canonical
formalism.

We shall begin with a physical, and therefore restricted, concept of center of charge of an
elementary particle.

The center of charge

The concept of center of mass of any distribution of matter is well known. If we have n
point particles of masses mi located at the corresponding points ri the center of mass location
of the system is

RCM =

∑
miri∑
mi

.

If we also assume Newton's third law, this point describes a trajectory such that the time
variation of the linear momentum is the sum of the external forces.

From the electromagnetic point of view, if we have an arbitrary distribution of charges and
currents, the electromagnetic �eld they generate can be expressed as the �eld produced from
a single point where we locate there the total charge and the di�erent electric and magnetic
multipoles de�ned with respect to this point. If we consider a di�erent point the total charge
is the same but the multipoles are di�erent. If we try to de�ne a center of charge RCC like the
above de�nition of the center of mass we have the problem that

∑
i qi = 0. We can alternatively

de�ne the center of charge of either the positive and negative charges R±
CC , and the separate

�elds they generate with the corresponding multipoles, because Maxwell's equations are linear
in the sources.

Another question is to calculate the external force produced on a system of charges and
currents. Is it possible to write this external force in terms of the total charge and the di�erent
multipoles located at a single point or at least in two points? In general this will not be possible
for an arbitrary system. But to �x ideas let us consider a simple system of a static and spherical

5
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positive charge distribution in an inertial reference frame. The �eld it produces is the Coulomb
�eld from the symmetry center of the distribution. If now an external �eld is acting on this
system, and we consider it behaves like a conductor, this will produce in general a modi�cation
of the charge distribution and therefore the appearence of dipole momenta with respect to the
symmetry center. If it behaves like an insulator some electric polarization will arise.

We do not know if an elementary particle behaves like a conductor or like an insulator, if it
is a rigid body or it is not. But in the section devoted to fundamental principles we shall make
the hypothesis that an elementary particle is an undeformable mechanical system (Atomic
Principle). If its charge and current distribution have a spherical symmetry with respect to
some point, such that the electric and magnetic �eld it produces will be expressed in terms of
the location and velocity of this point and no further multipoles, we shall call this point the
center of charge. If the elementary particle cannot be deformed by any interaction leads us
to postulate that the external force acting on it is just the Lorentz force de�ned at the center
of charge. We are making the physical hypothesis that, from the electromagnetic point of view,
it behaves like a unique charge located at the center of charge and no other multipoles.

Rigid body arguments

Let us consider that an elementary particle were described as a rigid body. A rigid body
is a mechanical system of six degrees of freedom. Three represent the position of a point and
the other three the orientation of a body frame attached to that point. Usually, it is described
by the location of the center of mass, which is represented by the point q, and the orientation
by the principal axis of inertia located around q. The center of mass satis�es second order
dynamical equations and moves like a point of mass m, the total mass of the system, under the
total external force. In this way a rigid body moves and rotates.

If instead of considering the description of the center of mass we take a di�erent point r, it
will follow a helical trajectory around the center of mass, like the one depicted in the �gure.

If an elementary particle is a charged rigid body, it is clear that we also need to know its
electromagnetic structure, which can be reduced to the knowledge of the center of charge and
the di�erent multipoles. If assumed a spherical symmetry for the electric �eld produced by
the particle we are left with the location of the center of charge to compute the actions of the
external �elds. In general, depending how the mass and charge are distributed, these two points
will be di�erent points as we shall assume here. Therefore, if we try to describe the evolution
of the center of mass we have to determine also at any time the location of the center of charge
to compute the external forces. Newton's dynamical equations for the center of mass will be
written as

m
d2q

dt2
= e

(
E(t, r) +

dr

dt
×B(t, r)

)
= F (t, r, dr/dt). (1)
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The electromagnetic force F depends, in general, on the electric and magnetic external �elds
de�ned at the charge position r and on the velocity of the charge dr/dt which appears in the
magnetic term.

For the relative motion of the center of charge around the center of mass we have that if
this relative motion between r and q is a kind of circular motion, in particular in the free case,
we can de�ne a unit vector n in the direction of the normal acceleration d2r/dt2 of point r,
and thus

n =
1

ω2R

d2r

dt2
,

where R is the radius of the circular motion and ω its angular velocity. Then the center of mass
position can be written as

q(t) = r(t) +
1

ω2

d2r

dt2
. (2)

Then, it will be simpler, from a theoretical point of view, just to describe the evolution of a
single point, the center of charge r, instead of the center of mass q, which will be in some
average position of the other, and obtained from (2) once the trajectory of r is computed. The
elimination of the d2q/dt2 among equations (1) and (2) will give us, in general, a fourth order
di�erential equation for the variable r. Because the angular velocity is also orthogonal to the
plane subtended by the velocity and acceleration of point r,

ω =
1

u2
dr

dt
× d2r

dt2
, (3)

we have also solved the problem of the rotation of the charged rigid body by analyzing the
evolution of just the center of charge.

The second order di�erential equations for the center of mass position and the orientation
of the principal axes of inertia α, of the free rigid body become

q̈ = 0, ω̇ = 0,

and they have been replaced by the fourth-order dynamical equations of the center of charge r,

d4r

dt4
+ ω2d

2r

dt2
= 0.

In this way a rigid body can be interpreted as a system of three degrees of freedom, the center
of charge r, which satis�es fourth order di�erential equations and therefore in a variational
description, the Lagrangian will depend on the acceleration of the center of charge.

The dynamical equations under interaction are:

m

ω2

d4r

dt4
+m

d2r

dt2
= e

(
E(t, r) +

dr

dt
×B(t, r)

)
, (4)

in terms of the three degrees of reedom r, where the external �elds are de�ned.
A plausible nonrelativistic Lagrangian depending on the acceleration of the point r, like this

L =
m

2

(
dr

dt

)2

− m

2ω2

(
d2r

dt2

)2

− eϕ(t, r) + eA(t, r) · dr
dt

will reproduce the above dynamical equations (4), where the rigid body will rotate with a
constant angular velocity ω, which in this example represents a constant and unmodi�ed intrinsic
property.
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Invariance arguments

Let us consider the trajectory r(t), t ∈ [t1, t2] followed by a point of a mechanical system for
an arbitrary inertial observer O. Any other inertial observer O′ is related to the previous one
by a transformation of the kinematical group such that their relative space-time measurements
of any space-time event are given by

t′ = T (t, r; g1, . . . , gα), r′ = R(t, r; g1, . . . , gα),

where the functions T and R de�ne the corresponding transformation of the kinematical group
G, of parameters (g1, . . . , gα), among any two observers. Then the description of the trajectory
of that point for observer O′ is obtained from

t′(t) = T (t, r(t); g1, . . . , gα), r′(t) = R(t, r(t); g1, . . . , gα), ∀t ∈ [t1, t2].

If we eliminate t as a function of t′ from the �rst equation and substitute into the second we
shall get

r′(t′) = r′(t′; g1, . . . , gα). (5)

Since observer O′ is arbitrary, equation (5) represents the complete set of trajectories of the
point for all inertial observers. Elimination of the g1, . . . , gα group parameters among the
function r′(t′) and their time derivatives will give us the di�erential equation satis�ed by all the
trajectories of the point. Let us assume that the trajectory is unrestricted in such a way that
the above group parameters are essential in the sense that no smaller number of them gives the
same family of trajectories. This di�erential equation is invariant under the transformations of
the kinematical group by construction, because it is independent of the group parameters and
therefore independent of any inertial observer. In fact, because (5) is a three-vector expression,
each time we take a time derivative we obtain three equations to eliminate the group parameters.
When we reach the third order derivative we have up to nine equations. If G is either the Galilei
or Poincaré group, it is a ten-parameter group so that we have to work out in general up to the
fourth derivative to obtain su�cient equations to eliminate the group parameters. Therefore
the order of the invariant di�erential equation is dictated by the number of parameters and the
structure of the kinematical group. If the point r represents the position of the center of charge
of an elementary particle we get again that it satis�es, in general, a fourth order di�erential
equation.

But at the same time it is telling us that to obtain the invariant di�erential equation satis�ed
by the center of charge of an elementary particle, it is su�cient to obtain its trajectory in an
arbitrary reference frame, for instance in the center of mass frame, and to follow the above
procedure of elimination of the group parameters. We shall use this method to obtain the
invariant di�erential equation of a spinning electron in section 2.6.

Geometrical arguments

As is well known in di�erential geometry, a continuous and di�erentiable curve in three-
dimensional space, r(s), has associated three orthogonal unit vectors, t, n and b, called respec-
tively the tangent, normal and binormal. If using the arc length s as the curve parameter, they
satisfy the Frenet-Serret (1847) equations

ṫ = κn, ṅ = −κt+ τb, ḃ = −τn,

where κ is the curvature and τ the torsion and the overdot means ˙≡ d/ds. The knowledge of
the functions of s, the curvature κ(s) and torsion τ(s), together the boundary values r(0), t(0),
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n(0) and b(0), completely determine the curve, because the above equations are integrable. If
we de�ne the vector ω = τt + κb, known as Darboux vector, the Frenet-Serret equations can
be rewritten as

ṫ = ω × t, ṅ = ω × n, ḃ = ω × b,

so that, in units of arc length, Darboux vector represents the instantaneous angular velocity of
the local frame of the three orthogonal unit vectors.

If we call r(k)(s) ≡ dkr/dsk, and, in particular

r(1) = t, r(2) = κn, r(3) = κ̇n+ κ(−κt+ τb)

and eliminate the three unit vectors t, n and b, in terms of the derivatives r(k), k = 1, 2, 3, we
get

t = r(1), n =
1

κ
r(2), b =

κ2

τ
r(1) − κ̇

κτ
r(2) +

1

κτ
r(3)

and thus
κ = |r(2)|, τ =

1

κ2
(r(1) × r(2)) · r(3)

are expressed in terms of the derivatives up to the third order. If we replace the three Frenet-
Serret unit vectors in the next order derivative, one obtains that the most general di�erential
equation satis�ed by the point r, is the fourth order di�erential system

r(4) −
(
2κ̇

κ
+
τ̇

τ

)
r(3) +

(
κ2 + τ2 +

κ̇τ̇

κτ
+

2κ̇2 − κκ̈
κ2

)
r(2) + κ2

(
κ̇

κ
− τ̇

τ

)
r(1) = 0, (6)

where the coe�cients are only functions of the derivatives of r up to fourth order.
This conclussion is easily obtained if we realize that the three-dimensional space is also a

vector space. Any curve in three-space is called regular if at any point it has a tangent vector
r(1). If it is also di�erentiable, they will be also de�ned the subsequent derivatives r(2) and
r(3), which, in general, will be no collinear. But the next derivative r(4), will be necessarily a
linear combination of the other three. Every regular curve in three dimensional space satis�es
a fourth order di�erential equation. This is what equation (6) represents.

Let us consider that an elementary particle, instead of being a rigid body, is just a localized
mechanical system. By localized we mean that, at least, it is described by the evolution of a
single point r. This point could be the center of mass, but, as mentioned before, in order to
determine the external forces to obtain the center of mass evolution, we also need to know the
location of the center of charge to compute the actions of the external �elds. Let us assume that
the elementary particle is charged. By the previous arguments, if assumed spherical symmetry
of its electric �eld, we are reduced to know the evolution just of the center of charge. The
particle will have a center of mass but we make the assumption that the center of mass and the
center of charge are not necessarily the same point.

Then, the center of charge of an elementary particle will satisfy, in general, a fourth order
di�erential equation of the form (6) where κ(s) and τ(s) will depend on the external forces and
torques.

Free motion

Let us assume now that the motion of the particle is free. This means that we cannot
distinguish one instant of the evolution from another, so that the above equations (6) must
be explicitely independent of the parameter s. The Frenet-Serret triad moves and rotates. It
must be displaced at a velocity of constant absolute value and the Darboux vector has to be
a constant vector in the comoving frame. The velocity ds/dt = u and the value of Darboux
vector ω2 = κ2 + τ2 must be constant.
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The curvature and torsion are necessarily constants of the motion. Thus κ̇ = τ̇ = 0, and, in
the free case, these equations are simpli�ed and reduced to

r(4) +
(
κ2 + τ2

)
r(2) =

d2

ds2

(
r(2) + ω2r

)
= 0.

If the curvature and torsion are constant the curve is a helix, which can be factorized in terms
of a central point

q = r +
1

κ2 + τ2
r(2),

d2q

ds2
= 0,

which is moving along a straight trajectory, while the point r satis�es

r(2) + ω2 (r − q) = 0,

an isotropic harmonic motion of frequency ω =
√
κ2 + τ2, around point q. The point q clearly

represents the centre of mass position of the free particle. Going further, let us assume that
the free evolution is analyzed by some inertial observer. Then this observer cannot distinguish
one instant from another, so that, the arc length ds = |u|dt, where u = dr/dt is the velocity
of the charge, must be also independent of the time t. Otherwise, if ds is not the same we can
distinguish one instant of the evolution from another, as far as the displacement of the charge is
concerned. The center of charge of a free elementary particle is describing a helix at a constant
velocity for any inertial observer.

A �rst conclusion is that the velocity of the center of charge has to be an unreachable velocity
for every inertial observer. The helical motion is an accelerated motion in one frame and thus
it is accelerated in all inertial frames. If one observer is at rest with respect to the charge at
one instant t, it measures u = 0 at this time, but u ̸= 0 at time t+ dt, which contradicts that
the velocity has to be constant in this frame. This means that the constant velocity cannot be
zero in any frame and no inertial observer can reach that velocity.

If we make a nonrelativistic analysis, the relationship of the velocity measurements among
two arbitrary inertial observers O and O′, is given by u′ = u + v, where v is the constant
velocity of O as measured by O′. Now,

u′
2
= u2 + v2 + 2v · u.

If u′ has to be also constant for observer O′, irrespective of v, this means that the vector u
must be a constant vector. The center of charge necessarily moves along a straight trajectory
at a constant velocity, for every inertial observer, and the above general helix degenerates into a
straight line and q = r. This is the usual description of the spinless or pointlike free elementary
charged particle, whose center of charge and center of mass are represented by the same point.

In the relativistic case we get simmilarly

u′ =
u+ γ(v)v + γ2

(1+γ)c2
(v · u)v

γ(1 + v · u/c2)
, u

′2 =
u2 − c2

γ2 (1 + v · u/c2)2
+ c2.

where γ = (1 − v2/c2)−1/2, and taking the time derivative we also obtain that v · u̇ = 0, and
thus u has to be a constant vector, for any time t, irrespective of the value of v.

However, in the relativistic analysis, there is one alternative not included in the nonrelativis-
tic approach. The possibility that the charge of an elementary particle will be moving at the
speed of light and, in that case, u = u′ = c, for any inertial observer. This means that the center
of the helix is always moving at a velocity |dq/dt| < c, and, if it represents the center of mass,
this particle is a massive particle. In a variational description of this system the Lagrangian
should depend up to the acceleration of the point r in order to obtain fourth order di�erential
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equations. We will show that this dependence on the acceleration will give a contribution to
the spin of the particle and there is also another contribution from the rotation of the system,
because the body frame rotates with angular velocity ω. The motion of the charge around the
center of mass produces the magnetic moment of the particle.

In summary, there are only two possibilities for a free motion of the center of charge of an
elementary particle. One, the charge is moving along a straight line at any constant velocity,
and the system has no magnetic moment. In the other, the particle has spin and magnetic
moment, and the charge moves along a helix at the speed of light. Because all known elementary
particles, quarks and leptons, are spin 1/2 particles, we are left only with the last possibility.
This is consistent with Dirac's theory of the electron, because the eigenvalues of the components
of Dirac's velocity operator are ±c. This means that Dirac's spinor ψ(t, r) is expressed in terms
of the position of the charge r, because the external �elds Aµ(t, r) are de�ned and computed
at this point.

This last possiblity is the description of the center of charge of a relativistic spinning el-
ementary particle obtained in the kinematical formalism to be developed in this course, and
which satis�es Dirac's equation when quantized.

In this formalism Dirac particles are localized and also orientable mechanical systems. By
orientable we mean that we have to attach to the above point r, a local cartesian frame to
describe its spatial orientation. This frame could be the Frenet-Serret triad. The rotation of
the frame will also contribute to the total spin of the particle. When quantizing the system,
the spin 1/2 is coming from the presence of the orientation variables. Otherwise, if there are
no orientation variables, no spin 1/2 structure is described when quantizing the system. This
twofold structure of the classical spin has produced a pure kinematical interpretation of the
gyromagnetic ratio 5. The dependence of the Lagrangian on the acceleration is necessary for
the particle to have magnetic moment and for the separation between the center of mass and
center of charge.

Two centers, two spins

It is usually called spin to the angular momentum of an elementary particle. But an angular
momentum is a mechanical property which is de�ned with respect to some de�nite point. If
an elementary particle has two characteristic points, we can determine the angular momentum
with respect to both points.

Let us consider an electron which is characterized by the location of its center of mass (CM)
q, and its center of charge (CC) r, and let k be another point of the electron, di�erent from
the previous ones, in a certain reference inertial frame with origin at the point O (see �gure 1).

Let us call S the angular momentum of the particle with respecto to the centre of charge
(CC) r. The angular momentum SCM with respect to the centre of mass (CM) q, will be

SCM = (r − q)× p+ S,

where p is the linear momentum of the particle in this frame.
Let us call v = dq/dt and u = dr/dt, to the velocities of CM and CC, respectively. Let Sk

be the angular momentum with respect to the point k. The total angular momentum of the
particle with respect to the origin of the reference frame of any inertial observer, can be written
as

J = r × p+ S, or J = q × p+ SCM , or J = k × p+ Sk.

5M. Rivas, J.M. Aguirregabiria and A. Hernández, �A pure kinematical explanation of the gyromagnetic ratio
g = 2 of leptons and charged bosons�, Phys. Lett. A 257, 21�25 (1999).
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Figure 1: Di�erent angular momenta S, SCM , Sk and J of the electron with respect to
di�erent points in some inertial reference frame, with origin at the point O. It is also
depicted the external electromagnetic force F de�ned at the Center of Charge. The dotted
line suggests some arbitrary, but localized, form or shape of the electron.

If the particle is free, p and also J are conserved. Since dJ/dt = 0, this leads to

dS

dt
= p× u,

dSCM

dt
= 0,

because p has the direction of v, but not of u.
The center of mass spin SCM is a conserved magnitude for a free particle, but the center

of charge spin S is not. It satis�es a dynamical equation which implies that its time variation
is orthogonal to the linear momentum. It is suggesting that S precess or oscillate around the
constant vector p. Morover, for a free particle u cannot be a constant vector, otherwise the
centre of charge spin S, will rise continuosly.

Let F be the external electromagnetic force applied at the centre of charge r. Now neither
J nor p are conserved quantities. The force and the torque with respect to the origin satisfy

dp

dt
= F ,

dJ

dt
= r × F ,

and thus

dS

dt
= p× u,

dSCM

dt
= (r − q)× F ,

dSk

dt
= p× dk

dt
+ (r − k)× F .

We can distinguish between these spins by their di�erent dynamical behavior. The spin dynam-
ics not only supplies information about the spin evolution. It also gives us information about
what is the point where these spins are de�ned.

It is clear that if r = q, the center of mass spin must always be conserved. Conversely, if
SCM is not conserved, this means that r ̸= q, and therefore the electron has a centre of mass
and center of charge which are di�erent points.

We can �nd in the literature examples of both spins. Bargmann, Michel and Telegdi spin 6

satis�es a dynamical equation which is a covariant generalization of the dynamics of the SCM .

6V. Bargmann,L. Michel y V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous
electromagnetic �eld, Phys. Rev. Lett. 2, 435 (1959).
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It is linear in the external �elds and is conserved for a free particle. The center of charge spin
S, satis�es the same dynamical equation than Dirac's spin operator in the quantum case, as
we shall see in this lecture course. The existence of these di�erent dynamical equations for the
di�erent spins suggest that the two centers are, necessarily, di�erent points.

In this formalism we are going to �nd a de�nition of elementary particle which produces
relativistic and nonrelativistic models of spinning particles, such that one of the main features
is the separation between the center of mass and the center of charge. Finally, the only model
which satis�es Dirac equation when quantized is the model, depicted on the front page, whose
center of charge is moving at the speed of light.

Three in one universal constants

The three universal constants ℏ, c and e represent basic properties of the electron. The �rst
ℏ, is related to the mechanical property, the unique value of the spin s = ℏ/2 of this particle.
The second c, is the limit velocity that the center of charge of the electron has to be moving, if it
is a di�erent point than the center of mass. Finally the third e, is its interacting electromagnetic
intensity. It is the value of the electric charge which takes a unique value, independent of their
masses, for those particles which only interact in an electromagnetic way. These three universal
constants de�ne a dimensionless universal constant α, named by Arnold Sommerfeld the �ne
structure constant, which takes the value

α =
1

4πϵ0

e2

ℏc
≈ 1

137
.

It is a characteristic of the charged electromagnetic interacting particles with spin, independent
of their masses. If we show that the value of this constant is unique for these particles, these
three universal constants are not independent. According to Pauli7 a theory which is not able to
determine this constant, is an incomplete theory. The separation between the center of charge
and center of mass of an electron, predicted in this formalism is R0 = ℏ/2mec. On the other
hand, hydrogen Bohr's radius is RB = 4πϵ0ℏ2/mee

2. It happens that R0/RB = α/2. The so
called classical electron radius is Rcl = e2/8πϵ0mec

2, and we also have that Rcl/R0 = α.

Theory of elementary particles

We are going to obtain in these notes a general formalism to describe elementary particles
from the classical and quantum mechanical point of view. Classical mechanics is a formalism
which describes the dynamical laws of material systems in terms of ordinary di�erential equa-
tions for the variables which represent the di�erent independent degrees of freedom. Today
we know that the di�erent material systems are formed by small indivisible objects which are
called elementary particles. It is thus necessary, that the formalism contains also the possibility
of distinguishing whether a mechanical system is elementary or not. To achive this goal we
shall postulate as one fundamental principle, called the atomic principle, which will establish
the physical distinction, and also its mathematical translation, between elementary systems and
compound systems of elementary particles. This fundamental principle will �x the degrees of
freedom which characterize an elementary particle and its distinction from a non-elementary
system.

In this Preamble we have analized what would happen if the center of charge of an elementary
particle is a di�erent point than its center of mass. We are suggesting that elementary particles
are localizable dynamical systems, localization that is determined by the knowledge of three

7W. Pauli, Nobel Lectures, vol 13, 1942-1962, Elsevier, Amsterdam (1964)
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degrees of freedom, the position of a point, the center of charge. The arguments given in the
previous sections suggest that the center of charge must satisfy a system of ordinary di�erential
equations of fourth order. This analysis also implies that if the evolution of the center of charge
is known, the evolution of the center of mass is completely determined. Are su�cient these three
degrees of freedom to describe an elementary particle? Certainly not. The di�erent material
systems, elementary or not, are localized in certain spatial regions and also have orientable
properties, such as magnetic moments, angular momenta, etc., i.e., material systems move and
rotate. The have, at least, degrees of freedom which describe their localization and orientation in
three-dimensional space. Elementary particles also have orientable properties and therefore they
also move and rotate, and thus in addition of being localizable objects they are also orientable.
We have to use classical variables to describe its orientation. For example, we shall describe
its orientation by attaching to the center of charge a Cartesian comoving orthogonal sytem of
three unit vectors, which their orientation is changing during the evolution of the particle. This
implies that, at least, an elementary particle will have six degrees of freedom. One question
arises: Do we need more degrees of freedom to describe an elementary particle than the location
of a point and the spatial orientation of a comovil Cartesian frame? The answer will depend
on another of the fundamental principles we are going to state in the next chapter, but in
this preamble what we want to stress is that, at least, an elementary particle is a mechanical
localizable and orientable system.

Predictions

The formalism we are going to introduce in this lecture course is not complete. We have
not been able to determine the value of the �ne structure constant. Nevertheless it predicts
several results and phenomena which are consistent with the standard model description of
matter and others which have to be determined experimentally. Most of these predictions do
not appear in the standard description of elementary particles considered as point particles.
They are analyzed along the quoted sections and chapters, and we just ennumerate them here:

1. For a massive elementary particle, with two di�erent CC and CM centers, the velocity of
the CC is unreachable for every inertial observer. Since the CM velocity can never reach
the velocity of the CC, there exists for any massive body a maximum limit of the velocity
of its center of mass. (Preamble)

2. A particle with two di�erent centers CC and CM must always be rotating with the same
angular velocity, since the unreachable velocity c of the CC cannot be modi�ed and,
therefore, the angular momentum S has a unique value. The angular momentum is an
intrinsic property, it is not quantized in the sense that it can take some discrete values,
but rather it takes a unique value. (Preamble)

3. If an elementary particle with two di�erent centers CC and CM, is analyzed from the
the center of mass observer, the motion of the CC is equivalent to a one-dimensional
harmonic oscillator. When this model is quantized, necessarily its angular momentum
S = ℏ/2. (Sec. 4.1)

4. Recently, from an idea of Aníbal Hernández 8, we have obtained the Lorentz transforma-
tions with no reference to light or electromagnetic phenomena, with the hypothesis of the
existence of a limit velocity for massive bodies.

8J.M Aguirregabiria, A. Hernández, M. Rivas, Law of inertia, clock synchronization, speed limit and Lorentz
transformations, Eur. J. Phys. 41, 045601 (2020).
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5. If an elementary particle were a point particle, there will be no limit to the velocity of its
center of mass which can have any arbitrary velocity. This simple criterion, contradictory
with the experimental fact that material bodies have a limit velocity, rejects the possibility
that an elementary particle could be described as a point particle. (Preamble)

6. The center of charge and center of mass of a massive elementary particle which satis�es
Dirac's equation (and which we shall call from now on a Dirac particle) are two di�erent
points, separated by a distance R0 = ℏ/2mc, in the center of mass frame. (Sec. 2.5.2)

7. The separation between these two points is not constant for an arbitrary observer, and de-
pends on the velocity of the center of mass with respect to the observer and the orientation
of its spin. (Sec. 2.6.2)

8. Since a Dirac particle has two di�erent characteristic points, the center of mass (CM) q
which moves at the speed v and the center of charge (CC) r moving at velocity u, we can
de�ne two spins with respect to both points, SCM and S, respectively, wich are di�erent
mechanical properties, which can be expressed in terms of the kinematics of both points
in the form:

S = ∓γ(v)m(r − q)× u, SCM = ∓γ(v)m(r − q)× (u− v),

where the sign − is for the particle and + for the antiparticle. Since r−q has the direction
opposite to the acceleration of the center of charge r, which is always orthogonal to the
velocity u, the spin S has the opposite direction to the binormal of the trayectory of the
CC for the particle and in the direction of the binormal for the antiparticle. (Sec. 2.5.4)

9. If the elementary particle moves along a straight line at the speed of light, it is a massles
particle, and if it represents an electromagnetic quantum of energy, then necessarily its
spin, which lies along the direction of motion, can take only the values S = ±ℏ. It is a
boson from the quantum point of view. (Sec. 3.3)

10. A photon rotates. The direction of the spin of the photon has the direction of its angular
velocity but they are functionally independent. The spin of the photon is the same for all
inertial observers while the angular velocity transforms according to the prescriptions of
the Doppler e�ect. (Sec: 2.5.1)

11. Photons are massless particles which rotate with an angular velocity along the direction
of the motion, pointing forward or backwards, and of a frequency which is the same as
the frequency of the corresponding electromagnetic radiation of which they represent the
energy quanta. (Sec: 2.5.1)

12. The formalism predicts that antiphotons are di�erent particles than photons. (Sec: 2.5.1)

13. We have made the design of a telescope for focusing antiphotons (Sec: 2.7.1). 9

14. The relativistic formulation forbids the existence of a spinless massive point particle mov-
ing at the speed of light. Its Lagrangian will vanish identically. If it moves at the speed
of light it has to have more than three degrees of freedom and it has spin. Photons have
orientation and rotate along an axis which has the direction of the linear velocity. The
spin of the photon has the direction of the angular velocity but it is not related to it. (Sec.
3.3)

9M. Rivas, Considerations about photons and antiphotons, Indian J. Phys. 96 583-591 (2022).
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15. For a massive elementary particle the center of charge is moving in circles at the speed
of light around the center of mass, with a frequency ν0 = 2mc2/h, or period T0 = 1/ν0 =
h/2mc2, in the center of mass frame. There exists a natural clock associated to this
internal motion. (Sec. 2.5.2)

16. For another inertial observer who sees the center of mass of the electron moving at the
velocity v, the electron clock is going slower, with a greater period T = γ(v)T0, where
γ(v) = (1− v2/c2)−1/2. (Sec. 6.2.1)

17. The mechanical energy and linear momentum of a Dirac particle, can be expressed in
terms of the center of mass velocity, like in the case of the point particle:

H = ±γ(v)mc2, p = ±γ(v)mv,

where the sign + is for the particle and − for the antiparticle. (Sec. 2.5.2)

18. From the classical point of view, the point where the interacting properties of an ele-
mentary particle are localized, is moving with an unreachable velocity for every inertial
observer. The universal constant c represents both, the unreachable velocity of the point
where the photon is localized as much as the velocity of the center of charge of a massive
elementary particle with spin. When we quantize these classical systems implies that the
fermionic matter and the spinning bosons which mediate in their interaction, are moving
at the speed of light. (Sec. 2.5)

19. For the center of mass observer, an elementary particle has, in addition to charge, a
magnetic moment with respect to the center of mass µ, orthogonal to the trajectory
plane of the center of charge and also an electric dipole moment d orthogonal to µ. (Sec.
2.5.6)

20. The magnetic moment of an elementary particle is produced by this relative motion of
the center of charge, which is not modi�ed by any external interaction. (Sec. 2.5.6)

21. The electron, in addition to the magnetic moment created by the motion of the center of
charge, has an electric dipole moment with respect to the center of mass, already predicted
by Dirac, although he considered irrelevant, and which rotates with the internal frequency
of the electron.(Sec. 2.5.6) It is also related to the Darwin term of Dirac's Hamiltonian.
(Sec. 6.3.1)

22. The quantum gyromagnetic ratio g = 2, is related to the double structure of the spin from
the classical and quantum mechanical point of view. The spin has two parts S = W +Z,
one W related to the rotation of the particle and which does not produce magnetic
moment and another Z associated to the relative motion between the center of mass and
center of charge (Zitterbewegung). (Sec. 6.1)

23. If we assume, like in the standard model, that elementary matter are Dirac particles, then
from the quantum point of view their spin is necessarily S = ℏ/2, independently of its
mass and charge. This means that leptons and quarks are fermions of spin S = ℏ/2.
(Chap.4)

24. The formalism is independent of the kinematical group of space-time symmetries which
de�ne the relationship among inertial observers. It thus produces models of relativistic
and non-relativistic elementary spinning particles. (Sec. 1.5)
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25. In three-dimensional space, if the center of charge of an elementary particle moves at the
speed of light, the kinematical group of spacetime symmetries has to be a 11-dimensional
group. This extension of the Poincaré group can be the Weyl group W, which in addition
to spacetime translations, rotations and boosts also include spacetime scale transforma-
tions which conserve the speed of light c. (Sec. 6.10)

26. If we admit that the spacetime symmetry group of an elementary particle is the Weyl
group, then every elementary particle has nonvanishing mass and spin ℏ/2. In the standard
model, leptons and quarks are massive objects of spin ℏ/2. (Sec. 4.4)

27. If an elementary particle does not interact strongly (leptons), its electric charge is unique
and independent of the value of its mass. This value will be the electron electric charge
e, but this value is not yet predicted. The three leptons electron, muon and tau have
di�erent masses, but the same electric charge and spin. (Sec. 5.1.5)

28. If an elementary particle interacts also stronlgy (quarks), its electric charge is necessarily
smaller than e. The formalism does not predict that this charge will be a fraction e/3 or
2e/3, as is postulated in the standard model. (Sec. 5.1.5)

29. If it would be possible to describe a quark from the classical point of view, its interacting
properties will be associated to two centers: the center of the electric charge and the
center of the color charge. The requirement of the atomic principle that the kinematical
space should be a homogeneous space of the Poincaré group implies that both centers
have to be the same point. In this way a quark will be, from the classical and quantum
mechanical point of view a Dirac particle. The same criterion is aplicable to the electron
if we consider that the weak interaction is a di�erent interaction than the electromagnetic
one, and the location of the weak charge and electric chrage must be the same point. (last
example of Sec. 1.5)

30. The relative orientation between the spin and magnetic moment of electrically charged
elementary particles is the same for the particle and the antiparticle. It depends on the
sign of the charge of what we consider is the particle. If we consider that the electron,
of negative electric charge, is the particle and the positron its antiparticle, then electrons
and positrons have their spin and magnetic moment in the same direction. This relative
orientation for leptons has never been measured experimentally. (Sec. 4.2.7)

31. A measurement of the relative orientation between spin and magnetic moment of electrons
bound to atoms could be performed by making the hyper�ne transition of atoms of Rb87

in an external magnetic �eld, by means of a beam of circularly polarized light. We have
no notice that this experiment has ever been performed. (Sec. 4.2.7)

32. Tunnel e�ect is not a pure quantum e�ect. It can also be produced in a classical framework
for spinning particles, and it is related to the separation between the center of mass and
the center of charge and of the spin orientation. (Sec. 6.5)

33. By controlling the spin orientation of the electrons we can modify the probability of
crossing of a potential barrier. If the spin is oriented in the direction perpendicular to the
current, the probability increases, while if its orientation is along the current, decreases.
This is called spin polarized tunnel e�ect. (Sec. 6.5)

34. Two electrons, from the classical point of view, can form a metastable bound state of
charge 2e and spin 1, i.e., a boson, provided their spins are parallel and the relative
velocity among their center of masses is below to 0.01c and the phases of their internal
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motions are opposite to each other. This bound state is stable under external electric
�elds but not stable under magnetic �elds orthogonal to the spins. (Sec. 6.6)

35. In a conductor, under an external magnetic �eld, if the number of conducting electrons is
su�cient, and the temperature is not very high, pairings of electrons with parallel spins
can be produced and the paired conducting electrons can be in a superconducting phase.
This is possible classically up to a certain high temperature. This maximal temperature
from the quantum point of view has not been determined yet. (Sec. 6.6)

36. For magnetic �elds of intensity greater than 1 T, the analysis of the integer quantum Hall
e�ect suggests that the longitudinal conductivity is produced by means of bound pairs
of electrons in a superconducting phase. An experiment to extract charge carriers of the
main current and of the negatively charged region of the transversal Hall potential would
show that these charge carriers correspond to bound states of electrons of charge 2e and
spin 1. We have no notice that this experiment has ever been performed. (Sec. 6.7)

37. In the same way, if we apply the pointer of a tunnel e�ect microscope to a superconducting
material, when the temperature is below the critic temperature Tc, it will extract pairs
of bound electrons, while if the temperature is above Tc we will only obtain unpaired
electrons. (Sec.6.7)

38. The classical electromagnetic �eld generated by a spinning electron at rest is not static.
The time average value of the retarded electric �eld, during a turn of the center of charge, is
Coulomb like in any direction and does not diverge at the center of mass. The time average
value of the retarded magnetic �eld, during a turn of the center of charge, is the same
as the magnetic �eld produced by a static magnetic dipole located at the center of mass,
with a gyromagnetic ratio g = 2. If we compute the time average of the corresponding
advanced �elds, they do not have the above Coulomb behaviour and magnetic dipole
structure, respectively. (Chap. 5)

39. In the ground state of the Hydrogen atom the electron is in a S-state of orbital angular
momentum l = 0. This implies, from the classical point of view, that the center of mass of
the electron is going through the center of mass of the proton. This is impossible for the
spinless point particle. Nevertheless this can be justi�ed classically, because the center
of mass and the center of charge of a spinning electrons are di�erent points and their
separation is greater than the estimated size of the proton. Then in the ground state of
the atom the center of mass of the electron describes a straight trajectory passing through
the center of mass of the proton.

40. The usual analysis of the Compton e�ect as an interaction of two pointlike particles, a
photon and a point electron, only considers energy and linear momentum conservation.
But the electromagnetic interaction also conserves the total angular momentum. If we
consider, in addition to energy and linear momentum conservation, the conservation of
angular momentum, shows that by controlling the orientation of the spin of the free
electron, the energy and direction of the scattered photon is uniquelly de�ned. (Sec. 6.4)

41. From a theoretical point of view, the Lagrangian of an interacting elementary particle is
written as L̃ = L̃0 + L̃I , where L̃0 is the free Lagrangian of the particle, which describes
its mechanical properties, and L̃I = −eϕ(t, r)ṫ+ eA(t, r)ṙ, is the interacting Lagrangian
which predicts only an electromagnetic interaction. (Sec. 2.5.2)

42. The analysis of the interaction of two Dirac particles leads to the conclusion that the
interaction Lagrangian can be invariant under a larger group than Poincaré group, which
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also contains space-time dilations and local rotations. The whole analysis can be done in
terms of dimensionless variables. The coupling constant is 2α where α is the �ne structure
constant. The L̃I goes like 1/r where r is the instantaneous separation between the centers
of charge of both particles. The free Lagrangian L̃0 can describe free particles of arbitrary
masses, but the interaction is independent of the masses of the particles. One feature
is that to have an e�ective interaction between both particles, the velocities u1 and u2

of the centers of charge must be di�erent. Two electrons, if at any time, their velocities
u1 = u2, do not interact, independently of the separation between them. (Sec. 4.5)

43. If we call kinematical variables x, the boundary variables of any mechanical system in a
variational approach, then the classical Lagrangian of any mechanical system L̃(x, ẋ) is
always a homogenous function of degree 1 of the derivatives of the kinematical variables
ẋ, with respect to some arbitrary, dimensionless evolution parameter τ . (Sec. 1.3.4)

44. If we consider that the Hamiltonian is the conjugate momentum of the time variable, then
all kinematical variables x ≡ (t, qi, . . . , q

(k−1)
i ) have associated a conjugate momentum.

For any Lagrangian system we have as many conjugate pairs of canonical variables as
the number of the kinematical variables. Therefore, the kinematical variables with the
time excluded, represent the generalized coordinates of the canonical formalism. If some
of these variables are the time derivatives of another ones, then the Lagrangian depends
on higher order derivatives, because the Lagrangian always depends on the kinematical
variables and their next order time derivative. (Secs. 1.4, 1.3.2)

45. The kinematical space of any mechanical system X is always a metric Finsler space, and
the variational formulation is equivalent to a geodesic problem on the kinematical space
X, where the metric depends on the kind of interaction. For an elementary particle, any
interaction modi�es the metric of its kinematical space. (Sec. 1.6)

46. The metric of the kinematical space can be obtained by di�erentiation of the Lagrangian
L̃, by means of (Sec. 1.6)

gij(x, ẋ) =
1

2

∂2L̃2

∂ẋi∂ẋj
= gji(x, ẋ).

47. The point particle is a possible model for an elementary particle in this formalism, but
it corresponds to a spinless elementary particle. The extensive use of this model has to
be rejected for the analysis of the behavior of the real elementary matter. It seems that
there are no spinless elementary particles in nature. All physical properties associated to
the spin will be masked with the use of this model. (Sec. 2.1)

48. The kinematical space of the point particle is Minkowski space time with the constant
metric ηµν = diag(1,−1,−1,−1). Gravity, considered as another interaction and in the
spirit of uni�cation of all interactions, when applied to the point particle, would modify the
Minkowski metric and will be rise, in general, to a Finsler metric but not to a Riemannian
metric as is postulated in General Relativity. (Sec. 1.6)

49. Gravity, considered as another interaction, when applied to the spinning elementary par-
ticle, would modify the metric of its kinematical space and will give rise, in general, to a
Finsler metric of this manifold, and not only of the spacetime submanifold. (Sec. 1.6)

50. A consequence of postulating a variational formulation of the dynamics, as a geodesic
formulation on the kinematical space, is that this formulation contains a restricted version
of the Causality Principle. When the squared metric distance between between two points
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on the kinematical space is de�nite positive the evolution between these two points is
allowed, while if this is not the case, both points are causally disconected and the evolution
between them is not allowed. (Sec. 1.7)

51. A consequence, not a prediction, of postulating a variational principle like in this formal-
ism is that it is not equivalent to a canonical formulation. Euler-Lagrange equations are
equivalent to Hamilton's equations if we try to �nd solutions by giving boundary con-
ditions at the initial point of the evolution t1. But the variational formalism that leads
to Euler-Lagrange equations has been formulated by the requirement that the particular
solution will go from an initial state at time t1 to a �xed �nal state at time t2. The canon-
ical formalism with boundary conditions at time t1 is not equivalent to Euler-Lagrange
equations with boundary values at times t1 and t2. In fact, the canonical formalism is
unneccesary for the quantization of this kinematical formalism and also for the description
of particles with spin. (Sec. 1.8)

52. If the center of charge of a spinning particle is moving in circles at the speed of light,
according to the well know theory of radiation of point-like particles, the free spinning
particle should be radiating continuously. This is incompatible with the conservation of
energy. It is necessary to develop the theory of radiation of spinning particles, which will
produce radiation whenever the center of mass of the spinning particle is accelerating, i.e.,
when the particle is under the action of an external force. In this case part of the energy
obtained by the particle will be trasformed into radiation. This theory of radiation of
spinning particles is not yet done. (Chap. 5)

53. The requirement that the energy of any material system must be a positive de�nite ob-
servable, might be related to the di�erence between the active and passive interpretation
of time translations. Passive time translations are mathematical transformations in which
the zero point of the clock is changed forward or backwards, arbitrarily. From the active
point of view we can only perform active time translations to the future. The conserved
magnitude associated to the invariance of physical laws under active time translations
cannot have both signs. The remaining invariance laws under space translations, rota-
tions and boosts, have not de�nite sign, because the group transformations have both
directions, form the active and passive point of view, and the conserved momenta can
have both signs. The concept of negative energy in physics is meaningless. ((Sec: 6.10.3)

54. The above comment implies that the Restricted Relativity Principle is not associated to
a complete symmetry group but, as far as active time translations is concerned, would be
related to the semigroup of time translations to the future. (Sec: 6.10.3)

55. The Law of Inertia is ussually stated in the form: In any inertial reference frame a free
body is at rest or is moving at a constant velocity. This formulation makes reference to
the motion of the center of mass of a free body. However, elementary matter moves and
rotates, and if it is free it moves with a constant velocity (constant CM velocity) and with
a constant angular momentum SCM . It is necessary to reformulate the Law of Inertia to
include the free rotational motion.
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Appendix: Elementary particles (Standard model)

We list the elementary particles of the standard model, beginning with the intermediate
bosons of spin 1, (gluon g, photon γ and massive bosons W± and Z), the 6 leptons (electron
e, muon µ and tau τ and the corresponding neutrinos) and the 6 quarks, all fermions of spin
1/2. Several quantum numbers, in addition to the mass and charge, are included. The isospin,
spin, parity, leptonic number L, barionic number B, strangeness S and colour. We do not
include information of the hypothetic graviton, which would be a massless particle of spin 2.
We also include information on the recently measured Higgs boson. The leptonic number is
characteristic of the three leptons, i.e., they exist three di�erent leptonic numbers Le, Lµ and
Lτ . They exist the antiparticles of all of them, of the same mass and spin, but opposite quantum
numbers.

mass·c2 charge Isospin Spin Par. L B S Colour Life
g 0 0 0 1 − 0 0
γ < 2× 10−16eV 0 0 , 1 1 − 0 0
W 80.398 GeV ±e 1 0 0
Z 91.187 GeV 0 1 0 0
e 0.511 MeV −e 1/2 1 0 0 stable
µ 105.65 MeV −e 1/2 1 0 0 10−6s
τ 1.777 GeV −e 1/2 1 0 0 10−15s
νe <0.5 eV 0 1/2 1 0 0
νµ <0.17 MeV 0 1/2 1 0 0
ντ <18.2 MeV 0 1/2 1 0 0
u 1.5 ∼ 3.3 MeV 2e/3 1/2 1/2 + 0 1/3 0 1
d 3.5 ∼ 6.0 MeV −e/3 1/2 1/2 + 0 1/3 0 1
c 1.27 GeV 2e/3 0 1/2 + 0 1/3 0 1
s 104 MeV −e/3 0 1/2 + 0 1/3 -1 1
t 171.2 GeV 2e/3 0 1/2 + 0 1/3 0 1
b 4.2 GeV −e/3 0 1/2 + 0 1/3 0 1

Higgs 125.3 GeV 0 0 0 0 0 0

Intensity of the Interactions

Quarks exist in 6 �avours, u, d, . . . , b, have colour charge with three possible values, electric
charge and mass and can interact under the four forces: strong, electromagnetic, weak and
gravitational. Leptons have no colour and they do not interact strongly. They can interact
under the other three forces, except neutrinos which do not interact electromagnetically. The
interchange of gluons between quarks implies the change of the colour charge. Ordinary matter,
made of aggregates of quarks and leptons, has no colour and therefore quarks and antiquarks
can only form bound states of neutral colour. This is called con�nement.

If the intensity of the strong interaction between quarks is 1 and of a range of order 10−15m,
the electromagnetic interaction, by interchange of photons γ, is of the order of the �ne structure
constant α = 1/137 and of in�nite range. The weak force is of very short range, around 10−18m
with the interchange of massive bosons W± and Z (m> 80 GeV) and of intensity 10−6 while
the gravitational force, of in�nite range, is of intensity of 6× 10−39. Nevertheless, this intensity
depends on the energy of the interacting particles. What it seems to happen is that with
increasing energy all three interactions (gravity excluded) have the same intensity and the
behavior is like if the particle were free. This is called asymptotic freedom. At very high energy
quarks behave like free particles.
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Several observables for the electron

for di�erent velocities

v/c v2/c2 γ(v) p (MeV/c) E (MeV) T (K)

0 0 1 0 0.511003 0
0.0001 10−8 1. 0.0000511003 0.511003 8.475
0.001 10−6 1. 0.000511004 0.511004 847.54
0.01 10−4 1.00005 0.00511029 0.511029 8.47·104
0.1 0.01 1.00504 0.0513578 0.513578 8.47·106
0.5 0.25 1.1547 0.295028 0.590056 2.11·108
0.86603 0.750 2.00003 0.885103 1.02202 · · ·
0.9 0.81 2.29416 1.05509 1.17232 · · ·
0.99 0.9801 7.08881 3.58618 3.62241 · · ·
0.999 0.99800 22.3663 11.4178 11.4292 · · ·
0.9999 0.99980 70.7124 36.1307 36.1343 · · ·
0.99999 0.99998 223.607 114.263 114.264 · · ·
0.999995 0.999990 316.532 161.748 161.749 · · ·
0.999999 0.999998 707.107 361.334 361.334 · · ·
0.9999999 0.9999998 2236.07 1142.64 1142.64 · · ·

The observables of the table are

γ(v) =

(
1− v2

c2

)−1/2

, p = γ(v)mv, E = γ(v)mc2.

γ(v) ≈ 1 +
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

the factor γ takes the value 2 for v/c ≈0.86603. Please remark that it is necessary to reach
the velocity v/c = 0.99999999999987 (twelve nines) with a factor γ = 2 · 106, in order that the
electron energy will be 1.00213 TeV. Today's accelerators (Tevatrón (FermiLab), LHC (Cern))
reach energies of order from 4 to 8 TeV.

The last column corresponds to the temperature in Kelvin of a nonrelativistic electron gas
whose mean velocity is the indicated, and considered a system of seven degrees of freedom. The
dots of some sections imply that for those velocitites the nonrelativistic analysis of statistical
mechanics does not apply.

7

2
κT =

1

2
mv2, κ = 1.38 · 10−23 J/K (Boltzmann′s Constant).

The �rst coloured boldface line, corresponding to v/c = 0.01, represents the maximal velocity
of the center of masses of two electrons with parallel spins, to form a bound state, as we shall
analyze in section 6.6.

The second coloured boldface line corresponds to the experiment, not of very high energy,
we shall analize in section 6.2 to measure the electron clock.



Chapter 1

Fundamental Principles

1.1 Newtonian formulation

To our knowledge, the �rst important approach for a theory of matter where all objects
are bound systems of smaller particles is due to Newton. By de�nition, the simplest material
particle is the point. For Newton, matter is composed of aggregates of points of mass m, of
arbitrary but �xed value. Each elementary point particle satis�es a dynamical equation

m
d2r

dt2
= F

where r is the location of the point and F is the total external force acting on it. If we also
admit that forces satisfy Newton's third law, we arrive to the conclusion that any aggregate of
matter has a characteristic point, its center of mass q, de�ned as

q =

∑
miri∑
mi

, m =
∑

mi

which satis�es ∑
F ext = m

d2q

dt2
.

This is known as the center of mass theorem: The center of mass of any material system behaves
like a point particle of mass the total mass of the system, under the sum of only the external
forces acting on the particles.

Newton postulates that matter atracts each other with the universal gravitation law, which
satis�es Newton's third law. If we try to sepparate a sheet of paper into two parts, assuming
two pieces of around 1 g each and separated 10 cm, the gravitational force between them is

F = G
m2

d2
= 6.672× 10−11 × 0.0012/0.12 = 6.672× 10−15 N,

much much smaller than the actual force we have to do to separate the sheet into two parts.
Cohesion forces of matter are not of gravitational nature. Among material systems another
kind of force should exist to form bound objects. Newtonian theory does not restrict the kind
of forces we can have in Nature. If the point particle has a property called charge, this will be
located at the same point r. Then all matter will be built from arbitrary material points of
arbitrary masses and charges, which in addition to the gravitational interaction they attract,
and sometimes repel, each other with another kind of force of higher intensity.

If we can make a time travel, come back to Newton's time in Cambridge, and ask him:
Sir, we are coming from the future and we know that matter, in addition of having mass, has
another unmodi�ed property called spin. It is possible that Sir Isaac, would think about and

23
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would modify his second law to take into account the dynamics of the angular momentum
in terms of the external torques. The important aspect is that when around 1920 quantum
mechanics enters into the scene, it would produce a di�erent quantization scenario.

Newtonian formalism is not restrictive and for the forces F among particles many kind of
interactions are allowed. It is the gauge theory in the quantum case, and the atomic principle
in our formalism, which will establish a limit to the allowed interactions. In another context
charges, masses, angular momenta of elementary particles are not resticted and can take any
value. It is quantum theory which should predict these values. Nevertheless, up to now,
quantum theory has only been able to predict the values of the spin, with a total freedom for
the remaining properties, like masses and charges.

Newton was already aware of this possibility of internal forces of short and long range, as
he writes in his dissertation in the book III of Opticks: 1

Now the smallest particles of matter may cohere by strongest attractions, and compose bigger
particles of weaker virtue; and many of these may cohere and compose bigger particles whose
virtue is still weaker, and so on for diverse successions, until the progression ends in the biggest
particles on which the operations in chemistry, and the colors of natural bodies depend, and
which by cohering compose bodies of a sensible magnitude.
For we must learn from the phenomena of nature what bodies attract one another, and what
are the laws and properties of the attraction, before we inquire the cause by which the attraction
is perform'd. The attractions of gravity, magnetism, and electricity, reach to very sensible
distances, and so have been observed by vulgar eyes, and there may be others which reach to so
small distances as to escape observation.

1.1.1 Chronology of Mechanics and Lagrangian Mechanics

� 1687. The Principia Mathematica are published by Newton. F = ma

� 1733. Euler discovers the Variational Formulation.

� 1755. Lagrange states the necessary conditions of the Variational Formulation: Euler-
Lagrange equations.

� 1788. Lagrange writes the Mécanique Analytique: Lagrangian Formulation.

� 1833. Hamilton establishes the canonical formulation: Hamilton's Equations.

� 1854. Riemann formulates the structure of the metric spaces gij(x).

� 1915. Einstein postulates gravity as a modi�cation of the Riemannian metric of space-
time.

� 1915. Noether relates continuous symmetries with conservation laws. Noether's The-
orem.

� 1918. Finsler presents a PhD thesis about general metric spaces gij(x, ẋ).

� 1934. Cartan publishes: Les Espaces de Finsler.

The playground of the Lagrangian systems is always a metric Finsler space

1I. Newton, Opticks, A treatise of the Re�ections, Refractions, In�ections and Colours of Light, Dover, NY
1952, p.394.
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1.2 Fundamental Principles

Because all known elementary particles, the quarks and leptons, are spinning particles and
it seems that there are no spinless elementary particles in nature, we take the challenge of
obtaining a classical formalism for describing spin. The interest of a classical description of
spinning matter is not important in itself, because matter, at this level, behaves according
to the laws of quantum mechanics. But �ner a classical description of elementary matter a
deeper quantum mechanical formalism, because we will have at hand, when quantizing the
system, more classical variables to deal with, and therefore with a more clear physical and/or
geometrical interpretation. A second feature is that a classical formalism supplies models. Both
goals, in my opinion, have been succesfully achieved.

Feynman, in the �rst chapter of his Lectures on Physics 2, states that "If, in some cataclysm,
all of scienti�c knowledge were to be destroyed, and only one sentence passed on to the next gen-
erations of creatures, what statement would contain the most information in the fewest words?
I believe it is the atomic hypothesis (or the atomic fact or whatever you wish to call it) that all
things are made of atoms-little particles that move around in perpetual motion, attracting each
other when they are a little distance apart, but repelling upon being squeezed into one another."

If the atomic hypothesis is such an important principle, physics has to take advantage of this
fact, and, properly formulated, should be included as a preliminary fundamental principle of
elementary particle physics, as we shall do in what follows. The books of Physics, when dealing
with the subject of atomism, they just mention Leuccipus and Democritus of Abdera, as the
�rst scientists who proposed the idea that matter is �nally a set of discrete undivisible objects
(atoms). Democritus adds that these objects are also immutable. It is di�cult to understand
what Democritus would mean around 2500 years ago, about immutability. But this idea what
perhaps means is that a compound system can be modi�ed but an elementary particle cannot.
We can excite a molecule, rotate it with some angular velocity, even deform and modify its
mass, but this is not possible for an electron. We cannot change the electron mass and charge
and we cannot rotate an electron around itself with an arbitrary angular velocity. The most
we can do is to modify its orientation in space. The mass and absolute value of its spin are
immutable. The atomic principle is going to restrict the number and the kind of classical
variables we have to use to describe an elementary particle. These variables are not restricted
for arbitrary material systems, but they are restricted for elementary particles. It is a very
restrictive principle which will suggest a kind of minimal coupling interaction when analyzing
compound systems of elementary particles.

The kinematical formalism for describing elementary spinning particles, previously aimed for
the classical spin description of matter, has proven to be a general framework for the description
of elementary particles, because it supplies a very precise de�nition of a classical elementary
particle which has, as a quantum counterpart, Wigner's de�nition. All elementary systems
described within this formalism have the feature that, when quantized, their Hilbert space of
pure states carries a projective unitary irreducible representation of the kinematical group. It
is through Feynman's path integral approach that both formalisms complement each other.

The formalism we propose is based upon the four fundamental principles:

� Restricted Relativity Principle,

� Variational Principle,

� Atomic Principle,

� Quantization Principle.
2Feynman RP, Leighton RB and Sands M 1968 The Feynman Lectures on Physics, (NY: Addison Wesley)

Vol 1, Sec 1-2.
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1.2.1 Restricted Relativity Principle

Restricted Relativity Principle: In absence of gravitation, there exists a
class of equivalent observers, to whom the laws of physics must be the same.

When using the same kind of variables the fundamental physical laws have to be written in
the same form in the di�erent equivalent reference frames. One fundamental law is the Law of
inertia which states that a free body in a reference frame can be at rest or moving with constant
velocity. If this law of inertia holds for the class of equivalent observers, then the equivalent
observers are at rest or moving at a constant velocity with respect to each other. We call them
inertial reference frames.

This class of inertial observers is de�ned by the way they relate the measurement of any
space-time event. The set of inertial observers is endowed with an equivalence law ≡ , i.e.,
it satis�es the properties of an equivalence law: re�exive O ≡ O, symmetric O ≡ O′ implies
O′ ≡ O , and transitive, if O ≡ O′ and O′ ≡ O′′ then O ≡ O′′. In the language of composition
of transformations this means that there exists the unit transformation, the inverse of any
transformation and that the composition of transformations is associative and produces another
transformation. The set of transformations among the inertial observers form a group, the
kinematical group of the formalism.

The equivalent observers are de�ned with respect to each other by a spacetime transforma-
tion group. They are moving with a constant velocity and thus two possibilities arise: (a) the
relative velocity has no upper limit, or (b) there exists an upper limit velocity unreachable for
all of them. If this velocity exists, we represent it by c, and according to this relativity principle
must be the same for all inertial observers.

If we accept that the relative situation among inertial observers contains space-time transla-
tions, static rotations and relative displacements at a constant velocity (boosts), the possibility
(a) implies that if the observer O measures a space-time event given by the values of time and
position t and r, respectively, and observer O′ measures t′ and r′ for the same event, these
values are related by means of the transformation

t′ = t+ b, r′ = R(α)r + vt+ a,

where the ten real numbers (b,a,v,α) are �xed for these two observers and where by α we
want to represent the three parameters which de�ne the relative orientation between the cor-
responding Cartesian reference frames of both observers. These equations represent the action
of the Galilei group of transformations on the space-time, which is the kinematical group in
the nonrelativistic framework. If instead of these transformations we use those of the Poincaré
group,

t′ = γ(v)

(
t+

v ·R(α)r

c2

)
+ b, r′ = R(α)r + γ(v)vt+

γ(v)2

(1 + γ(v))c2
(v ·R(α)r) v + a,

which depend on the same 10 parameters (b,a,v,α) and on the universal constant c, and where
γ(v) = (1 − v2/c2)−1/2. We are in the case (b), but now with the restriction that v < c, and
this is called a relativistic formalism.

The kinematical group associated to this fundamental principle has to be �xed once for
ever. This principle is not only a statement about the restricted universality of the physical
laws, but it is also a statement that the relative measurements between inertial observers of
any other observable depends only on this group, i.e., how two inertial observers relate their
relative measurements of space-time events. By restricted universality what we mean is that
the physical laws are not the same for all possible observers, but only for a restricted class of
them, the so called inertial observers, to whom the formalism is restricted.
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If some observer is describing an electromagnetic phenomenon and we change to another ac-
celerated observer, in this frame in addition to the corresponding electromagnetic phenomenon
we shall also describe the presence of an inertial �eld, which is undistinguishable from a grav-
itational �eld. These two observers do not describe the same kind of phenomena. They are
not equivalent observers. We are going to restrict the formalism for observers who describe
the same phenomena. It is the General Relativity Principle which admits the invariance of
physical laws under any change of arbitrary observers or the use of any system of coordinates,
but if we include gravity between the phenomena to be described. The reason is that it is not
possible locally to distinguish between a change to an accelerated frame form the presence of
a gravitational �eld. If we admit this restricted relativity principle we have to exclude in its
framework the possibility of description of gravitational phenomena.

1.2.2 Variational Principle

The Variational Principle states that a property called the action of any mechanical
system during its evolution between some initial and �nal states must be stationary. The action
is described in terms of a Lagrangian function which is an explicit function of the time t, the
independent degrees of freedom and their subsequent time derivatives up to a �nite order, which
is what we are going to consider in this formalism. Usually, most mechanical textbooks restrict
the Lagrangian to depend up to the �rst order time derivative of the independent degrees of
freedom. This is the case for bound systems of spinless or point particles, for instance in
the Newtonian formalism. This implies that dynamical equations for the degrees of freedom
are at most second order di�erential equations. However, di�erential geometry shows that,
in general, a point in a three-dimensional vector space, satis�es a fourth order di�erential
equation. In another context we do not know yet what are the variables we need to describe
spinning matter. Are we able to restrict to these unknown variables to satisfy only second
order di�erential equations? This is a mathematical restriction which is not justi�ed physically.
Think in the discussion in the Preamble about the motion of the admisible center of charge.
We are not going to restrict Lagrangians to depend only on the �rst order time derivatives of
the independent degrees of freedom. The atomic principle will only restrict the Lagrangian to
depend on a �nite number of degrees of freedom and also of a �nite maximum order in their
derivatives.

According to this variational principle, there will be a Lagrangian function L, which will
be an explicit function of the time, of a �nite number of degrees of freedom and their time
derivatives up to a �nite order, for any mechanical system formed from a �nite number of
elementary particles. It is the atomic principle which will limit the maximum number of variables
to describe an elementary particle.

This variational principle is so strong that when we apply it to material systems which satisfy
the atomic principle, we shall arrive to the conclusion that the only allowed interaction for
classical elementary particles is the electromagnetic interaction, either for spinless or spinning
particles. The dynamical equation of an elementary particle of charge e, in the variational
formulation, will be

dp

dt
= e (E + u×B) ,

where p is the linear momentum of the particle, u is the velocity of the center of charge and E
and B the external electromagnetic �eld. The expression of the linear momentum depends on
the framework, either relativistic or not relativistic, i.e., of the kinematical group and in terms of
the di�erent degrees of freedom and their derivatives. In the classical variational framework, and
with these three fundamental principles, we have not been able to describe other interactions.
Weak and strong interactions are described in a quantum context under the assumption of local
gauge invariance.
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In this way we shall start in section 1.3 with the generalized Lagrangian formalism to obtain
the main results in general form.

1.2.3 Atomic Principle

The Atomic Principle admits that matter cannot be divided inde�nitely. Matter does
not satisfy the hypothesis of the continuum. After a �nite number of steps in the division of
matter we can reach an ultimate and indivisible object, an elementary particle. If a theoretical
framework pretends to describe real matter, it must contain in the formalism some statement
or declaration about the existence of these primordial objects and the possibility to distinguish
theoretically between an elementary system and another one which is not elementary.

If we take a piece of matter and we try to break it, the result is that it is �rst deformed
and if our strength is enough it breaks into two or more pieces. The distinction between an
elementary particle and any other �nite mechanical system is that an elementary particle, in
addition of being indivisible, if not destroyed by its antiparticle, it can never be modi�ed. It
can never have excited states, so that all possible states are only kinematical modi�cations of
any one of them.

Since in the process of breaking matter we need a �nite number of steps to reach this ultimate
object, this implies that the states of an elementary can be described by a �nite set of variables.
If the state of an elementary particle changes, and we assume this fundamental principle, we
can always �nd another inertial observer who describes the particle with the same values of all
essential variables as before the change. One electron, if not annihilated, remains always as an
electron under any interaction. This will imply a restriction in the kind of classical variables we
shall use to describe the initial and �nal states in the variational dynamical description.

It is this explicit distinction between compound systems and elementary particles, consid-
ered as a basic part of the formalism, what makes sense to consider this atomic principle as a
fundamental principle.

These three fundamental principles complete our classical framework. To quantize the for-
malism we have to replace the Variational Principle for the next Quantization Principle.

1.2.4 Quantization Principle

For the quantum description we must substitute this last variational principle by the Quan-
tization Principle, in the form proposed by Feynman 3: All paths of the evolution of any
mechanical system between some initial and �nal states are equally probable. For each path
a probability amplitude is de�ned, which is a complex number of the same magnitude but
whose phase is the action of the system between the end points along the corresponding path.
The probability amplitude for �nding the system in any classical state, i.e, the quantum wave
function, will be a squared integrable and normalized complex function of the variables which
de�ne the states in the variational approach. In this way, classical and quantum mechanics are
described in terms of exactly the same set of classical variables.

This formalism will determine that these variables for an elementary particle, which de�ne
the initial and �nal states of the evolution in the variational description, are a �nite set of
variables which necessarily span a homogeneous space of the kinematical group. We shall call
them the kinematical variables of the particle. The manifold they span is larger than the
con�guration space and in addition to the time and the independent degrees of freedom it
also includes the derivatives of the independent degrees of freedom up to one order less the
highest order they have in the Lagrangian. The Lagrangian for describing these systems will

3R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, MacGraw Hill, N.Y., (1965).
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be thus dependent on these kinematical variables and their next order time derivative. If the
evolution is described in terms of some group invariant evolution parameter τ , then, when
writting the Lagrangian not in terms of the independent degrees of freedom but as a function of
the kinematical variables and their τ−derivatives, it becomes a homogeneous function of �rst
degree of the τ−derivatives of all kinematical variables.

Feynman's path integral method seems to be inspired in a Dirac's paper 4. In this article
Dirac states, when comparing the Lagrangian approach with the canonical aproach, that: the
two formulations are, of course, closely related, but there are reasons for believing that the
Lagrangian one is more fundamental. Later, he expresses that we ought to consider the classical
Lagrangian, not as a function of the coordinates and velocities, but rather as a function of the
coordinates at time t and at time t + dt. Here, he is clearly suggesting the use of boundary
variables, i.e, the kinematical variables for the expression of the Lagrangian.

In the Preface of Feynman and Hibbs book, it is mentioned that Feynman, in a private con-
versation with a European colleague, became aware of the mentioned Dirac's paper, suggesting
that the wave function at time t+ ϵ would be related to the wave function at time t in the form

ψ(t+ ϵ) ∼ eiϵL/ℏψ(t).

What Feynman did was to postulate that the above relation is an identity. There is a quotation
in the book 5 that the European colleague was Herbert Jehle, while visiting Princeton in 1941.

We shall analyze several examples of spinning particles. But we shall be surprised that,
for the description of free elementary particles, in particular a Dirac particle, is not necessary
to postulate any Lagrangian. The analysis of Noether's theorem and conservation laws, and
the group invariants will be su�cient to describe the dynamics of a free spinning elementary
particle.

1.3 Variational Principle: Lagrangian Formalism

The Lagrangian formalism postulated by Lagrange (1788) was generalized for systems de-
pending on higher order derivatives by Ostrogradsky (1850). 6 The result is that if the La-
grangian depends on time t, the n degrees of freedom qi(t) and their �rst order time derivatives
L(t, qi, q̇i), Euler-Lagrange equations are

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, . . . , n.

But if the Lagrangian depends up to the derivatives of order k-th of the degrees of freedom, the
equations are

∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k d

k

dtk

(
∂L

∂q
(k)
i

)
= 0, i = 1, . . . , n, (1.1)

where we use here an exponent between brackets to express the order of the time derivative
of the corresponding variable. We shall arrive to these dynamical equations as a necessary
condition for the action to be stationary. But it is also important to remark that the general
formalism which brings us to equations (1.1), requires that the end points of the evolution, i.e.,
the boundary conditions for the evolution, remain �xed. In addition to obtain Euler-Lagrange

4P.A.M. Dirac, The Lagrangian in quantum mechanics, Phys. Zeitsch. der Sowjetunion, 3, 64�72 (1933).
5L.M. Brown (editor), Feynman's thesis: A new approach to quantum theory, (World Scienti�c 2005)
6 M. Ostrogradsky, Mémoire sur les équations di�érentielles relatives au problème des isopérimètres, Mem.

Acad. St. Petersburg, 6(4), 385-517 (1850).
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equations, we are going to see what are these boundary variables which de�ne in an essential
way the initial and �nal states of the evolution, and which we propose to call them kinematical

variables. In particular, it is the atomic principle which will limit what these variables are for
an elementary particle.

Finally we are going to analyze the geometrical structure of the space spanned by the
kinematical variables. We shall see that for any arbitrary system it is always a metric space,
but not Riemannian but rather a Finsler metric space. In this way, if a mechanical system
of a de�nite number of kinematical variables is analyzed under two di�erent interactions, the
kinematical space is the same manifold but the Finsler metrics associated to the corresponding
interactions are di�erent. In this way, gravity will be studied as a modi�cation of the Finsler
metric of the manifold which describes free elementary spinning matter, modi�cation produced
by the material content of all objects in the universe, including the analyzed elementary particles.

1.3.1 Euler-Lagrange equations

Let us consider a mechanical system of n degrees of freedom, characterized by a Lagrangian
that depends on time t and on the n essential coordinates qi(t), that represent the n indepen-
dent degrees of freedom, and their derivatives up to a �nite order k. Because we can have
time derivatives of arbitrary order we use a superindex enclosed in brackets to represent the
corresponding k-th derivative, i.e., q(k)i (t) = dkqi(t)/dt

k. The action functional is de�ned by:

A[q] =
∫ t2

t1

L(t, qi(t), q
(1)
i (t), . . . , q

(k)
i (t))dt, (1.2)

where i = 1, . . . , n. For any trajectory qi(t) introduced into the integral (1.2), we shall obtain
a real number, the action of the system along that trajectory.

Variational Principle: The trajectory followed by the dynamical system is that
path which passing through the �xed end points de�ned at times t1 and t2, respec-
tively, where we �x on them the values of the variables and their time derivatives
q
(s)
i (t1) and q

(s)
i (t2), i = 1, ..., n, s = 0, 1, ..., k − 1, up to the maximum (k − 1) -th

order, makes stationary the action functional (1.2), i.e., the value of the action along
that path is a maximum or a minimum.

Please remark that we need to �x as boundary values of the variational principle some
particular values of time t, the n degrees of freedom qi and their time derivatives up to order
k − 1, i.e., one order less than the highest derivative of each variable qi in the Lagrangian, at
both end points. Although the values we �x as boundary variables correspond to the degrees
of freedom and their derivatives, their �xed values are considered as essential parameters, and
therefore they are selected without constraints. They uniquely de�ne the initial and �nal state.

Conversely we can say that the Lagrangian of any arbitrary generalized system is in general
an explicit function of the variables we keep �xed as end points of the variational formulation
and also of their next order time derivative.

Once the action functional (1.2) is de�ned for some particular path qi(t), to analyze its variation let
us produce an in�nitesimal modi�cation of the functions qi(t), qi(t) → qi(t) + δqi(t) while leaving
�xed the end-points of the variational problem, i.e., such that at t1 and t2 the modi�cation of
the generalized coordinates and their derivatives up to order k − 1 vanish, and thus δq(s)i (t1) =

δq
(s)
i (t2) = 0, for i = 1, . . . , n and s = 0, 1, . . . , k − 1. Then, the variation of the derivatives of the

qi(t) is given by q(s)i (t) → q
(s)
i (t) + δq

(s)
i (t) = q

(s)
i (t) + dsδqi(t)/dt

s, since the modi�cation of the
s-th derivative function is just the s-th derivative of the modi�cation of the corresponding function.

This produces a variation in the action functional δA = A[q + δq]−A[q], given by:

δA =

∫ t2

t1

L(t, q
(s)
i (t) + δq

(s)
i (t))dt−

∫ t2

t1

L(t, q
(s)
i (t))dt
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Figure 1.1: Two close paths q(t) and the modi�ed q′(t), passing through the same end points
1 and 2

=

∫ t2

t1

dt

n∑
i=1

[
∂L

∂qi
δqi +

∂L

∂q
(1)
i

δq
(1)
i + · · ·+ ∂L

∂q
(k)
i

δq
(k)
i

]
, (1.3)

after expanding to lowest order the �rst integral. The term

∂L

∂q
(1)
i

δq
(1)
i =

∂L

∂q
(1)
i

d

dt
δqi =

d

dt

(
∂L

∂q
(1)
i

δqi

)
− d

dt

(
∂L

∂q
(1)
i

)
δqi,

and by integration of this expression between t1 and t2, it gives:∫ t2

t1

∂L

∂q
(1)
i

δq
(1)
i dt =

∂L

∂q
(1)
i

δqi(t2)−
∂L

∂q
(1)
i

δqi(t1)−
∫ t2

t1

d

dt

(
∂L

∂q
(1)
i

)
δqidt

= −
∫ t2

t1

d

dt

(
∂L

∂q
(1)
i

)
δqi dt,

because the variations δqi(t1) and δqi(t2), vanish. Similarly for the next term:

∂L

∂q
(2)
i

δq
(2)
i =

∂L

∂q
(2)
i

d

dt
δq

(1)
i =

d

dt

(
∂L

∂q
(2)
i

δq
(1)
i

)
− d

dt

(
∂L

∂q
(2)
i

)
δq

(1)
i ,

∫ t2

t1

∂L

∂q
(2)
i

δq
(2)
i dt = −

∫ t2

t1

d

dt

(
∂L

∂q
(2)
i

)
δq

(1)
i dt =

∫ t2

t1

d2

dt2

(
∂L

∂q
(2)
i

)
δqi dt,

because δqi and δq
(1)
i vanish at t1 and t2, and �nally for the last term∫ t2

t1

∂L

∂q
(k)
i

δq
(k)
i dt = (−1)k

∫ t2

t1

dk

dtk

(
∂L

∂q
(k)
i

)
δqi dt,

so that each term of (1.3) is written only in terms of the variations of the degrees of freedom δqi
and not of their higher order derivatives. Remark that to reach these �nal expressions, it has been
necessary to assume the vanishing of all δq(s)i , for s = 0, . . . , k−1, at times t1 and t2. By collecting
all terms we get

δA =

∫ t2

t1

dt

n∑
i=1

[
∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k

dk

dtk

(
∂L

∂q
(k)
i

)]
δqi.

If the action functional is extremal along the path qi(t), its variation must vanish, δA = 0. The
variations δqi are arbitrary and therefore all terms between squared brackets cancel out. We obtain
a system of n ordinary di�erential equations, the Euler-Lagrange equations (1755),

∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k d

k

dtk

(
∂L

∂q
(k)
i

)
= 0, i = 1, . . . , n. (1.4)
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1.3.2 Kinematical space

In general, the system (1.4) is a system of n ordinary di�erential equations of order 2k,
and thus existence and uniqueness theorems guarantee only the existence of a solution of this
system for the 2kn boundary conditions q(s)i (t1), i = 1, . . . , n and s = 0, 1, . . . , 2k − 1, at the
initial instant t1. However the variational problem has been stated by the requirement that
the solution goes through the two �xed endpoints, a condition that does not guarantee neither
the existence nor the uniqueness of the solution. Nevertheless, let us assume that with the
�xed endpoint conditions of the variational problem, q(s)i (t1) and q

(s)
i (t2), i = 1, . . . , n and

s = 0, 1, . . . , k− 1, at times t1 and t2, respectively, there exists a solution of (1.4) perhaps non-
unique. This implies that the 2kn integration constants of the system (1.4), can be expressed
perhaps in a non-uniform way, as functions of the kn conditions at each of the two endpoints.
From now on, we shall consider systems in which this condition is satis�ed. It turns out that
a particular solution passing through these points will be expressed as a function of time with
some explicit dependence of the end point values

q̃i(t) ≡ qi(t; q(r)j (t1), q
(r)
l (t2)), (1.5)

i, j, l = 1, . . . , n, r = 0, 1, . . . k − 1, in terms of these boundary end point conditions.

De�nition: The Action Function 7 of the system along a classical path is the
value of the action functional (1.2) when we introduce in the integrand a particular
solution (1.5) of Euler-Lagrange equations (1.4) passing through those endpoints:∫ t2

t1

L (t, q̃i(t)) dt = A
(
t1, q

(r)
i (t1); t2, q

(r)
i (t2)

)
. (1.6)

Once the time integration is performed, we see that it will be an explicit function of the
kn+1 variables at the initial instant, q(r)j (t1), r = 0, . . . , k− 1 including the time t1, and of the
corresponding kn+ 1 variables at �nal time t2. We write it as

A
(
t1, q

(r)
i (t1); t2, q

(r)
i (t2)

)
≡ A(x1, x2).

We thus arrive at the following

De�nition: The kinematical variables of the system are the time t and the
n degrees of freedom qi and their time derivatives up to order k − 1. The mani-
fold X they span is the kinematical space or state space of the mechanical system.

The kinematical space for ordinary Lagrangians is just the con�guration space spanned by
variables qi enlarged with the time variable t. It is usually called the enlarged con�guration

space. But for generalized Lagrangians it also includes higher order derivatives up to one order
less than the highest derivative that appears in the Lagrangian. Thus, the action function

of a system becomes a function of the values the kinematical variables take at the

end points of the trajectory, x1 and x2. From now on we shall consider systems for which
the action function is de�ned and is a continuous and di�erentiable function of the kinematical
variables at the end points of its possible evolution. This function clearly has the property
A(x, x) = 0.

7Please remark that we use the same letter A( ) for the action function, followed by normal brackets containing
the variables of which it depends, and for the action functional A[ ] which is followed by squared brackets to
enhance that it is not a function but rather a functional over the class of all paths.
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1.3.3 Replacement of time as evolution parameter

The constancy of speed of light in special relativity brings space and time variables on the
same footing and time is relative to every observer. So, the next step is to remove the time
observable as the evolution parameter of the variational formalism and express the evolution as
a function of some arbitrary parameter, the same for all inertial observers. Then, let us assume
that the trajectory of the system can be expressed in parametric form, {t(τ), qi(τ)}, in terms of
some arbitrary evolution parameter τ , the same for all inertial observers. The functional (1.2)
can be rewritten in terms of the kinematical variables and their derivatives and becomes:

A[t, q] =
∫ τ2

τ1

L

(
t(τ), qi(τ),

q̇i(τ)

ṫ(τ)
, . . . ,

q̇
(k−1)
i (τ)

ṫ(τ)

)
ṫ(τ)dτ

=

∫ τ2

τ1

L̃ (x(τ), ẋ(τ)) dτ, (1.7)

where the dot means derivative with respect to the evolution variable τ that without loss of
generality can be taken dimensionless. Therefore L̃ ≡ L(t(τ), q̇

(s)
i /ṫ(τ)) ṫ(τ) has dimensions of

action.

1.3.4 Homogeneity of the Lagrangian

We can also see that the integrand L̃ is a homogeneous function of �rst degree as a function
of the τ−derivatives of the kinematical variables. In fact, each time derivative function q(s)i (t)

has been replaced by the quotient q̇(s−1)
i (τ)/ṫ(τ) of two derivatives with respect to τ . Even the

highest order k-th derivative function q(k)i = q̇
(k−1)
i /ṫ, is expressed in terms of the derivatives

of the kinematical variables q(k−1)
i and t. Thus the original function L, without tilde, is a

homogeneous function of zero degree of the derivatives of the kinematical variables. Finally,
the last term ṫ(τ), gives to the new de�ned L̃ the character of a homogeneous function of �rst
degree.

If we replace each ẋi by yi = λẋi, then L̃(x, y) = L̃(x(τ), λẋ(τ)) = λL̃(x(τ), ẋ(τ)). Therefore
Euler's theorem on homogeneous functions gives rise, by taking the derivative with respect to
λ of both sides, and taking λ = 1, to the result

L̃(x(τ), ẋ(τ)) =
∑
j

∂L̃

∂yj
ẋj

∣∣∣∣∣∣
λ=1

=
∑
j

∂L̃

∂ẋj
ẋj =

∑
j

Fj(x, ẋ)ẋ
j . (1.8)

This possibility of expressing the Lagrangian as a homogeneous function of �rst degree of
the derivatives was already considered in 1933 by Dirac 8 on aesthetical grounds. It is this
homogeneity of �rst degree in terms of the derivatives which will allow us later to transform
the variational formalism into a geodesic problem on the kinematical space X, but where the
metric gij(x, ẋ) will be direction dependent, and thus the particle trajectory is a geodesic, not
in a Riemannian manifold but rather in a Finsler space.9

The function L̃ is not an explicit function of the evolution parameter τ and thus we can see
that the variational problem (1.7), is invariant with respect to any arbitrary change of evolution
parameter τ . 10

8 P.A.M. Dirac, Proc. Cam. Phil. Soc. 29, 389 (1933): �a greater elegance is obtained�, �a symmetrical
treatment suitable for relativity.�

9G.S. Asanov, Finsler geometry, Relativity and Gauge theories, Reidel Pub. Co, Dordrecht (1985).
10 R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, N.Y. (1970); I.M. Gelfand,

S.V. Fomin, Calculus of Variations Prentice Hall, Englewood Cli�s, N.J. (1963).



34 CHAPTER 1. FUNDAMENTAL PRINCIPLES

In fact, if we change the evolution parameter τ = τ(θ), then the derivative ṫ(τ) = (dt/dθ)(dθ/dτ)

and q̇(s)i (τ) = (dq
(s)
i (θ)/dθ)(dθ/dτ) such that the quotients

q̇
(s)
i (τ)

ṫ(τ)
=

(dq
(s)
i (θ)/dθ) θ̇(τ)

(dt(θ)/dθ) θ̇(τ)
≡ q̇

(s)
i (θ)

ṫ(θ)
,

where once again this last dot means derivation with respect to θ. It turns out that (1.7) can be
written as:

A[t, q] =

∫ τ2

τ1

L(t(θ), qi(θ), . . . , q̇
(k−1)
i (θ)/ṫ(θ))

dt(θ)

dθ
dθ

=

∫ θ2

θ1

L̂(x(θ), ẋ(θ))dθ. (1.9)

1.3.5 Recovering the Lagrangian from the Action function

The formalism thus stated has the advantage that it is independent of the evolution param-
eter, and if we want to come back to a time evolution description, we just use the time of the
corresponding inertial observer as the evolution parameter and make the replacement τ = t,
and therefore ṫ = 1. In this case the homogeneity of the Lagrangian disappears. From now on
we shall consider those systems for which the evolution can be described in a parametric form,
and we shall use the symbol ˜ over the Lagrangian, which is understood as written in terms
of the kinematical variables and their �rst order τ−derivative. In this way we shall distinguish
between the Lagrangians L̃, from the Lagrangians L, without the symbol ˜, when we make the
analysis in a time evolution description. To pass from L̃ to L is just to make t = τ , and thus
ṫ = 1.

If what we know is the action function of any system A(x1, x2), as a function of the kinemat-
ical variables at the end points we can proceed conversely and recover the Lagrangian L̃(x, ẋ)
by the limiting process:

L̃(x, ẋ) = lim
y→x

∂A(x, y)

∂yj
ẋj , (1.10)

where the usual addition convention on repeated or dummy index j, extended to the whole set
of kinematical variables, has been assumed.

If in (1.7) we consider two very close points x1 ≡ x and x2 ≡ x+ dx, we have that the action
function A(x, x+ dx) = A(x, x+ ẋdτ) = L̃(x, ẋ)dτ and making a Taylor expansion of the function
A with the condition A(x, x) = 0 we get (1.10).

In a certain sense the knowledge of the action function A(x1, x2) characterizes the dynamics
in a global way because by means of (1.10) L̃ is determined and therefore, Euler-Lagrange
equations.

1.3.6 Symmetry of a dynamical system

A symmetry of a dynamical system is de�ned as that mathematical transformation of

the variables of the dynamical system which leaves invariant the dynamical equa-

tions. Since the composition of symmetries produces new symmetries, and this composition is
associative and there exists the trivial or identity transformation, the set of symmetries of any
dynamical system forms a group. It is the symmetry group of the system. If we admit as a
fundamental principle the Restricted Relativity Principle, then the kinematical group of space-
time transformations, which de�ne the relationship between equivalent observers, is a subgroup
of the general symmetry group.

If a transformation leaves invariant the Lagrangian of a dynamical system, then that trans-
formation represents a symmetry for this mechanical system. The opposite is not true, i.e., there
can be transformations which are symmetries but they do not leave the Lagrangian invariant. If
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the Lagrangian, under a transformation, changes into another Lagrangian which di�ers from the
previous one in a function which is a total derivative, with respect to the evolution parameter
τ of some arbitrary function λ(x) of the kinematical variables, then that transformation is a
symmetry.

The symmetry transformations can be continuous or discrete. A transformation is discrete
if it is an element of a discrete or �nite subgroup, like the transformation t′ = −t, which
represents a time reversal. This is a discrete transformation and if it is a symmetry we shall
say that the mechanical system is time reversal invariant. Continuous transformations are
those related to continuous or Lie groups, for instance translations and rotations. In the case
of continuous groups, it is su�cient to make the analysis of the symmetries by considering
only the in�nitesimal transformations, i.e., what is called the Lie algebra of the group. In the
appendix 1.10, we make a short introduction to continuous groups to �x the notation and the
representation of the in�nitesimal transformations and the generators of the group and its Lie
algebra.

1.3.7 Lagrangian gauge functions

In the variational formulation of classical mechanics

A[ q ] =
∫ t2

t1

L(t, q
(s)
i (t))dt ≡

∫ τ2

τ1

L̃(x, ẋ)dτ, (1.11)

A[ q ] is a path functional, i.e., it takes in general di�erent values for the di�erent paths joining
the �xed end points x1 and x2. Then it is necessary that L̃dτ be a non-exact di�erential.
Otherwise, if Ldt = dλ, then A[ q ] = λ2 − λ1 and the functional does not distinguish between
the di�erent paths and the action function of the system from x1 to x2, A(x1, x2) = λ(x2)−λ(x1),
is expressed in terms of the function λ(x), and is thus, path independent.

If λ(x) is a real function de�ned on the kinematical space X of a Lagrangian system with
action function A(x1, x2), then the function A′(x1, x2) = A(x1, x2) + λ(x2) − λ(x1) is another
action function equivalent to A(x1, x2). In fact it gives rise by (1.10) to the Lagrangian L̃′ that
di�ers from L̃ in a total τ -derivative. 11

Using (1.10), we have

L̃′(x, ẋ) = L̃(x, ẋ) +
dλ

dτ
, (1.12)

and therefore L̃ and L̃′ produce the same dynamical equations and A(x1, x2) and A′(x1, x2) are
termed as equivalent action functions.

Let us assume a Lagrangian system of one degree of freedom described by the Lagrangian L(t, q, q̇)
and we modify this Lagrangian in the form L′ = L+ dλ(t, q)/dt. The dynamical equations derived
from L′ are:

L′ = L+
∂λ

∂t
+
∂λ

∂q
q̇,

∂L′

∂q
=
∂L

∂q
+

∂2λ

∂q∂t
+
∂2λ

∂q2
q̇,

∂L′

∂q̇
=
∂L

∂q̇
+
∂λ

∂q
,

d

dt

(
∂L′

∂q̇

)
=

d

dt

(
∂L

∂q̇

)
+

d

dt

(
∂λ

∂q

)
=

d

dt

(
∂L

∂q̇

)
+

∂2λ

∂t∂q
+
∂2λ

∂q2
q̇,

and thus
∂L′

∂q
− d

dt

(
∂L′

∂q̇

)
=
∂L

∂q
− d

dt

(
∂L

∂q̇

)
and therefore L′ and L produce the same dynamical equations. This result is completely general

if L depends on more than one degree of freedom or even if the Lagrangian depends on higher

order derivatives. The only condition is that the function λ must be a function of the kinematical

variables.

11 J.M. Levy-Leblond, Comm. Math. Phys. 12, 64 (1969).
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Let G be a transformation group of the enlarged con�guration space (t, qi), that can be
extended to a transformation group of the kinematical space X. Let g ∈ G be an arbitrary
element of G and x′ = gx, the transformation of x. Consider a mechanical system characterized
by the action function A(x1, x2) that under the transformation g is changed into A(x′1, x

′
2). If

G is a symmetry group of the system, i.e., the dynamical equations in terms of the variables x′

are the same as those in terms of the variables x, this implies that A(x′1, x
′
2) and A(x1, x2) are

necessarily equivalent action functions, and thus they will be related by:

A(gx1, gx2) = A(x1, x2) + α(g;x2)− α(g;x1). (1.13)

The function α will be in general a continuous function of g and x. This real function α(g;x)
de�ned on G × X is called a gauge function of the group G for the kinematical space X.
Because of the continuity of the group it satis�es α(e;x) = 0, e being the neutral element of
G. If the transformation g is in�nitesimal, let us represent it by the coordinates δgσ, then
α(δg;x) = δgσλσ(x) to �rst order in the group parameters. The transformation of the action
function takes the form

A(δgx1, δgx2) = A(x1, x2) + δgσλσ(x2)− δgσλσ(x1),

i.e., in the form required by Noether's theorem to obtain the corresponding conserved quantities,
as we shall show in the next section. In general, λσ functions for gauge-variant Lagrangians are
obtained by

λσ(x) =
∂α(g;x)

∂gσ

∣∣∣∣
g=0

. (1.14)

Because of the associative property of the group law, any gauge function satis�es the identity

α(g′; gx) + α(g;x)− α(g′g;x) = ξ(g′, g), (1.15)

where the function ξ, de�ned on G×G, is independent of x and is an exponent of the group G.

This can be seen by the mentioned associative property of the group law. From (1.13) we get:

A(g′gx1, g
′gx2) = A(x1, x2) + α(g′g;x2)− α(g′g;x1), (1.16)

and also
A(g′gx1, g

′gx2) = A(gx1, gx2) + α(g′; gx2)− α(g′; gx1)

= A(x1, x2) + α(g;x2)− α(g;x1) + α(g′; gx2)− α(g′; gx1),

and therefore by identi�cation of this with the above (1.16), when collecting terms with the same
x argument we get

α(g′; gx2) + α(g;x2)− α(g′g;x2) = α(g′; gx1) + α(g;x1)− α(g′g;x1),

and since x1 and x2 are two arbitrary points of X, this expression is (1.15) and de�nes a function
ξ(g′, g), independent of x.

It is shown by Levy-Leblond in the previous reference that if X is a homogeneous space of
G, i.e., if there exists a subgroup H of G such that X = G/H, then, the exponent ξ is equivalent
to zero on the subgroup H, and the gauge functions for homogeneous spaces become:

α(g;x) = ξ(g, hx), (1.17)

where hx is any group element of the coset space represented by x ∈ G/H.
For the Poincaré group P all its exponents are equivalent to zero and thus the gauge functions

when X is a homogeneous space of P are identically zero. Lagrangians of relativistic systems
whose kinematical spaces are homogeneous spaces of P can be taken strictly invariant.
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However, the Galilei group G has nontrivial exponents, that are characterized by a parameter
m that is interpreted as the total mass of the system, and thus Galilei Lagrangians for massive
systems are not in general invariant under G. In the quantum formalism, the Hilbert space
of states of a massive nonrelativistic system carries a projective unitary representation of the
Galilei group instead of a true unitary representation. 12

1.4 Generalized Noether's theorem

Noether's analysis for generalized Lagrangian systems also states the following

Theorem: To every one-parameter group of continuous transformations that
leaving the dynamical equations invariant, transform the action function of the
system in the form

A(δgx1, δgx2) = A(x1, x2) + λ(x2)δg − λ(x1)δg,

and where λ(x) is a function de�ned on the kinematical space, there is associated a
classical observable N , which is a constant of the motion.

This observable N is written, as we will see in (1.37), in terms of the function
λ(x), is linear in the HamiltonianH and in the canonical momenta pi(s), and depends
on the in�nitesimal action of the group on the kinematical variables.
In addition to the function λ(x) contains as many terms as kinematical variables.

The requirement of Noether's theorem for the transformation of the action function is equivalent to the require-
ment for the Lagrangian to transform under the corresponding in�nitesimal transformation in the way:

L̃(δgx, δgẋ) = L̃(x, ẋ) +
dλ(x)

dτ
δg,

i.e., invariant up to a total τ−derivative of a function of the kinematical variables.

Proof:

Let us assume the existence of a one-parameter continuous group of transformations G, of the
enlarged con�guration space (t, qi), that can be extended as a transformation group of the whole
kinematical space X. Let δg be an in�nitesimal element of G and its action on these variables
is given by:

t→ t′ = t+ δt = t+M0(t, q)δg, (1.18)

qi(t)→ q′i(t
′) = qi(t) + δqi(t) = qi(t) +M

(0)
i (t, q)δg, (1.19)

and its extension on the remaining kinematical variables by

q′
(1)
i (t′) = q

(1)
i (t) + δq

(1)
i (t) = q

(1)
i (t) +M

(1)
i (t, q, q(1))δg, (1.20)

and in general

q′
(s)
i (t′) = q

(s)
i (t) + δq

(s)
i (t) = q

(s)
i (t) +M

(s)
i (t, q, . . . , q(s))δg, s = 0, 1, . . . , k − 1, (1.21)

whereM0 andM
(0)
i are functions only of qi and t while the functionsM

(s)
i with s ≥ 1, obtained

in terms of the derivatives of the previous ones, will be functions of the time t and of the
variables qi and their time derivatives up to order s.

12 see ref.7 and also J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory
and its applications, Acad. Press, NY (1971), vol. 2, p. 221.
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For instance,

q′
(1)
i (t′) ≡ dq′i(t

′)

dt′
=
d(qi(t) +M

(0)
i δg)

dt

dt

dt′
,

but up to �rst order in δg

dt′

dt
= 1 +

dM0(t, q)

dt
δg,

dt

dt′
≈ 1− dM0(t, q)

dt
δg,

and thus

q′
(1)
i (t′) = q

(1)
i (t) +

(
dM

(0)
i (t, q)

dt
− q

(1)
i

dM0(t, q)

dt

)
δg,

and comparing with (1.20) we get

M
(1)
i (t, q, q(1)) =

dM
(0)
i (t, q)

dt
− q

(1)
i

dM0(t, q)

dt
,

where the total time derivatives

dM0(t, q)

dt
=
∂M0

∂t
+
∑
j

∂M0

∂qj
q
(1)
j ,

dM
(0)
i (t, q)

dt
=
∂M

(0)
i

∂t
+
∑
j

∂M
(0)
i

∂qj
q
(1)
j .

The remaining M (s)
i for s > 1, are obtained in the same way from the previous M (s−1)

i .

Under δg the change of the action functional of the system is:

δA[ q ] =

∫ t′2

t′1

L(t′, q′
(s)
i (t′))dt′ −

∫ t2

t1

L(t, q
(s)
i (t))dt

=

∫ t′2

t′1

L(t+ δt, q
(s)
i (t) + δq

(s)
i (t))dt′ −

∫ t2

t1

L(t, q
(s)
i (t))dt.

By replacing in the �rst integral the integration range (t′1, t
′
2) by (t1, t2) having in mind the

Jacobian of t′ in terms of t, this implies that the di�erential dt′ = (1 + d(δt)/dt)dt, and thus:

δA[ q ] =

∫ t2

t1

L(t+ δt, q
(s)
i + δq

(s)
i )

(
1 +

d(δt)

dt

)
dt−

∫ t2

t1

L(t, q
(s)
i )dt

=

∫ t2

t1

(
L
d(δt)

dt
+
∂L

∂t
δt+

∂L

∂q
(s)
i

δq
(s)
i (t)

)
dt,

keeping only for the Lagrangian L(t+ δt, q(s) + δq(s)), �rst order terms in its Taylor expansion.
Now, in the total variation of δq(s)i (t) = q′

(s)
i (t′)−q(s)i (t) is contained a variation in the form of

the function q(s)i (t) and a variation in its argument t, that is also a�ected by the transformation
of the group, i.e.,

δq
(s)
i = q′

(s)
i (t+ δt)− q(s)i (t) = q′

(s)
i (t)− q(s)i (t) + (dq

(s)
i (t)/dt)δt

= δ̄q
(s)
i (t) + q

(s+1)
i (t)δt,

where δ̄q(s)i (t) is the variation in form of the function q(s)i (t) at the instant of time t. Taking
into account that for the variation in form

δ̄q
(s)
i (t) = ds(δ̄qi(t))/dt

s = d(δ̄q
(s−1)
i (t))/dt,

it follows that

δA[ q ] =
∫ t2

t1

(
L
d(δt)

dt
+
∂L

∂t
δt+

∂L

∂q
(s)
i

δ̄q
(s)
i (t) +

∂L

∂q
(s)
i

dq
(s)
i

dt
δt

)
dt
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Figure 1.2: Transformation of point A into A′, and the curve q(t) into q′(t′) under an
in�nitesimal transformation. the variation δq = BA′ is the sum of the part BC = q(1)δt and
the part CA′ = δ̄q, which is the variation of the function q at constant t, which we call here
the "form variation" of the function.

=

∫ t2

t1

(
d(Lδt)

dt
+

∂L

∂q
(s)
i

δ̄q
(s)
i (t)

)
dt. (1.22)

Making the replacements

∂L

∂qi
δ̄qi =

∂L

∂qi
δ̄qi,

∂L

∂q
(1)
i

δ̄q
(1)
i =

∂L

∂q
(1)
i

d(δ̄qi)

dt
=

d

dt

(
∂L

∂q
(1)
i

δ̄qi

)
− d

dt

(
∂L

∂q
(1)
i

)
δ̄qi,

∂L

∂q
(2)
i

δ̄q
(2)
i =

d

dt

(
∂L

∂q
(2)
i

δ̄q
(1)
i

)
− d

dt

(
∂L

∂q
(2)
i

)
δ̄q

(1)
i

=
d

dt

(
∂L

∂q
(2)
i

δ̄q
(1)
i

)
− d

dt

(
d

dt

(
∂L

∂q
(2)
i

)
δ̄qi

)
+
d2

dt2

(
∂L

∂q
(2)
i

)
δ̄qi,

∂L

∂q
(k)
i

δ̄q
(k)
i =

d

dt

(
∂L

∂q
(k)
i

δ̄q
(k−1)
i

)
− d

dt

(
d

dt

(
∂L

∂q
(k)
i

)
δ̄q

(k−2)
i

)
+ · · · ,

and collecting terms we get

δA[ q ] =
∫ t2

t1

dt

{
d(Lδt)

dt

+δ̄qi

[
∂L

∂qi
− d

dt

(
∂L

∂q
(1)
i

)
+ · · ·+ (−1)k d

k

dtk

(
∂L

∂q
(k)
i

)]
(1.23)

+
d

dt

(
δ̄qi

[
∂L

∂q
(1)
i

− d

dt

(
∂L

∂q
(2)
i

)
+ · · ·+ (−1)k−1 d

k−1

dtk−1

(
∂L

∂q
(k)
i

)])
(1.24)

+
d

dt

(
δ̄q

(1)
i

[
∂L

∂q
(2)
i

− d

dt

(
∂L

∂q
(3)
i

)
+ · · ·+ (−1)k−2 d

k−2

dtk−2

(
∂L

∂q
(k)
i

)])
(1.25)
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+ · · ·+ d

dt

(
δ̄q

(k−1)
i

[
∂L

∂q
(k)
i

])}
. (1.26)

The terms between squared brackets [. . .], (1.24-1.26) are the conjugate momenta pi(s) of the
generalized coordinates, except the �rst one (1.23), which is the left-hand side of (1.4) and
vanishes identically if the functions qi satisfy the dynamical equations. Thus the integrand of
the variation of the action functional, except the �rst term (1.23), is the time derivative of a
sum of terms.

Generalized coordinates and generalized canonical-conjugate momenta:
In ordinary Lagrangian systems that depend only on �rst order derivatives of the independent
degrees of freedom, the canonical approach associates to every generalized coordinate qi a dynamical
variable pi, called its canonical conjugate momentum and de�ned by

pi =
∂L

∂q̇i
.

As a generalization of this, for Lagrangian systems depending on higher order derivatives, the
generalized canonical formalism de�nes as generalized coordinates the degrees of freedom qi
and their time derivatives q(s)i up to order k−1, i.e., the generalized coordinates are the kinematical
variables with the time excluded. Then each generalized coordinate has a canonical conjugate
momentum de�ned according to the mentioned squared brackets terms: 13

pi(1) =
∂L

∂q
(1)
i

− d

dt

(
∂L

∂q
(2)
i

)
+ · · ·+ (−1)k−1 d

k−1

dtk−1

(
∂L

∂q
(k)
i

)
(1.27)

pi(2) =
∂L

∂q
(2)
i

− d

dt

(
∂L

∂q
(3)
i

)
+ · · ·+ (−1)k−2 d

k−2

dtk−2

(
∂L

∂q
(k)
i

)
(1.28)

. . .

pi(k) =
∂L

∂q
(k)
i

(1.29)

We say that pi(s) is the canonical conjugate momentum of the coordinate q(s−1)
i and, as a general

rule we see that the �rst term contains the partial derivative of L with respect to q(s)i , i.e., with
respect to the �rst time derivative of the corresponding canonical conjugate generalized coordinate
q
(s−1)
i . From its de�nition these canonical momenta satisfy

pi(s) −
∂L

∂q
(s)
i

= −
dpi(s+1)

dt
, i = 1, . . . , n, s = 1, . . . , k − 1. (1.30)

With this de�nition of the canonical momenta Euler-Lagrange equations (1.4) are written as:

dpi(1)
dt

=
∂L

∂qi
, i = 1, . . . , n. (1.31)

In this way if a Lagrangian is not an explicit function of some degree of freedom qi, the correspond-
ing conjugate canonical momentum pi(1), is a constant of the motion.

Now if we introduce in the integrand the variables qi that satisfy Euler-Lagrange equations,
the variation of the action functional (1.22) is transformed into the variation of the action
function along the classical trajectory, and therefore, the variation of the action function can
be written as,

δA(x1, x2) =

∫ t2

t1

d

dt

{
Lδt+

(
δ̄qipi(1) + δ̄q

(1)
i pi(2) + · · ·+ δ̄q

(k−1)
i pi(k)

)}
dt, (1.32)

with pi(s) given in (1.27)-(1.29). If we replace in (1.32) the form variation δ̄q(s)i = δq
(s)
i −q

(s+1)
i δt,

then

δA(x1, x2) =

∫ t2

t1

d

dt

{
Lδt+ δq

(s)
i pi(s+1) − q

(s)
i pi(s)δt

}
dt (1.33)

13 E.T.Whittaker, Analytical Dynamics, Cambridge University Press, Cambridge (1927), p. 265.
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with the usual addition convention. By substitution of the variations δt and δq(s)i in terms of
the in�nitesimal element of the group δg, (1.19-1.21), we get:

δA(x1, x2) =

∫ t2

t1

d

dt

{(
L− pi(s)q

(s)
i

)
M0 + pi(s)M

(s−1)
i

}
δgdt, (1.34)

with the following range for repeated indexes for the addition convention, i = 1, . . . , n, s =
1, . . . , k, u = 0, 1, . . . , k − 1,

In the above integral we are using the solution of the dynamical equations, and therefore
the variation of the action function is

δA(x1, x2) = A(δgx1, δgx2)−A(x1, x2).

If it happens to be of �rst order in the group parameters in the form

δA(x1, x2) = λ(x2)δg − λ(x1)δg, (1.35)

which is equivalent to the Lagrangian transforming in the way

L̃(δgx, δgẋ) = L̃(x, ẋ) + δg
dλ(x)

dτ
,

and therefore the dynamical equations are invariant, then equating (1.35) to (1.34) we can
perform the trivial time integral on the right hand side. The group parameter δg cancel out
on both sides, and rearranging terms depending on t1 and t2 on the left- and right-hand side,
respectively, we get several observables that take the same values at the two arbitrary times
t1 and t2. They are thus constants of the motion and represent the time conserved physical
quantities,

N = λ(x)−
(
L− pi(s)q

(s)
i

)
M0 − pi(s+1)M

(s)
i , (1.36)

where the term within brackets H = pi(s)q
(s)
i − L is the generalized Hamiltonian. It is written

as the product of each generalized momentum times the time derivative of the corresponding
conjugate generalized variable minus the Lagrangian, and �nally

N = λ(x) +HM0(t, q)− pi(s)M
(s−1)
i (t, q, . . . , q(s)). (1.37)

If the symmetry group has r parameters, there exist r constants of the motion related to the cor-
responding in�nitesimal transformations (1.35) of the action function under the corresponding
r-parameter Lie group.

Expression (1.37) is a linear function of the Hamiltonian and of the canonical momenta,
where the coe�cients, in addition to the function λ(x), are functions of the kinematical variables.
If we consider that the Hamiltonian can be interpreted as the conjugate momentum of the time
variable t, then each term contains the product of each momentum times the in�nitesimal
transformation of the corresponding conjugate generalized variable, δt = δgM0, δq

(s)
i = δgM

(s)
i ,

s = 0, 1, . . . , k − 1, from the time t till the kinematical variables q(k−1)
i . The only di�erence is

that the Hamiltonian is preceeded by a + sign while the remaining momenta are a�ected by
the − sign.

Since λ(x)δg has dimensions of action, all terms in (1.37) have the same physical dimensions
than λ(x), and therefore the Noether constants of the motion have the complementary

dimension with respect to the action of the dimension of the corresponding group

parameter δg of the symmetry group.
The Hamiltonian and the momenta are written in terms of the functions Fi(x, ẋ) of the

development (1.8) of the Lagrangian, as we can see in the next example.
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For example, if we have a Lagrangian which depends up to the second derivative of a degree
of freedom r, L(t, r, dr/dt, d2r/dt2) ≡ L(t, r, u, a), and L̃(t, r, u, ṫ, ṙ, u̇). The Lagrangian L̃ can be
written as

L̃ =
∂L̃

∂ẋi
ẋi = Fi(x, ẋ)ẋi = T ṫ+Rṙ + Uu̇,

where the functions T , R and U are those partial derivatives Fi(x, ẋ) of L̃, which are homogeneous
functions of zero-th degree of the derivatives ẋi, and therefore they are functions of (t, r, u, a). The
kinematical variables are, x ≡ {t, r, u} and the generalized variables are q ≡ {r, u} so that we have
a momentum conjugate of r, pr and another pu, the canonical conjugate of u and thus we have:

∂L

∂u
=
∂(L̃/ṫ)

∂ṙ

∂ṙ

∂u
=

1

ṫ

∂L̃

∂ṙ
ṫ =

∂L̃

∂ṙ
= R

since ṙ = uṫ. Similarly
∂L

∂a
=
∂(L̃/ṫ)

∂u̇

∂u̇

∂a
=

1

ṫ

∂L̃

∂u̇
ṫ =

∂L̃

∂u̇
= U

since u̇ = aṫ.
The momentum pr is de�ned according to (1.27-1.29)

pr =
∂L

∂u
− d

dt

(
∂L

∂a

)
=
∂L̃

∂ṙ
− d

dt

(
∂L̃

∂u̇

)
= R− dU

dt
,

and the momentum pu

pu =
∂L

∂a
= U,

which are �nally expressed in terms of the functions Fi(x, ẋ) and their time derivatives. The
Lagrangian

L = L̃/ṫ = T +Ru+ Ua,

and the generalized Hamiltonian

H = pru+ pua− L = Ru− dU

dt
u+ Ua− T −Ru− Ua = −T − dU

dt
u.

The functions Fi(x, ẋ) and their time derivatives are homogeneous functions of zero degree
in terms of the derivatives of the kinematical variables ẋi. Functions λ(x) and M (s)

i (x) depend
only on the kinematical variables. Consequently, Noether constants of the motion are also
homogeneous functions of zero degree in terms of the derivatives of kinematical variables and
thus invariant under arbitrary changes of evolution parameter. They are only functions of the
time derivatives of the degrees of freedom.

1.5 Atomic Principle: Elementary particles

In Newtonian mechanics the simplest geometrical object is a point of mass m. Starting
from massive points we can construct arbitrary systems of any mass and shape, and thus
any distribution of matter. The massive point can be considered as the elementary particle
of Newtonian mechanics. In the modern view of particle physics it corresponds to a spinless
particle. We know that there exist spinning objects like electrons, muons, photons, neutrinos,
quarks and perhaps many others, that can be considered as elementary particles in the sense that
they cannot be considered as compound systems of other objects. Even more, we do not �nd
in Nature any spinless elementary particle. It is clear that the Newtonian point does not give
account of the spin structure of elementary particles and the existence of spin is a fundamental
intrinsic attribute, which is lacking in Newtonian mechanics, but it has to be accounted for.

In quantum mechanics, Wigner's work 14 on the representations of the inhomogeneous
Lorentz group provides a very precise mathematical de�nition of the concept of elementary

14E.P. Wigner, Ann. Math. 40 149 (1939).
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particle. An elementary particle is a quantum mechanical system whose Hilbert space of
pure states is the representation space of a projective unitary irreducible representation of the
Poincaré group. Irreducible representations of the Poincaré group are characterized by two
invariant parameters m and S, the mass and the spin of the system, respectively. By �nding
the di�erent irreducible representations, we can obtain the quantum description of massless and
massive elementary particles of any spin.

The very important expression of the above mathematical de�nition, with physical conse-
quences, lies in the term irreducible. Mathematically it means that the Hilbert space is an
invariant vector space under the group action and that it has no other invariant subspaces. But
it also means that there are no other states for a single elementary particle than those that
can be obtained by just taking any arbitrary vector state, form all its possible images in the
di�erent inertial frames and �nally produce the closure of all �nite linear combinations of these
vectors.

We see that starting from a single state and by a simple change of inertial observer, we
obtain the state of the particle described in this new frame. Take the orthogonal part of this
vector to the previous one and normalize it. Repeat this operation with another kinematical
transformation acting on the same �rst state, followed by the corresponding orthonormalization
procedure, as many times as necessary to �nally obtain a complete orthonormal basis of the
whole Hilbert space of states. We see here the idea of the atomic principle. There are no more
states than the possible kinematical modi�cations of any one of them. If the elementary particle
changes its state, it is possible to �nd another inertial observer who describes the particle in
the same state as before the modi�cation.

In the Lagrangian formulation if we prepare the particle in the initial state x1 to evolve to
the �nal state x2, this �nal state and any intermediate state can always be obtained by means
of a change of inertial observer, i.e., x2 = gx1, for some element g of the kinematical group
G. This is not possible for any arbitrary mechanical system. This is what distinguishes an
elementary system from another one which is not elementary. The manifold X, the kinematical
space must ful�ll this restriction, that given any two points on it it is always possible to �nd a
kinematical transformation that links them. We thus arrive at the

Atomic Principle: A classical elementary particle is a Lagrangian system
whose kinematical space X is a homogeneous space of the kinematical group G.

The Galilei and Poincaré groups are ten-parameter Lie groups and therefore the largest
homogeneous space we can �nd for these groups is a ten-dimensional manifold. The variables
that de�ne the di�erent homogeneous spaces will share the same domains and dimensions as the
corresponding variables we use to parameterize the group. Both groups, as we shall see later,
are parameterized in terms of the following variables (b,a,v,α) with domains and dimensions
respectively like b ∈ R that represents the time parameter of the time translation and a ∈ R3, the
three spatial coordinates for the space translation. Parameter v ∈ R3 are the three components
of the relative velocity between the inertial observers, restricted to v < c in the Poincaré case.
Finally α ∈ SO(3) are three dimensionless variables which characterize the relative orientation
of the corresponding Cartesian frames and whose compact domain is expressed in terms of a
suitable parameterization of the rotation group.

In this way the maximum number of kinematical variables, for a classical elementary particle,
is also ten. We represent them by x ≡ (t, r,u,α) with the same domains and dimensions as
above and interpret them respectively as the time t, position r, velocity u and orientation
α of the particle.

Because the Lagrangian must also depend on the next order time derivative of the kine-
matical variables, we arrive at the conclusion that L must also depend on the acceleration and
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angular velocity of the particle. The particle is a system of six degrees of freedom, three r,
represent the position of a point and other three α, its orientation in space. We can visualize
this by assuming a system of three orthogonal unit vectors linked to point r as a body frame.
But the Lagrangian will depend up to the second time derivative of r, or acceleration of that
point, and on the �rst derivative of α, i.e., on the angular velocity. The Galilei and Poincaré
groups lead to generalized Lagrangians depending up to second order derivatives of the position.

By this de�nition it is the kinematical group G that implements the Restricted Relativity
Principle which completely determines the structure of the kinematical space where the La-
grangians that represent classical elementary particles have to be de�ned. Point particles are
particular cases of the above de�nition and their kinematical space is described by the variables
(t, r), time and position. Given any two points (t1, r1) and (t2, r2), con t2 > t1, a spacetime
translation transform one into the other, so that this kinematical space is a homogeneous space
of both Galilei and Poincaré group. In this way, the proposed formalism can be accommodated
to any symmetry group. It is the proper de�nition of this group which contains the physical
information of the elementary particles, but this group is still unveiled.

Example: Galilei point particle
It is a mechanical system of three degrees of freedom r, the position of the point. It has four
kinematical variables, x ≡ {t, r}. If we de�ne the initial state by x1 ≡ {t1, r1} and the �nal state
of the evolution x2 ≡ {t2, r2}, we see that a spacetime translation transform one into the other, and
therefore the kinematical space is a homogeneous space of the Galilei group. It is an elementary
particle according to the above de�nition. Of course, the spacetime translation subgroup is also a
subgroup of the Poincaré group, and thus this point particle is also an elementary particle from
the relativistic point of view. We shall obtain in the next chapter that, if the evolution is free, the
Lagrangian is

L0 =
1

2
m

(
dr

dt

)2

, L̃0 =
1

2
m

ṙ2

ṫ

in terms of the independent degrees of freedom and also a homogeneous function of �rst de-
gree in terms of the τ−derivatives of the kinematical variables. We see that L̃0 depends on the
τ−derivatives of all kinematical variables. Euler-Lagrange dynamical equations obtained from L0

are d2r/dt2 = 0, and we have to use as boundary conditions that the solution goes through the
initial and �nal states x1 y x2, respectively,

r(t) = r1 +
r2 − r1

t2 − t1
(t− t1), t ∈ [t1, t2].

In terms of some arbitrary evolution parameter τ , the solution is:

t(τ) = t1 + (t2 − t1)(τ − τ1), r(τ) = r1 + (r2 − r1)(τ − τ1), τ ∈ [τ1, τ2].

If we rede�ne the evolution parameter as θ = (τ − τ1)/(τ2 − τ1), we can have a dimensionless
evolution parameter such that the initial and �nal instants correspond to θ1 = 0 and θ2 = 1, and
therefore

t(θ) = t1 + (t2 − t1)θ, r(θ) = r1 + (r2 − r1)θ, θ ∈ [0, 1].

The action function, i.e., the integral of the Lagrangian along the classical path is

A(x1, x2) =
m

2

∫ t2

t1

(
r2 − r1

t2 − t1

)2

dt =
m

2

(r2 − r1)
2

t2 − t1
,

which is �nally expressed in terms of the end points variables and of the intrinsic characteristic
parameter of this spinless object, the mass m.
The Lagrangian L̃0 can be obtained from the action function through the limiting process of (1.10)
by taking the derivatives with respect to the variables t2 and r2 and making the limit 2 → 1,

lim
2→1

[
∂A

∂t2
ṫ+

∂A

∂r2i
ṙ2i

]
=
m

2
lim
2→1

[
− (r2 − r)2

(t2 − t)2
ṫ+ 2

(r2 − r) · ṙ
t2 − t

]
=
m

2

ṙ2

ṫ
= L̃0.

Noether's theorem leads us to �nd that the energy and linear momentum are expressed in terms
of the partial derivatives of L̃0, in the form:

H = −∂L̃0

∂ṫ
=

1

2
m

ṙ2

ṫ2
=
m

2

(
dr

dt

)2

, p =
∂L̃0

∂ṙ
= m

ṙ

ṫ
= m

dr

dt
.
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They are homogeneous functions of zero degree in terms of the derivatives of the kinematical
variables, and therefore functions of the time derivatives of the degrees of freedom. These conserved
magnitudes are independent of the evolution parameter τ .
This Lagrangian is a homogeneous function of �rst degree in the derivatives ṫ and ṙ, so that we
can write it as a sum of as many terms as kinematical variables:

L̃0 =
∂L̃0

∂ṫ
ṫ+

∂L̃0

∂ṙi
ṙi = −Hṫ+ p · ṙ.

Exemple: Poincaré point particle
It is a mechanical system of 3 degrees of freedom, r, the position of a point. Like in the previous
exemple the space generated by t, r is also a homogeneous space of the Poincaré group. It thus
represents an elementary particle, the relativistic point particle. Let us consider the following free
Lagrangian, which will be obtained in the next chapter,

L0 = −mc2
√

1− v2/c2, L̃0 = −mc
√
c2ṫ2 − ṙ2, v =

dr

dt

in terms of the degrees of freedom and also as a homogeneous function of degree 1 in terms of
the derivatives of the kinematical variables. We can also see that L̃0 depends on the derivatives
of all kinematical variables in this case. The dynamical equations reduce to d2r/dt2 = 0, and the
solution passing through the end points x1 ≡ (t1, r1) and x2 ≡ (t2, r2), is, as in the previous case,

r(t) = r1 +
r2 − r1

t2 − t1
(t− t1), t ∈ [t1, t2].

The action function is

A(x1, x2) =

∫ t2

t1

L0dt = −mc
√
c2(t2 − t1)2 − (r2 − r1)2,

which is �nally expressed in terms of the kinematical variables of the initial and �nal state, of the
only mechanical parameter of the spinless particle the mass m, and of the universal constant c.
Since the action is a real observable, the above expression is not valid for those end points which
satisfy c2(t2 − t1)

2 − (r2 − r1)
2 < 0, because in this case the squared root will be pure imaginary.

The Causality principle requires that the points causally conneted satisfy the condition

c2(t2 − t1)
2 − (r2 − r1)

2 > 0, o or v < c.

The Lagrangian L̃0 can be obtained from the action function through the limit process (1.10) by
taking the derivative with respect to the variables t2 and r2 and taking the limit 2 → 1,

lim
2→1

[
∂A

∂t2
ṫ+

∂A

∂r2i
ṙi

]
= −mc lim

2→1

(
c2(t2 − t1) ṫ√

c2(t2 − t1)2 − (r2 − r1)2
− (r2 − r1) · ṙ√

c2(t2 − t1)2 − (r2 − r1)2

)
= L̃0.

Noether's theorem gives rise to the energy and linear momentum which are expressed in terms of
the derivatives in the form:

H = −∂L̃0

∂ṫ
= mc

c2ṫ√
c2ṫ2 − ṙ2

=
mc2√

1− v2/c2
= γ(v)mc2,

p =
∂L̃0

∂ṙ
= −mc −ṙ√

c2ṫ2 − ṙ2
=

mv√
1− v2/c2

= γ(v)mv.

They are homogeneous functions of zero degree in terms of the derivatives of the kinematical
variables, and thus they are functions of the time derivatives of the degrees of freedom. The
conserved magnitudes are independent of the evolution parameter τ , like in the Galilei case.
The Lagrangian is also a homogenenous function of degree 1 in the derivatives ṫ and ṙ, and therefore
we can express as a sum of as many terms as kinematical variables:

L̃0 =
∂L̃0

∂ṫ
ṫ+

∂L̃0

∂ṙi
ṙi = −Hṫ+ p · ṙ.
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Example: Non-elementary System
Let us assume a material system characterized by the kinematical variables: (t, r1, r2), i.e., a time
variable and the position of two points. If we give two sets of values for these variables at the end
points of the evolution x1 ≡ (t(τ1), r1(τ1), r2(τ1)) and x2 ≡ (t(τ2), r1(τ2), r2(τ2)), it is not possible
to �nd a transformation among inertial observers which transform one into the other because if
the time translation brings t(τ1) to t(τ2) and the space translation takes r1(τ1) into r1(τ2), it is
impossible, in general, that this translation also transforms r2(τ1) into r2(τ2), except if the two
points are rigidly bounded. The kinematical space is not a homogeneous space of the subgroup of
spatial translations. This system of 6 degrees of freedom cannot be considered as representing an
elementary particle.

Exemple: The quark.
Let us consider that a quark can be described as a classical system. In this case we have to locate
its interacting properties. In the case of the electron which only interacts electromagnetically we
have to locate a single point, the center of the electric charge. In the case of the quark we have to
locate the center of the electric charge and the center of the color charge, and therefore to obtain
the evolution of two points. By the previous example, if we have a system with two characteristic
points r1 and r2 among the kinematical variables, this manifold is no longer a homogeneous space
of the Poincaré group. Then necessarilly if we were able to describe a quark we will only need a
single point, the center of charge, the center of all charges, to describe all the interacting properties.
This argument also holds for the electron if we consider that the weak interaction is di�erent than
the electromagnetic interaction, so that the center of the weak charge must be the same as the
center of the electric charge.

1.5.1 Aplication to some simpler kinematical groups

Let us consider that physical laws are invariant only under spacetime translations. It is
equivalent to assume that the kinematical group of spacetime transformations associated to
the Restricted Relativity Principle is just the group G ≡ {R4,+} the four-parameter group of
spacetime translations:

t′ = t+ b, r′ = r + a.

In this case the largest homogenous space of this group is the group itself, and therefore the
kinematical variables are (t, r). We are describing the point particle localized at point r. Be-
cause the only symmetries are translations, Noether's theorem only produces four conserved
quantities, the observables H and P , energy and linear momentum, respectively, and there-
fore angular momentum conservation is not described in this restricted symmetry group. The
Lagrangian for this system will be a function of (t, r,u), being u the velocity of point r.

Let us go further and assume that physical laws are also invariant under spatial rotations.
Then the action of group G on space-time is given by

t′ = t+ b, r′ = R(α)r + a,

which depends on seven parameters. The largest homogeneous space is the whole group and
we have as kinematical variables (t, r,α) and we say that the elementary particle is localized at
point r, and has an orientation described by the variables α. The Lagrangian for this particle
will be a function of (t, r,u,α,ω), and will depend, in addition to the velocity of point r,
u = dr/dt, of the velocity of the change of orientation or angular velocity ω. For this particle
Noether's theorem gives us an angular momentum observable. This particle has spin. We are
describing something formally equivalent to a rotating rigid body.
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The next step is to consider that the kinematical group also contains pure inertial transfor-
mations of constant velocity (boosts). We have three new parameters which can enlarge our
kinematical space with three new kinematical variables with physical dimensions of velocity.
The Lagrangian will also depend on the acceleration. We shall analyze in the next chapters this
possibility by assuming that the kinematical group is either the Galilei group G or the Poincaré
group P.

1.6 Metric structure of the kinematical space

The manifold X, the kinematical space of any Lagrangian mechanical system, has always a
metric structure. It is a Finsler space in which the metric is a function not only of the point x,
but also of the derivatives ẋ. In fact, since L̃(x, ẋ) is a homogeneous function of �rst degree in
terms of the variables ẋi, it implies that L̃2 is a homogeneous function of degree 2 of the variables
ẋi. Then if we replace in L̃2(x, ẋ) each ẋi by λẋi ≡ yi, L̃2(x, λẋ) = L̃2(x, y) = λ2L̃2(x, ẋ). If we
derivate twice with respect to λ and we make afterwards λ = 1,

2λL̃2(x, ẋ) =
∂L̃2(x, y)

∂yi
ẋi, 2L̃2(x, ẋ) =

∂2L̃2(x, y)

∂yi∂yj
ẋiẋj

∣∣∣∣∣
λ=1

we get

L̃2(x, ẋ) = gij(x, ẋ)ẋ
iẋj , gij(x, ẋ) =

1

2

∂2L̃2

∂ẋi∂ẋj
= gji

where the functions gij(x, ẋ) are homogeneous functions of zero-th degree of the ẋi and therefore
they only involve time derivatives. But in addition of being functions of the point x, they are,
in general, functions of the ẋ. A metric space whose metric is also a function of the derivatives
of the variables of the manifold is called a Finsler space15 16.

Since ±L̃ = ±
√
L̃2, the variational problem in the kinematical space X can be rewritten as∫ τ2

τ1

L̃(x, ẋ)dτ =

∫ τ2

τ1

√
L̃2(x, ẋ)dτ =

∫ τ2

τ1

√
gij(x, ẋ)ẋiẋjdτ =

=

∫ x2

x1

√
gij(x, ẋ)dxidxj =

∫ x2

x1

ds,

where we can interpret ds as the arc length of the curve joining two close points in the kine-
matical space, and the above integral as the length between the end points of the path followed
by the system in the kinematical space X.

The variational problem of making extremal the action of the mechanical system is equivalent
to consider that the distance, in the kinematical space X between x1 and x2, has to be a
minimum, and our variational formalism is equivalent to a geodesic problem in a metric space.
The evolution of any dynamical system between the initial state x1 yo the �nal state x2, follows
a geodesic in the state space X. This is independent of whether the system is a free particle or
any interacting arbitrary system. What happens is that the di�erence between a free particle
and an interacting particle, is that the corresponding Lagrangians, and thus the metrics, are

15G.S. Asanov, Finsler geometry, Relativity and Gauge theories, (Reidel Pub. Co, Dordrecht 1985); H. Rund,
The Hamilton-Jacobi theory in the calculus of variations, (Krieger Pub. Co., N.Y 1973). H. Rund, The di�erential
geometry of Finsler spaces, (Springer, Berlin, 1959).

16 Paul Finsler Born in Heilbronn, Neckar, Germany, the 11th of April of 1894 and died in
Zurich, Switzerland, the 29th April of 1970. He devoted mainly to di�erential geometry and set
theory. It was Elie Cartan in 1934 who published a book entitled Les espaces de Finsler, where
he named Finsler spaces to the metric spaces related to the variational formalism we are going to
consider.
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di�erent. Any interaction modi�es the metric of the kinematical space of any free

particle.
Under transformations of the kinematical space which leave the Lagrangian invariant, the

magnitudes gij transform like the covariant components of a second rank symmetric tensor.
Given the Euler-Lagrange dynamical equations of a mechanical system, the variational for-

malism implies that we have to search for solutions of these equations passing through the
extremal points x1 and x2. Given two arbitrary points it may happen that no solution exists
joining them. If we prepare the system at the initial state x1, we shall say that the state x2
is caussally connected with x1, if the Euler-Lagrange dynamical equations have a solution
between them. Otherwise we shall say that they are caussally disconnected and therefore it is
impossible to bring, by dynamical evolution, the system from state x1 to the state x2. Since
L̃2 > 0, the metric of the space is de�nite positive between the states caussally connected, and
if it happens that this quadratic form between two close points does not satisfy L̃2 > 0, they
will be caussally disconnected and the evolution between them is physically impossible.

For the free relativistic point particle of mass m, the Lagrangian is written as

L̃0 = ±mc
√
ẋ20 − ṙ2, x0 = ct.

If we divide L̃0 by the constant mc, the Lagrangian has now dimensions of length and the metric

is clearly g(0)µν = ηµν , with ηµν = diag(1,−1,−1,−1). Since L̃2 > 0 this implies that at any τ it

must hold that any point joining with x1 must satisfy ηµν ẋ
µẋν > 0. Then the points caussally

connected with it are those of the interior of the forward light cone. The remaining points of the

kinematical space (which for the point particle is the spacetime) are caussally disconnected. These

are the points of the past and those on the light cone and outside it. In these cases L̃2 ≤ 0, and

Euler-Lagrange equations do not ful�ll physical solutions.

Given the general structure of any Lagrangian L̃ = Fi(x, ẋ)ẋ
i, with Fi = ∂L̃/∂ẋi, is easy to

see that the metric coe�cients are written as

gij =
1

2

∂2L̃2

∂ẋi∂ẋj
=

∂

∂ẋi

(
L̃
∂L̃

∂ẋj

)
= FiFj + L̃

∂2L̃

∂ẋi∂ẋj
= FiFj + L̃

∂Fi

∂ẋj
, (1.38)

coe�cients which are symmetric in their indices because ∂Fi/∂ẋ
j = ∂Fj∂ẋ

i.

For the free point particle, the rescaled Lagrangian

Fµ =
∂L̃0

∂ẋµ
=
ẋµ

L̃0

,
∂Fµ

∂ẋν
=
ηµν

L̃0

− ẋµẋν

L̃3
0

gµν = FµFν + L̃0
∂Fµ

∂ẋν
=
ẋµẋν

L̃2
0

+ L̃0

(
ηµν

L̃0

− ẋµẋν

L̃3
0

)
= ηµν

whether we consider L̃0 as well as −L̃0.

In general, the kinematical space will have a metric which depends on x if the Lagrangian
is a function of x, but in any case it will always be a function of ẋi. In the case of the free
relativistic particle, the metric does not depend on x nor ẋ as it corresponds to a free system on
spacetime where all points and all velocities are equivalent. But if we introduce an interaction
and the intensity of this interaction depends on the velocity, as is the case when we have a
magnetic �eld, the homogeneity of spacetime is destroyed, the metric is no longer uniform, and
it will be, in general, a function of the velocity of the point.
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1.6.1 Geodesics on a Finsler space

The magnitudes ẋi transform as the contravariant componentses of a vector on X. They
are the components of the tangent vector to the trajectory followed by the characteristic point
of the dynamical system on the kinematical space X. If the Lagrangian L̃ is invariant under
the transformation x → x′, L̃(x′, ẋ′) = L̃(x, ẋ), then the magnitudes Fi = ∂L̃/∂ẋi, transform
as the covariant components of a vector on X.

Fi(x, ẋ) =
∂L̃(x, ẋ)

∂ẋi
=
∂L̃(x′, ẋ′)

∂ẋ′j

∂ẋ
′j

∂ẋi
=
∂ẋ

′j

∂ẋi
Fj(x

′, ẋ′).

The covariant components of the tangent vector can be de�ned by means of the metric tensor
as usual

ẋi = gij ẋ
j .

Since

L̃ =
∂L̃(x, ẋ)

∂ẋi
ẋi, L̃2 = L̃

∂L̃(x, ẋ)

∂ẋi
ẋi = gij ẋ

iẋj = ẋiẋ
i, ⇒ ẋi = gij ẋ

i = L̃
∂L̃(x, ẋ)

∂ẋi
= L̃Fi

and therefore L̃2 represents the squared absolute value of the tangent vector, and the vector

Fi =
∂L̃(x, ẋ)

∂ẋi
=
ẋi

L̃
, FiF

i = 1,

represents the tangent unit vector.
If we take the derivative of ẋi with respecto to ẋj , we obtain

∂ẋi
∂ẋj

=
∂

∂ẋj

(
L̃
∂L̃

∂ẋi

)
=

∂

∂ẋj

(
1

2

∂L̃2

∂ẋi

)
=

1

2

∂2L̃2

∂ẋi∂ẋj
= gij .

Geodesic equations are Euler-Lagrange's equations, i.e.,

∂L̃

∂xi
− d

dτ

(
∂L̃

∂ẋi

)
= 0.

∂L̃

∂xi
=

1

2L̃

∂L̃2

∂xi
=

1

2L̃

∂(gjkẋ
j ẋk)

∂xi
=
ẋj ẋk

2L̃

∂gjk
∂xi

,

and
∂L̃

∂ẋi
= Fi =

ẋi

L̃
=

1

L̃
gij ẋ

j .

d

dτ

(
∂L̃

∂ẋi

)
= − 1

L̃2

dL̃

dτ
gij ẋ

j +
1

L̃

dgij
dτ

ẋj +
1

L̃
gij ẍ

j .

Also
dgij
dτ

=
∂gij
∂xk

ẋk +
∂gij
∂ẋk

ẍk,
1

L̃2

dL̃

dτ
=

1

L̃

d(log L̃)

dτ
,

so that we can eliminate the L̃ of all denominators. If we take the evolution parameter as the
arc length, L̃ = 1 and log L̃ = 0, we arrive to the geodesic equations

gij ẍ
j =

1

2

∂gjk
∂xi

ẋj ẋk − ∂gij
∂xk

ẋj ẋk − ∂gij
∂ẋk

ẋj ẍk. (1.39)
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The last term vanishes because of the symmetry of the metric tensor,

∂gij
∂ẋk

=
1

2

(
∂3L̃2

∂ẋi∂ẋj∂ẋk

)
=
∂gik
∂ẋj

,

and taking the contraction with ẋj , this gives ∂gik/∂ẋj ẋj = 0, because gij tensor is a homo-
geneous function of zeroeth degree in terms of the ẋ. In the second term the indices j, k are
dummy indices and we can write that term as

∂gij
∂xk

ẋj ẋk =
1

2

(
∂gij
∂xk

+
∂gik
∂xj

)
ẋj ẋk.

The contravariant components of the metric tensor are de�ned as usual as gligij = δli. By
making use of this tensor, contraction of (1.39) with gli, we arrive to

ẍl + Γl
jkẋ

j ẋk = 0, (1.40)

where

Γl
jk =

1

2
gli
(
∂gij
∂xk

+
∂gik
∂xj

−
∂gjk
∂xi

)
= Γl

kj ,

the Finslerian Christo�el symbols are de�ned in the same way as in a Riemannian space in
terms of the derivatives of the metric tensor with respecto to the varibles x. The only di�erence
with the Riemannian case is that they are also functions of the ẋ.

An alternative expression of the geodesic equation is

gij ẍ
j = Ψiklẋ

kẋl, Ψikl =
1

2

(
∂gkl
∂xi
− ∂gik
∂xl
− ∂gil
∂xk

)
= Ψilk. (1.41)

The kinematical space X is, in general, a Finsler space with torsion. Cartan torsion tensor is
the symmetric tensor

Cijk =
1

2

∂gij
∂ẋk

=
1

4

(
∂3L̃2

∂ẋi∂ẋj∂ẋk

)
.

Riemannian spaces are Cartan torsion free spaces, because the metric is independent of the
derivatives ẋ.

General Relativity postulates that gravity modi�es the metric of space-time, i.e., the met-
ric of the kinematical space of the test point particle, and this modi�cation produces a new
Riemannian metric, where the coe�cients gij(x) are only functions of the point x. This is a
very strong mathematical restriction because, in general, as far as the metric structure of the
kinematical space of the point particle is concerned, the new modi�ed metric can also be a
function of the derivatives ẋ.

We consider that this restriction of General Relativity is a kind of low velocity limit of a
more general theory of gravitation. Another restriction is that in Nature it seems that spinless
elementary particles do not exist, and therefore, gravity considered as another interaction,
should modify the metric of the whole kinematical space of any elementary particle, which is
a larger manifold than space-time, as we shall see along this lecture course, and not only the
space-time submanifold.

As a �nal conclusion we could say that General Relativity seems to be a theory of gravitation
of spinless matter moving at low velocity. 17

17M. Rivas, Is General Relativity a simpli�ed theory? J. Phys:Conference Series 437 (2013) 012008.
(ArXiv:1203.4076); Is General Relativity a v/c -> 0 limit of a Finsler geometry? (Contribution to the Spanish
Relativity Meeting 2012), Progress in Mathematical Relativity, Gravitation and Cosmology Guimaraes, Portugal
Sept 3-7, 2012 Springer ISBN 978-3-642-40156-5.
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1.6.2 Example: Point particle under an electromagnetic �eld

For example, the point particle of massm and electric charge e in an external electromagnetic
�eld, is described by the Lagrangian L̃ = L̃0+ L̃I , where the free Lagrangian L̃0 = −pµ(x)ẋµ =

−Hṫ+p·ṙ, and the interaction Lagrangian L̃I = −eAµ(x)ẋ
µ, such that the variational problem,

according to (1.38), is equivalent to a geodesic problem on spacetime with a metric,

gµν(x, ẋ) = m2c2ηµν + e2AµAν + e(pµAν + pνAµ) + eAσẋ
σ ∂pµ
∂ẋν

. (1.42)

The modi�cation of the metric vanishes when e → 0. Since pµ does not depend explicitely on
the variables x, the dependence of the metric on the point x, is through the dependence of the
external potentials Aµ(x). But the metric depends on the variables ẋ through the dependence
on pµ and its derivatives. In the low velocity limit, when u/c → 0, p0 = mc and pi = 0, we
get a Riemannian metric, such that if we divide L̃ by a global factor mc and calling k = e/mc,
L̃I = −kAµ(x)ẋ

µ, and thus

g00(x) = 1 + k2A2
0 + 2kA0 = (1 + kA0(x))

2 , gii(x) = −1− kA0(x) + k2A2
i (x), i = 1, 2, 3,

g0i(x) = kAi(x) + k2A0(x)Ai(x), gij(x) = k2Ai(x)Aj(x), i ̸= j = 1, 2, 3.

In a uniform electric �eld, A0 = E · r/c, A = 0, and the nonvanishing coe�cients of the
Riemannian approach are g00 = (1 + eE · r/mc2)2, gii = −(1 + eE · r/mc2). If what we have
is a uniform magnetic �elf, A0 = 0, A = (r × B)/2, g00 = 1, gii = −1 + (e(r × B)/2mc)2i ,
g0i = e(r ×B)i/2mc and �nally gij = (e(r ×B)/2mc)i(e(r ×B)/2mc)j , with i ̸= j. In some
interaction with only scalar potential, like in the usual gravitational �eld, mA0 = mV (x)/c,
and g00 = (1 + V (x)/c2)2, gii = −(1 + V (x)/c2), as we shall see in the examples we are going
to analyze in the coming section.

We have two ways of determining the dynamical equations of any mechanical system. One
is by the usual Euler-Lagrange equations obtained from the Lagrangian L̃. For the charged
point particle of this example, we have

L̃ = −pµẋµ − kAµẋ
µ, pµ =

ẋµ

(ẋ · ẋ)1/2
,

∂L̃

∂xσ
= −k∂Aµ

∂xσ
ẋµ,

∂L̃

∂ẋσ
= −pσ − kAσ,

d

dτ

(
∂L̃

∂ẋσ

)
= −ṗσ − kȦσ = −ṗσ − k

∂Aσ

∂xµ
ẋµ, Fσµ(x) = ∂σAµ − ∂µAσ = −Fµσ(x),

ṗσ = kFσµ(x)ẋ
µ, or

ẍσ

(ẋ · ẋ)1/2
− (ẋ · ẍ)ẋσ

(ẋ · ẋ)3/2
= kFσµ(x)ẋ

µ

If in some inertial frame the observer takes the time as evolution parameter τ = t, the dynamical
equations become:

dH

dt
= eE · u, dp

dt
= e (E + u×B) .

The �rst equation is a consequence of the second and that for an elementary particleH2−p2c2 =
m2c4, is invariant. The second equation for the position of the point is transformed into

d2r

dt2
=

e

mγ(u)

[
E + u×B − u

c2
(u ·E)

]
Another alternative are the geodesic equations constructed from the metric gij , given in

(1.42), which is obtained from L̃2 by taking the second order derivatives with respect to ẋµ.
The metric is

gµν = ηµν + k2AµAν +
k

(ẋ · ẋ)1/2
(ẋµAν + ẋνAµ) +

k(A · ẋ)
(ẋ · ẋ)1/2

(
ηµν −

ẋµẋν
(ẋ · ẋ)

)
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g00 = 1 + k2A2
0 + 2kγ(u)A0 + kγ(1− γ2)(A0 − u ·A/c),

gii = −1 + k2A2
i + 2kγ(u)uiAi/c− kγ(u)(A0 − u ·A/c)(1 + γ2u2i /c

2)

g0i = k2A0Ai − kγ(u)(Ai +A0ui/c) + kγ3(A0 − u ·A/c)ui/c,

gij = k2AiAj + kγ(u)(uiAj + ujAi)/c− kγ(u)3(A0 − u ·A)uiuj/c
2, i ̸= j.

The geodesic equations are (1.41), and for space-time become

gµν ẍ
ν = Ψµλσẋ

λẋσ.

The di�erence with the Riemannian case, these coe�cients Ψµλσ are functions of x and ẋ, and
are homogeneous functions of zero degree of the ẋ.

If, as before, we take the evolution parameter as τ = t, since ṫ = 1, the �rst equation is
ẗ = 0, and we have to solve the equations:

d2ri
dt2

+ Γi
µν

dxµ

dt

dxν

dt
= 0.

.
Cartan torsion tensor of space-time in the presence of an electromagnetic �eld is,

2Cµνλ =
∂gµν
∂ẋλ

= eAµ
∂pν
∂ẋλ

+ eAν
∂pµ
∂ẋλ

+ eAλ
∂pµ
∂ẋν

+ eAσẋ
σ ∂2pµ
∂ẋν∂ẋλ

.

For the point particle Lagrangian L̃ = −(ẋ · ẋ)1/2 − k(A · ẋ), Cartan torsion tensor is linear in
the potentials Aµ, and take the form:

2Cµνλ =
k

(ẋ · ẋ)1/2
(ηµλAν + ηµνAλ + ηνλAµ)−

k(A · ẋ)
(ẋ · ẋ)3/2

(ηµλẋν + ηµν ẋλ + ηνλẋµ)

− k

(ẋ · ẋ)3/2
(ẋµẋλAν + ẋµẋνAλ + ẋν ẋλAµ)−

3k(A · ẋ)
(ẋ · ẋ)5/2

ẋµẋν ẋλ.

1.6.3 Another examples of Finsler spaces

In the �gure 1.3 we show possible motions of a charged point particle in its kinematical
space, which in this case is spacetime, under four di�erent dynamical situations. 18

The four trajectories are geodesics of spacetime but with respect to four di�erent Finslerian
metrics. In (a) the motion is free, the trajectory is a straight line; in (b) the particle is under
a uniform magnetic �eld, and the trajectory has curvature and torsion. In this case the Finsler
metric of spacetime is di�erent than Minkowski metric. The presence of a magnetic �eld has
modi�ed the metric. In (c) it is the same free trajectory but as seen by an accelerated observer.
According to the equivalence principle, it is equivalent to the description in the presence of
a uniform gravitational �eld. Also in this case the metric has been modi�ed. Finally, in (d)
we analyze the motion a point particle under the Newtonian potential produced by a mass M
located at the origin of the inertial reference frame in which the analysis is done.

In these examples, relative to the motion of a point particle of massm, we are going to change
the scale of the Lagrangian by dividing by the factor mc, and thus L̃ will have now dimensions
of length. We like to mention that if the evolution is expressed in terms of some dimensionless

18This subject corresponds to a talk lectured by the author at IAC in November 2014,
in Spanish. (http://iactalks.iac.es/talks/view/703) and a videoconference, in English, at VIA,
(http://viavca.in2p3.fr/site.html) in January 2015.
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Figure 1.3: Four possible motions of the point particle in its kinematical space between the
points x1 and x2, (a) free case, (b) under a uniform magnetic �eld B, (c) free motion as seen
by an accelerated observer or motion under a uniform gravitational �eld g. The example
(d) is the particle under the Newtonian gravitational �eld of a point mass M located at the
origin of a reference frame. In the four cases the kinematical space is the same, spacetime,
but with four di�erent Finslerian metrics, which produce di�erent geodesics and which in
three-dimensional space are, respectively, (a) a straight line with no curvature and torsion,
(b) a line with curvature and torsion, and in (c) and (d) a �at trajectory with curvarture.

parameter τ , the metric coe�cients gµν are dimensionless, since spacetime coordinates have
dimension of length.

In the case (a) the Lagrangian of the free particle is:

L̃0 = ±
√
ẋ20 − ṙ2 = Fµẋ

µ, L̃2
0 = gµν ẋ

µẋν = c2ṫ2 − ṙ2 > 0,

the metric is gµν = ηµν with ηµν = diag(1,−1,−1,−1). It is constant and corresponds to the
Minkowski metric.

In the case (b), let us assume a uniform magnetic �eld of intensity B along the direction of
OZ axis. We can take as the vector potential A = (0, Bx, 0) and scalar potencial A0 = 0. The
Lagrangian for the point particle under this �eld is

L̃B = −
√
ẋ20 − ṙ2+

eB

mc
xẏ = Fµẋ

µ, F0 = −p0, F1 = −p1, F2 = −p2+(eB/mc)x, F3 = −p3.

which leads to the dynamical equation under the external Lorentz force in a magnetic �eld:

dp

dt
= eu×B.

p0 =
ẋ0√
ẋ20 − ṙ2

=
c√

c2 − u2
, pi =

−ẋi√
ẋ20 − ṙ2

=
−ui√
c2 − u2

According to (1.42) with A0 = A1 = A3 = 0, A2 = Bx, if we call k = eB/mc, the variational
formulation implies that spacetime has a Finsler metric:

g00 = 1 +
kxu2uy

(c2 − u2)3/2
, g11 = −1 +

kxuy

(c2 − u2)3/2
(
c2 − u2y − u2z

)
,
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g22 = −1 + k2x2 +
kxuy

(c2 − u2)3/2
(
3c2 − 3u2x − 2u2y − 3u2z

)
,

g33 = −1 +
kxuy

(c2 − u2)3/2
(
c2 − u2x − u2y

)
,

g01 = −
kxcuxuy

(c2 − u2)3/2
, g02 = −

kxc

(c2 − u2)3/2
(c2 − u2x − u2z), g03 = −

kxcuyuz

(c2 − u2)3/2

g12 =
kxux

(c2 − u2)3/2
(
c2 − u2x − u2z

)
, g13 =

kx

(c2 − u2)3/2
uxuyuz, g23 =

kxuz

(c2 − u2)3/2
(
c2 − u2x − u2z

)
,

We see that the metric coe�cients are functions of the point, i.e, of the variable x, but they
are also functions of the velocity of the particle ux, uy, uz, i.e., gµν(x, ẋ). If the velocity of the
point is negligible with respect to the speed of light c, the coe�cientes of the metric become:

g00 = 1, g02 = −kx, g11 = −1, g22 = −1 + k2x2, g33 = −1,

vanishing the remaining ones. The dependence on the velocity of the metric coe�cients has dis-
sapeared and the metric is now a Riemannian metric. With this restricted metric the variational
problem is related to the restricted Lagrangian L̃R

L̃2
R = c2ṫ2 − ṙ2 + k2x2ẏ2 − 2kxcṫẏ,

which, when compared with the original, it lacks an extra term:

L̃2
B = L̃2

R − 2kxẏ
(√

c2ṫ2 − ṙ2 − cṫ
)
,

and therefore the force acting on the particle is no longer the Lorentz force. This metric is not a
vacuum solution of Einstein's equations in General relativity, but it leads to a curvature scalar
and Einstein's tensor

R =
−k2

2
, Gtt =

3k2

4
, Gty = −3k3x

4
, Gxx =

k2

4
, Gyy =

1

4
(k2 + 3k4x2), Gzz =

−k2

4
,

and the nonvanishing Christo�el symbols are

Γt
tx = k2x/2, Γt

xy = −1

2
k(1+k2x2), Γx

ty = −k/2, Γx
yy = k2x, Γy

tx = k/2, Γy
xy = −k2x/2.

With the Lorentz force, dynamical equations are

dux
dt

=
eB

mγ(u)
uy =

1

γ(u)
kcuy,

duy
dt

= − eB

mγ(u)
ux = − 1

γ(u)
kcux,

duz
dt

= 0,

which lead to uxdux/dt + uyduy/dt + uzduz/dt = u · du/dt = 0, and thus the motion is at a
velocity of constant modulus, the factor γ(u) is constant and the particle goes along OZ axis
with a constant velocity and also rotates on the plane XOY , with constant angular velocity
ω = eB/γ(u)m. However the geodesic equations obtained from the restricted metric associated
to L̃R are

dux
dt

= kcuy(1− kxuy/c),
duy
dt

= −kcux(1− kxuy/c),
duz
dt

= 0,

which also lead to a motion of velocity of constant modulus u. Because we are taking the low
velocity limit we have to replace in these equations u/c → 0, and γ(u) → 1, and in this case
they approximate to the previous ones . For the restricted Lagrangian L̃R, the force acting on
the particle becomes the Lorentz force in the low velocity limit.
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In the example (c) in a uniform gravitational �eld, the dynamics is described by the La-
grangian

L̃g = L̃0 +
g · r
c2

cṫ,

which leads to the dynamical equations dp/dt = g, with p = γ(u)u, independent of the mass
of the particle. This Lagrangian, from the geodesic point of view corresponds to an evolution
on spacetime with a Finsler metric given by:

g00 = 1 +
(g · r
c2

)2
− (3γ − γ3)(g · r)

c2
,

gii = −1 + γ(1 + γ2
u2i
c2

)
(g · r)
c2

, i = 1, 2, 3

g0i = −(γ3 − γ)
ui
c

(g · r)
c2

, i = 1, 2, 3

gij = γ3
uiuj
c2

(g · r)
c2

, i ̸= j = 1, 2, 3

The term g ·r has dimensions of velocity squared. If the velocity of the point is negligible when
compared with c, the nonvanishing coe�cients are

g00 = 1 +
(g · r
c2

)2
− 2(g · r)/c2, gii = −1 + (g · r)/c2, i = 1, 2, 3

i.e.,

g00 =
(
1− g · r

c2

)2
, gii = −

(
1− g · r

c2

)
, i = 1, 2, 3,

where the component g00 is the same as that of the Rindler metric, corresponding to an uniformly
accelerated observer, or to the presence of a uniform gravitational �eld.

The last example (d) represents the point particle under the gravitational Newtonian po-
tential of a point mass M located at the origin of the reference frame. The Lagrangian is

L̃N = L̃0 +
GM

c2r
cṫ.

As usual, taking into account (1.38) we get the metric of a point particle under a central
potential. This metric is

g00 = 1 +

(
GM

c2r

)2

− (3γ − γ3)GM
c2r

,

gii = −1 + γ(1 + γ2
u2i
c2

)
GM

c2r
, i = 1, 2, 3

g0i = −(γ3 − γ)
ui
c

GM

c2r
, i = 1, 2, 3,

gij = γ3
uiuj
c2

GM

c2r
, i ̸= j = 1, 2, 3.

It is a Finsler metric, which in the case of a low velocity with respect to c, the only coe�cients
which survive are the diagonal components.

g00 =

(
1− 2GM

c2r
+
G2M2

c4r2

)
=

(
1− GM

c2r

)2

,
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the last term goes as G2/c4 and if it is considered negligible, this metric coe�cient is that of
the Schwarzschild's metric. The remaining terms are

gii = −
(
1− GM

c2r

)
,

while in the metric of Schwarzschild they will be (1−2GM/c2r)−1. We see that the modi�cation
of the metric coe�cients, in the low velocity limit, di�er from the Minkowski metric in a term
which is the gravitational potential of the central mass M , divided by c2.

This low velocity limit of the Finsler metric in a Newtonian potential looks

ds2 =

(
1− GM

c2r

)2

c2dt2 −
(
1− GM

c2r

)
(dr2 + r2(dθ2 + sin2 θdϕ2))

which is a rotation invariant, static Riemannian metric. If we call Rs = 2GM/c2 to the
Schwarzschild radius, the curvature scalar and Einstein tensor become:

R =
R2

s

r(2r −Rs)3
,

Gtt =
3R2

s

8r3(2r −Rs)
, Grr =

(24r − 7Rs)Rs

4r2(2r −Rs)2
, Gθθ =

(Rs − 3r)Rs

(2r −Rs)2
, Gϕϕ =

(Rs − 3r)Rs sin
2 θ

(2r −Rs)2
,

and therefore it is not a vacuum solution of Einstein's equations of General Relativity.
In the two gravitational examples, the Riemanian approach of the metric has produced

that the Minkowski coe�cient g00 of the free particle has been transformed into g′00 = g00(1 +
V (r)/c2)2 and the gii in the form g′ii = gii(1 + V (r)/c2), where in both cases V (r) is the
gravitational potential.

1.7 Causality Principle

Among the fundamental principles analyzed, the Causality Principle has not been in-
cluded. Basically, the contents of this principle is the idea that things do not happen by them-
selves, but rather that any physical e�ect is the result of a previous cause which determines
it. We shall see that, in a certain sense, this principle is already contained in the Variational
Principle.

We can consider that the Causality Principle is the restriction on the kinematical space X
that the Finsler metric should be de�nite positive. This condition de�nes in the kinematical
space X, once a point is �xed, two submanifolds, one causally connected with that point and
another disconnected. If we select an initial point for the variational description, one cannot
arbitrarily select another point as the �nal state. Only those points belonging to the submanifold
causally connected. First of all we have the arrow of time, so that ṫ(τ) > 0, or that t2 > t1, and
another that gijdxidxj = L̃2dτ2 > 0. If the Atomic Principle determines that the kinematical
space X, for an elementary particle is necessarily a homogeneous space of the kinematical group,
the Causality Principle restricts this space, once the initial state is �xed, to a submanifold. For
instance, for the point particle, once the state x1 is �xed, the evolution takes place inside the
future light cone of point x1. Given two points x1 and x2 of the kinematical space X, there
exists a group element g ∈ G, such that x2 = gx1, but this does not imply that they are causally
connected. The two points x1 ≡ (t1, r1) and x2 ≡ (t1, r2) with the same time, are linked by a
space translation, but we cannot arrive dynamically to x2 coming from x1, because the velocity
should be in�nite. Between these two points the Minkowski distance

∫
ηµνdx

µdxν < 0. Their
separation is space-like.
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This con�rms that only between those points where gijdxidxj > 0 is de�nite positive, the
evolution is possible, while the remaining points will be causally disconected. For a massless
point particle, the connected manifold is the future light cone, where the metric vanishes.

The homogenenity of X means that all points represent physically equivalent states. When
one is �xed, the remaining states represent the description of the particle for all other inertial
observers. Is the de�nite positive character of the action squared between two points what
justi�es that the evolution between those points is allowed.

1.8 Appendix: Generalized canonical formalism

Euler-Lagrange's equations for the n degrees of freedom qi, (1.4) are a system of n ordinary
di�erential equations of order 2k, so that to single out a unique solution, according to the
theorems of existance and uniqueness of solutions, we have to give as boundary conditions the
2kn conditions at the initial time t1, q

(s)
i (t1), i = 1, . . . , n, s = 0, 1, 2, . . . 2k − 1.

Nevertheless, by de�ning some intermediate variables, every di�erential equation of order
m can be reduced to a system of m ordinary di�erential equations of �rst order. In our case
to a system of 2kn equations of �rst order. De�ning as the new intermediate variables q(s)i ,
s = 1, . . . , 2k − 1:

dqi
dt

= q
(1)
i ,

dq
(1)
i

dt
= q

(2)
i ,

dq
(2)
i

dt
= q

(3)
i , . . . ,

dq
(2k−2)
i

dt
= q

(2k−1)
i

and the last n �nal equations (1.4), which have the form as in (1.31)

∂L

∂qi
− d

dt
pi(1)(t, qi, q

(1)
i , . . . , q

(2k−1)
i ) = 0.

To this system of equations we shall suply as boundary conditions the above mentioned 2kn
conditions at time t1.

The canonical formalism takes as intermediate variables the kn generalized coordinates q(s)i ,
i = 1, . . . , n, s = 0, 1, 2, . . . , k−1, i.e., the kinematical variables with the time excluded, and the
kn canonical conjugate momenta pi(s). The corresponding set of ordinary di�erential equations
of �rst order we are going to obtain are known as Hamilton's equations.

The generalized Hamiltonian is de�ned as

H =
k∑

s=1

pi(s)q
(s)
i − L(t, qi, . . . , q

(k)
i ). (1.43)

If from the de�nition of the momentum of order k, pi(k) = ∂L/∂q
(k)
i we can eliminate the n

derivatives of higher order q(k)i in terms of the n pi(k), the the Lagrangian will be written in

terms of the time t, of the kn canonical coordinates q(s)i , s = 0, . . . , k− 1 and of the n momenta
pi(k). Therefore the Hamiltonian will be a function H(t, q, p), of the time, of the canonical
coordinates and their canonical conjugate momenta. Therefore

dH =
k−1∑
s=0

∂H

∂q
(s)
i

dq
(s)
i +

k∑
r=1

∂H

∂pi(r)
dpi(r) +

∂H

∂t
dt, (1.44)

But from its de�nition (1.43)

dH =
k∑

s=1

q
(s)
i dpi(s) +

k∑
s=1

pi(s) dq
(s)
i −

∂L

∂t
dt−

k∑
s=0

∂L

∂q
(s)
i

dq
(s)
i ,



58 CHAPTER 1. FUNDAMENTAL PRINCIPLES

The �rst term can be written as:

k∑
s=1

q
(s)
i dpi(s) =

k∑
r=1

dq
(r−1)
i

dt
dpi(r),

where the coe�cients of the dpi(r) are the time derivatives of their corresponding conjugate

coordinates q(r−1)
i , r = 1, . . . , k. The second term can be rewritten as:

k∑
s=1

pi(s) dq
(s)
i =

k−1∑
s=1

pi(s) dq
(s)
i + pi(k) dq

(k)
i .

and in the �rst sums there are only the di�erentials dq(s)i of the generalized coordinates, with
s ≤ k − 1. If we make the same with the last term

k∑
s=0

∂L

∂q
(s)
i

dq
(s)
i =

∂L

∂qi
dqi +

k−1∑
s=1

∂L

∂q
(s)
i

dq
(s)
i +

∂L

∂q
(k)
i

dq
(k)
i ,

where we have separated the last term which contains the di�erential dq(k)i . This last term
cancels out with the last term of the previous expression, and thus these two expressions together
become

k∑
s=1

pi(s) dq
(s)
i −

k∑
s=0

∂L

∂q
(s)
i

dq
(s)
i = −∂L

∂qi
dqi +

k−1∑
s=1

(
pi(s) −

∂L

∂q
(s)
i

)
dq

(s)
i ,

From the de�nition of the canonical momenta we have the expressions (1.30) and (1.31) and
this last expression takes the form:

k∑
s=1

pi(s) dq
(s)
i −

k∑
s=0

∂L

∂q
(s)
i

dq
(s)
i = −

dpi(1)

dt
dqi −

k−1∑
s=1

dpi(s+1)

dt
dq

(s)
i = −

k−1∑
s=0

dpi(s+1)

dt
dq

(s)
i ,

where the di�erentials dq(s)i are extended to the di�erentials of all generalized variables. In this
way, by collecting all terms, we have:

dH = −
k−1∑
s=0

dpi(s+1)

dt
dq

(s)
i +

k∑
r=1

dq
(r−1)
i

dt
dpi(r) −

∂L

∂t
dt, s = 0, 1, . . . , k − 1

and by identifying with (1.44) it implies ∂H/∂t = −∂L/∂t, and

∂H

∂q
(s)
i

= −
dpi(s+1)

dt
, s = 0, 1, . . . , k − 1, i = 1, . . . , n,

∂H

∂pi(r)
=
dq

(r−1)
i

dt
, r = 1, . . . , k, i = 1, . . . , n,

so that we arrive to the 2kn equations of �rst order for the canonical variables q′s and p′s,
where q(s)i is the canonical conjugate of the pi(s+1), s = 0, 1, . . . , k − 1,

dq
(s)
i

dt
=

∂H

∂pi(s+1)
,

dpi(s+1)

dt
= − ∂H

∂q
(s)
i

, i = 1, . . . , n, s = 0, 1, . . . , k − 1. (1.45)

which are known as Hamilton's canonical equations (1833).
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The time derivative of each canonical variable is the partial derivative of the Hamiltonian
with respect to the corresponding canonical conjugate variable. As far as the variables q′s are
concerned the partial derivative of the Hamiltonian is preceded with a + sign, while the time
derivatives of the p′s the partial derivative of the Hamiltonian is a�ected with a − sign. The
knowledge of the Hamiltonian instead of the knowledge of the Lagrangian, will produce the
dynamical equations of the material system as equations of �rst order.

The Poisson bracket of two functions A(q, p) and B(q, p) of the conjugate variables, is
de�ned as

{A(q, p), B(q, p)} =
n∑

i=1

k−1∑
s=0

(
∂A

∂q
(s)
i

∂B

∂pi(s+1)
− ∂A

∂pi(s+1)

∂B

∂q
(s)
i

)
This bracket operation is antisymmetric {A,B} = −{B,A} and satisfy the distributive prop-
erties

{A,B + C} = {A,B}+ {A,C}, {A,BC} = {A,B}C +B{A,C}.

For any tree functions A,B,C, Jacobi's identities are ful�lled:

{A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0.

With this notation, Hamilton's canonical equations are written as:

{pi(s), H} =
dpi(s)

dt
, {q(s)i , H} =

dq
(s)
i

dt
.

The dynamical equation of each canonical variable is the Poisson bracket of that variable with
the Hamiltonian. There is no distinction between generalized coordinates and conjugate mo-
menta.
If we have an arbitrary observable which is also an explicit function of time A(t, q, p), its time
derivative is obtained as:

dA

dt
=
∂A

∂t
+

∂A

∂q
(s)
i

dq
(s)
i

dt
+

∂A

∂pi(s+1)

dpi(s+1)

dt
,

=
∂A

∂t
+

∂A

∂q
(s)
i

∂H

∂pi(s+1)
− ∂A

∂pi(s+1)

∂H

∂q
(s)
i

=
∂A

∂t
+ {A,H}.

The manifold of dimension 2kn generated by the q′s and p′s is known as the phase space of
the dynamical system, such that when �xing a point in this space, dynamical equations supply
a unique solution passing through it. In this sense Euler-Lagrange's equations with boundary
conditions at the initial time t1 are equivalent to Hamilton's canonical equations.

Although we have included in these notes the generalized canonical formulation is simply
by consistency. To show that even when the Lagrangians depend on higher order derivatives we
also have the associated Hamiltonian formalism. The system of Euler-Lagrange's equations can
be reduced to a �rst order system in the generalized variables q′s and p′s. However, in what
follows in our formalism, it is not necessary the use of the canonical formalism, not even for
the quantization. Generalized momenta are used for the construction of the Noether constants
of the motion, but what we want to stress is that we are interested in �nding solutions of the
dynamical equations not by giving boundary conditions at time t1, but rather to �nd solutions
passing through the initial and �nal points of the variational formalism. What we want is to
enhance the role of the kinematical variables as the variables which de�ne at any instant τ , the
state of any dynamical system.
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1.8.1 Hamilton-Jacobi's equations

Hamilton's principal function is a function de�ned on the kinematical space of the
dynamical system. It is de�ned as the action function of the �nal point of the evolution.
Usually is represented as S(x), and although we are going to use the character S to represent
the observable spin, we are going to mantain this notation in this complementary section.
According to this de�nition:

S(x) ≡ A(x1, x),

where the initial point x1 is �xed, but arbitrary. Hamilton's principal function is a function of
time t and of the generalized variables q's. We are going to obtain Hamilton-Jacobi's equations
in the case of an ordinary Lagrangian which depends on the �rst order derivatives of the degrees
of freedom qi, L(t, q, q̇), but the proof can be extended to generalized Lagrangians.

If at the �nal instant of the evolution t the boundary conditions q(t) are modi�ed in an
in�nitesimal way q + δq, how this change modi�es the function S?

Figure 1.4: Modi�cation of the �nal point of the evolution at the instant t, and also of
the path q(t) while remaining �xed the initial point 1. The variation of the δq is its form
variation δ̄q, at constant t.

The variation of the action functional between the paths q(t) and q(t) + δq(t) is

A(q + δq)−A(q) = δA =

∫ t

t1

dt

[
∂L

∂q
δq +

∂L

∂q̇
δq̇

]
but the variation of δq is its variation in form at constant t

∂L

∂q̇
δq̇ =

∂L

∂q̇

d

dt
δq =

d

dt

(
∂L

∂q̇
δq

)
− d

dt

(
∂L

∂q̇

)
δq,

and thus

δA =

∫ t

t1

dt

{[
∂L

∂q
− d

dt

(
∂L

∂q̇

)]
δq +

d

dt

(
∂L

∂q̇
δq

)}
If the trajectory q(t) is the one which makes extremal to the action functional the term between
squared brackets vanishes and the variation of the action functional is reduced to the variation
of the action function

δA =
∂L

∂q̇
δq

∣∣∣∣
t

− ∂L

∂q̇
δq

∣∣∣∣
t1

=
∂L

∂q̇
(t) δq(t),



1.8. APPENDIX: GENERALIZED CANONICAL FORMALISM 61

since δq(t1) = 0. But this is the variation of Hamilton's principal function δS at �xed time t,
when we modify the remaining kinematical variables q,

S(t, q + δq)− S(t, q) = δS(t, q) =
∂L

∂q̇i
δqi = piδqi, ⇒ ∂S

∂qi
= pi. (1.46)

where pi is the conjugate momentum of the variable qi at the instant t.
What is left is how Hamilton's principal function is modi�ed when we change the time of

the �nal point while keeping �xed the remaining variables q at the �nal instant and, of course,
the initial point 1. The variation of the action functional is

Figure 1.5: Modi�cation of the �nal point of the evolution at instant t to the instant t+ δt,
keeping constants at this time the values of the variables q.

A(q′)−A(q) = δA =

∫ t+δt

t1

L(t, q′, q̇′)dt−
∫ t

t1

L(t, q, q̇)dt.

In some intermediate instant of the evolution δq = δ̄q+ q̇δt and δq̇ = δ̄q̇+ q̈δt, where δ̄ represents
the variation in form, at constant t, of the corresponding function. But

δ̄q̇ =
d

dt
δ̄q.

The proof follows the same method as the one we used when analyzing Noether's theorem,
including the change of integration interval from (t1, t + δt) to (t1, t) and we �nally arrive to
the expression (1.22) which for the indices s = 0, 1, becomes:

δA =

∫ t

t1

(
d(Lδt)

dt
+
∂L

∂qi
δ̄qi(t) +

∂L

∂q̇i
δ̄q̇i(t)

)
dt.

If the last term is written as

∂L

∂q̇i
δ̄q̇i(t) =

∂L

∂q̇i

d

dt
δ̄qi =

d

dt

(
∂L

∂q̇i
δ̄qi

)
− d

dt

(
∂L

∂q̇i

)
δ̄qi,

we get

δA =

∫ t

t1

dt

{
d(Lδt)

dt
+ δ̄qi

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+
d

dt

(
∂L

∂q̇i
δ̄qi

)}
.
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By recovering the total variations δ̄qi = δqi − q̇iδt, and if q(t) is the path 1 → 2 which makes
extremal the action, the term between squared brackets vanishes, and what remains is the
variation of the action function with the initial point �xed, i.e., the variation of Hamilton's
principal function:

δS = δA(x1, x) =

∫ t

t1

dt

{
d(Lδt)

dt
+
d

dt

(
∂L

∂q̇i
δqi −

∂L

∂q̇i
q̇iδt

)}
.

It is the integral of a total derivative, and the result is the value of the integrand evaluated at
time t minus the same at initial time t1; but δt(t1) = 0, δt(t) = δt, δqi(t1) = δqi(t) = 0, and
thus

S(t+ δt, q)− S(t, q) = δS(t, q) = (L− piq̇i) δt = −Hδt, ⇒ ∂S

∂t
= −H.

Since the Hamiltonian is a function of the momenta pi which are expresed by (1.46) in terms of
the partial derivatives pi = ∂S/∂qi, Hamilton's principal function satis�es the partial di�erential
equation with respect to the kinematical variables:

∂S(t, q)

∂t
= −H

(
t, q,

∂S

∂qi

)
, (1.47)

which is known as Hamilton-Jacobi equation (1834).
Hamilton's principal function satis�es a wave equation, in general non linear, in the kine-

matic space, X, because (1.47) represents how this function S changes with time at the point
x ≡ {t, q}, as a function of its changes in the directions of the generalized variables qi.

1.8.2 About the equivalence between the canonical and the variational for-
mulation

Many texts books state that both formulations are equivalent19. However this is not correct.
Given Euler-Lagrange's equations the variational formulation tries to �nd a solution with the
boundary values qi(t1) and qi(t2), at the times t1 and t2, respectively, while the canonical
formulation the boundary conditions are qi(t1) and pi(t1), at the same initial time t1. For regular
systems of di�erential equations, to �x at initial time t1 a point of the phase space (qi, pj)(t1)
singles out a unique solution passing through it, while �xing two points of the kinematical space
x1 ≡ (t1, qi(t1)) and x2 ≡ (t2, qi(t2)) does not guarantee the existence of solution, compatible
with the mentioned causality principle in the section 1.7, and in the case that it exists, the
uniqueness is not guaranteed.

Let us see with some example: the motion of a rigid body. From the variational point of
view we have to �x at time t1 the center of mass position r1 and the orientation α1 of the
inertia principal frame and the same magnitudes for the �nal time t2. From the point of view
of the canonical formalism we have to �x at time t1 the center of mass position r1 the center
of mass velocity v1 = p1/m, the orientation α1 and the angular velocity ω1. If the motion is
free v1 = (r2 − r1)/(t2 − t1), but the angular velocity cannot be expressed in terms of the two
orientations, because we do not know how many turns and about what axis, has rotated the rigid
body. In the canonical formulation the solution is unique, but in the variational formulation we
have in�nite solutions, because the angular velocity remains undetermined. It is the presence

19D.A. Wells, Theory and Problems of Lagrangian dynamics, Schaum McGraw Hill, NY (1967) p.1:...the basic
laws of dynamics can be formulated in several ways other than that given by Newton. The most important of
these are referred to as: a)D'Alembert's principle, b) Lagrange's equations, c) Hamilton's equations, d) Hamilton's
principle. All are basically equivalent.
E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A modern perspective, John Willey NY (1974), p.24
... this completes the demonstration, in the standard case, of the complete equivalence of the Lagrangian and
Hamiltonian forms of dynamics.
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of the compact variables, which determine the orientation in space, which makes that both
boundary conditions and therefore both formalisms are not equivalent.

1.9 Appendix: Summary of the formalism

1. For a system of n degrees of freedom qi whose Lagrangian depends up to the time
derivatives of order k, q(k)i = dkqi/dt

k, L(t, qi, q
(1)
i , . . . , q

(k)
i ), the kinematical variables

are xj ≡ {t, qi, q(1)i , . . . , q
(k−1)
i }, i.e., the time, the degrees of freedom and their time

derivatives up to order k − 1. The generalized variables are {qi, q(1)i , . . . , q
(k−1)
i }, i.e., the

kinematical variables with the time excluded.

2. Each generalized variable has associated a canonical conjugate momentum, de�ned by

pi(s) =
∂L

∂q
(s)
i

− d

dt

(
∂L

∂q
(s+1)
i

)
+ · · ·+ (−1)k−s d

k−s

dtk−s

(
∂L

∂q
(k)
i

)
, s = 1, . . . , k

pi(1) is the conjugate momentum of qi, pi(2) is the conjugate momentum of q(1)i and �nally

pi(k) is the conjugate momentum of the q(k−1)
i .

3. In a parametric description of the evolution, t(τ), qi(τ), the Lagrangian L̃ = Lṫ, where ˙
represents the derivative with respect to the parameter τ , is a function of the kinematical
variables x and their �rst order τ -derivative, ẋ, L̃(x, ẋ).

4. The action function is the value of the action functional along the path that satis�es
Euler-Lagrange equations.

5. The action function is an explicit function of all kinematical variables x1 and x2 at the
boundary points of the trajectory on the kinematical space X, A(x1, x2).

6. The evolution parameter τ can be taken dimensionless, and therefore L̃ has dimensions
of action.

7. The Lagrangian L̃ can be obtained from the action function through the limit

L̃(x, ẋ) = lim
y→x

∂A(x, y)

∂yi
ẋi.

8. The Lagrangian L̃ is not an explicit function of τ , but it is a homogeneous function of
degree 1 of the derivatives ẋi of all kinematical variables. This allows us to write the
Lagrangian as a sum of as many terms as kinematical variables

L̃(x, ẋ) =
∂L̃(x, ẋ)

∂ẋi
ẋi = Fi(x, ẋ)ẋi.

9. The functions Fi(x, ẋ) are homogeneous functions of zero degree of the ẋi, and thus they
are functions of the time derivatives of the generalized variables. Since each term Fiẋi
has dimensions of action, each Fi has the complementary dimension of the corresponding
variable xi.

10. The de�nite positive function L̃2, can always be written as

L̃2 = gij(x, ẋ)ẋiẋj , gij(x, ẋ) =
1

2

∂2L̃2

∂ẋi∂ẋj
= gji,

where the coe�cients gij = gji, are homogeneous functions of degree 0 of the derivatives
ẋi.
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11. The kinematical space is always a Finsler metric space. Since∫ τ2

τ1

L̃dτ = ±
∫ τ2

τ1

√
L̃2 dτ = ±

∫ τ2

τ1

√
gij(x, ẋ)ẋiẋj dτ = ±

∫ τ2

τ1

√
gijdxidxj = ±

∫
ds

the variational problem is equivalent to a geodesic problem on the kinematical space X,
with a metric gij(x, ẋ) which is a function of the point x and of the derivatives ẋi.

12. If the mechanical system is an elementary particle, then it is necessary that the kinematical
space X be a homogeneous space of the kinematical group G associated to the Restricted
Relativity Principle.

13. The kinematical space of the point particle is spacetime. This manifold is always a metric
space with a metric more general than a Riemannian metric. To admit, as is done in Gen-
eral Relativity, that the spacetime manifold of the test particle is a Riemannian manifold,
is a restriction about a more general situation. The kinematical space of the free point
particle is Minkowski spacetime.

14. The invariance of dynamical equations under a symmetry group of transformations does
not imply that the Lagrangian and the action function are invariant. Noether's theorem
gives the relationship between the transformation of the action function A(x1, x2), under
a group which leaves invariant the dynamical equations, and the explicit construction of
the constants of the motion. These constants of the motion are written in terms of the
Lagrangian, its partial derivatives Fi(x, ẋ), and of the functions M(x) of how the kine-
matical variables transform, δt = M0(x)δg, δq

(s)
i = M

(s)
i (x)δg, under some in�nitesimal

transformation of the group of parameter δg.

N = λ(x)− (L− pi(s)q
(s)
i )M0 − pi(s)M

(s−1)
i = λ(x) +HM0 − pi(s)M

(s−1)
i ,

where pi(s) is the canonical conjugate momentum of the generalized variable q(s−1)
i and

λ(x) the function associated to the non-invariance of the Lagrangian under the group.
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1.10 Appendix: Lie groups of transformations

Let us introduce the notation and general features of the action of Lie groups on continuous
manifolds to analyze the transformation properties of the di�erent magnitudes we can work
with in either classical or quantum mechanics. We shall use these features all throughout this
book.

Let us consider the transformation of an n-dimensional manifold X, x′ = gx given by n
continuous and di�erentiable functions depending on a set g ∈ G of r continuous parameters of
the form

x′i = f i(xj ; gσ), ∀x ∈ X, ∀g ∈ G, i, j = 1, . . . , n, σ = 1, . . . , r.

This transformation is said to be the action of a Lie group of transformations if it ful�ls the
two conditions:
(i) G is a Lie group, i.e., there exists a group composition law c = ϕ(a, b) ∈ G, ∀a, b ∈ G, in
terms of r continuous and di�erentiable functions ϕσ.
(ii) The transformation equations satisfy

x′′ = f(x′; b) = f(f(x; a); b) = f(x; c) = f(x;ϕ(a, b)).

The group parametrization can be chosen such that the coordinates that characterize the
neutral element e of the group are e ≡ (0, . . . , 0), so that an in�nitesimal element of the group
is the one with in�nitesimal coordinates δgσ, σ = 1, . . . , r.

Under the action of an in�nitesimal element δg of the group G, the change in the coordinates
xi of a point x ∈ X is given by

xi + dxi = f i(x; δg) = xi +
∂f i(x; g)

∂gσ

∣∣∣∣
g=e

δgσ,

after a Taylor expansion up to �rst order in the group parameters and with xi = f i(x; 0). There
are nr auxiliary functions of the group that are de�ned as

uiσ(x) =
∂f i(x; g)

∂gσ

∣∣∣∣
g=e

, (1.48)

and therefore to �rst order in the group parameters, dxi = uiσ(x)δg
σ.

The group action on the manifold X can be extended to the action on the set F(X) of
continuous and di�erentiable functions de�ned on X by means of:

g : h(x)→ h′(x) ≡ h(gx). (1.49)

If the group element is in�nitesimal, then

h′(x) = h(xi + dxi) = h(xi + uiσ(x)δg
σ) = h(x) +

∂h(x)

∂xi
uiσ(x)δg

σ,

after a Taylor expansion to �rst order in the in�nitesimal group parameters. The in�nitesimal
transformation on F(X) can be represented by the action of a di�erential operator in the form

h′(x) =

(
I+ δgσ uiσ(x)

∂

∂xi

)
h(x) = (I+ δgσXσ)h(x) = U(δg)h(x),

where I is the identity operator and the linear di�erential operators

Xσ = uiσ(x)
∂

∂xi
. (1.50)
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In particular, when acting with the operator U(δg) ≡ (I+ δgσXσ) on the coordinate xj we get
xj + dxj = xj + ujσ(x)δgσ.

The operators Xσ are called the generators of the in�nitesimal transformations. They
are r linearly independent operators that span an r-dimensional real vector space such that its
commutator [Xσ, Xλ] also belongs to the same vector space, i.e.,

[Xσ, Xλ] = cασλ Xα, α, σ, λ = 1, . . . , r. (1.51)

The coe�cients cασλ are a set of real constant numbers, called the structure constants of
the group, and the vector space spanned by the generators is named the Lie algebra L(G),
associated to the Lie group G. The structure constants are antisymmetric in their lower indexes
cασλ = −cαλσ, and satisfy Jacobi's indentitites:

cασλc
β
µα + cαλµc

β
σα + cαµσc

β
λα = 0, ∀σ, λ, µ, β = 1, . . . , r.

Equations (1.51) are the commutation relations that characterize the structure of the Lie algebra
of the group.

If a �nite group transformation of parameters gσ can be done in n smaller steps of parameters
gσ/n, with n su�ciently large, then a �nite transformation U(g)h(x) can be obtained as

U(g)h(x) ≡ lim
n→∞

(
I+

gσ

n
Xσ

)n

h(x) = exp(gσXσ)h(x).

This de�nes the exponential mapping and in this case the group parameters gσ are called
normal or canonical parameters. In the normal parameterization the composition law of one-
parameter subgroups reduces to the addition of the corresponding parameters of the involved
group elements.

Let us consider that F(X) is a Hilbert space of states of a quantum system; (1.49) can be
interpreted as the transformed wave function under the group element g. Then if the operator
U(g) is unitary it is usually written in the explicit form

U(g) = exp

(
i

ℏ
gσX̃σ

)
,

in terms of the imaginary unit i and Planck's constant ℏ, such that in this case the new X̃σ above
are self-adjoint operators and therefore represent certain observables of the system. The physical
dimensions of these observables depend on the dimensions of the group parameters gσ, since
the argument of the exponential function is dimensionless and because of the introduction of
Planck's constant ℏ, this implies that gσX̃σ has dimensions of action. These observables, taking
into account (1.50), are represented in a unitary representation by the di�erential operators

X̃σ =
ℏ
i
uiσ(x)

∂

∂xi
. (1.52)

However, (1.49) is not the most general form of transformation of the wave function of a quantum
system, as we shall see in Chapter 3, but once we know the way it transforms we shall be able
to obtain the explicit expression of the group generators by a similar procedure as the one
developed so far. In general the wave function transforms under continuous groups with what is
called a projective unitary representation of the group, which involves in general some additional
phase factors.
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1.10.1 Casimir operators

When we have a representation of a Lie group either by linear operators or by matrices
acting on a linear space, we can de�ne there what are called the Casimir operators. They are
operators C that can be expressed as functions of the generators Xσ of the Lie algebra with the
property that they commute with all of them, i.e., they satisfy [C,Xσ] = 0, ∀σ = 1, . . . , r. In
general they are not expressed as real linear combinations of the Xσ and therefore they do not
belong to the Lie algebra of the group. They belong to what is called the group algebra, i.e.,
the associative, but in general non-commutative algebra, spanned by the real or complex linear
combinations of products of the Xσ, in the corresponding group representation.

In those representations where the Xσ are represented by self-adjoint operators as in a
quantum formalism, the Casimir operators may be also self-adjoint and will represent those
observables that remain invariant under the group transformations. In particular, when we
consider later the kinematical groups that relate the space-time measurements between inertial
observers, the Casimir operators of these groups will represent the intrinsic properties of the
system. They are those properties of the physical system whose measured values are independent
of the inertial observers.

For semisimple groups, i.e., for groups that do not have Abelian invariant subgroups like the
rotation group SO(3), the unitary groups SU(n) and many others, it is shown that the Casimir
operators are real homogeneous polynomials of the generators Xσ, but this is no longer the
case for general Lie groups. Nevertheless, for most of the interesting Lie groups in physics, like
Galilei, Poincaré, De Sitter, SL(4,R), the inhomogeneous ISL(4,R) and Conformal SU(2, 2)
groups, the Casimir operators can be taken as real polynomial functions of the generators.

1.10.2 Homogeneous space of a group

A manifold X is called a homogeneous space of a group G, if ∀x1, x2 ∈ X there exists at
least one element g ∈ G such that x2 = gx1. In that case it is said that G acts on X in a
transitive way. The term homogeneous reminds us that the local properties of the manifold at
a point x are translated to any other point of the manifold by means of the group action, and
therefore all points of X share the same local properties.

The orbit of a point x is the set of points of the form gx, ∀g ∈ G, such that if X is a
homogeneous space of G, then the whole X is the orbit of any of its points.

Given a point x0 ∈ X, the stabilizer group (little group) of x0 is the subgroup Hx0 of G,
that leaves invariant the point x0, i.e., ∀h ∈ Hx0 , hx0 = x0.

If H is a subgroup of G, then every element g ∈ G can be written as g = g′h, where h ∈ H,
and g′ is an element of G/H, the set of left cosets generated by the subgroup H. If X is a
homogeneous space of G, it can be generated by the action of G on an arbitrary point x0 ∈ X.
Then ∀x ∈ X, x = gx0 = g′hx0 = g′x0, and thus the homogeneous space X is isomorphic to
the manifold G/Hx0 .

The homogeneous spaces of a group can be constructed as quotient manifolds of the group by
all its possible continuous subgroups. Conversely, it can also be shown that if X a homogeneous
space of a group G, then there exists a subgroup H of G such that X is isomorphic to G/H.
Therefore, the largest homogeneous space of a group is the group itself.

1.10.3 Examples of continuous groups

1. Let us consider the group of translations of the straight line:

x′ = x+ a.
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With a = 0 we have the neutral element and −a represents the inverse element. The transfor-
mation is in�nitesimal if a is in�nitesimal and we write as x′ = x+ δa. If f(x) is a function of
x, the in�nitesimal action of the group on f is de�ned as

f ′(x) = f(x+ δa) = f(x) + δa
∂f(x)

∂x
= (I+ δaP )f(x).

The operator P = ∂/∂x is called the generator of the in�nitesimal transformation and the
in�nitesimal element of the group becomes the di�erential operator δg ≡ I+ δaP when acting
on the variables and also on functions of these variables. If f(x) is an invariant function under
this group, then Pf = ∂f/∂x = 0, and f is independent of x. For a �nite transformation of
parameter a, the exponential mapping holds eaP , because

eaP ≡ I+
aP

1!
+

(aP )

2!
+ . . .+

(aP )n

n!
+ . . . = I+

a

1!

∂

∂x
+
a2

2!

∂2

∂x2
+ . . .

When we apply this operator on the variable x

x′ = eaPx = x+ a,

and on any function of x

eaP f(x) = f(x) +
a

1!

∂f(x)

∂x
+
a2

2!

∂2f(x)

∂x2
+ . . . = f(x+ a)

because the left hand side is the Taylor expansion of f(x) from the point x to the point x+ a.
The parameter a is the canonical parameter of the group.

2. Let us consider the rotations of the plane

x′ = x cosα− y sinα, y′ = x sinα+ y cosα.

with α = 0 we have the neutral element and −α is the inverse. If α is in�nitesimal, of value δα,
to �rst order in this parameter, the transformation equations are:

x′ = x− yδα, y′ = y + xδα.

If f(x, y) is a function of these variables, it transforms under the group

f ′(x, y) ≡ f(x′, y′) = f(x−yδα, y+xδα) = f(x, y)+δα

(
−y ∂

∂x
+ x

∂

∂y

)
f(x, y) = (I+δαJ)f(x, y)

where the di�erential operator

J = −y ∂
∂x

+ x
∂

∂y
,

is the generator of the in�nitesimal rotations. If f(x, y) is invariant under rotations, then
Jf = 0, and f is a solution of the di�erential equation

−y∂f
∂x

+ x
∂f

∂y
= 0, ⇒ dx

−y
=
dy

x
, xdx+ ydy = 0

since the arc element of components (dx, dy) is orthogonal to the gradient of f and therefore f
must be an arbitrary function of the curves x2 + y2 =cte, i.e., f(x2 + y2).
If what we want is to analyze a �nite rotation of value α, the exponential mapping gives us the
corresponding rotation operator

eαJ ≡ I+
α

1!

(
−y ∂

∂x
+ x

∂

∂y

)
+
α2

2!

(
−y ∂

∂x
+ x

∂

∂y

)2

+ . . .+
αn

n!

(
−y ∂

∂x
+ x

∂

∂y

)n

+ . . .
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and when applied to the variable x gives rise to:

eαJx = x− α

1!
y − α2

2!
x+

α3

3!
y + . . . = x

(
1− α2

2!
+
α4

4!
+ . . .

)
+ y

(
−α
1!

+
α3

3!
+ . . .

)
i.e.,

x′ = eαJx = x cosα− y sinα.

Simmilarly, if we apply to the variable y we obtain

y′ = eαJy = x sinα+ y cosα.

and when acting on any function f(x, y) we get

f ′(x, y) = eαJf(x, y) = f(x cosα− y sinα, x sinα+ y cosα).

The parameter α is the canonical parameter of the group.

3. Let us consider a Galilei boost along axis OX,

t′ = t, x′ = x+ vt.

With v = 0 we have the neutral element and−v represents the inverse element. The in�nitesimal
transformation is with δv in�nitesimal and it looks:

t′ = t, x′ = x+ δvt.

The action of the in�nitesimal element on the function f(t, x) is given by

f ′(t, x) = f(t′, x′) = f(t, x) + δvt
∂f(t, x)

∂x
= (I+ δvK) f(t, x),

where K = t∂/∂x is the generator of the boosts along the axis OX.
To analyze a �nite boost the exponential mapping gives rise to the operator

evK = I+
v

1!
K +

v2

2!
K2 + . . . = I+

v

1!

(
t
∂

∂x

)
+
v2

2!

(
t
∂

∂x

)2

+ . . . ,

and when applied to the variable t
t′ = evKt = t,

and applied to the variable x
x′ = evKx = x+ vt.

Acting on any function f(t, x) produces

f ′(t, x) = evKf(t, x) = f(t, x+ vt).

The parameter v is the canonical parameter of the group.



70 CHAPTER 1. FUNDAMENTAL PRINCIPLES



Chapter 2

Examples of spinning particles

NONRELATIVISTIC PARTICLES

2.1 Nonrelativistic point particle

See the Appendix about the Galilei group G at the end of this chapter for the notation used
through this section.

Let us consider a mechanical system whose kinematical space is the four-dimensional man-
ifold spanned by the variables (t, r) ≡ x, with domains t ∈ R, r ∈ R3, similar to the group
parameters b and a respectively. We assume that they are functions of some evolution parameter
τ and at any instant τ of the evolution two di�erent inertial observers relate their measurements
by:

t′(τ) = t(τ) + b, (2.1)

r′(τ) = R(µ)r(τ) + vt(τ) + a. (2.2)

Because of the way they transform, we can interpret them respectively as the time and position
of the particle. If we assume that the evolution parameter τ is group invariant, by taking the
τ−derivative of both sides of the above expressions, it turns out that the derivatives of the
kinematical variables at any instant τ transform as:

ṫ′(τ) = ṫ(τ), (2.3)

ṙ′(τ) = R(µ)ṙ(τ) + vṫ(τ). (2.4)

If we de�ne the velocity of the point as u = dr/dt = ṙ/ṫ, the velocity of the particle transforms
in the way

u′(τ) = R(µ)u̇(τ) + v.

We can obtain simmilarly the transformation equations of other derivatives. The Lagrangian
for describing this particle will be a function L(t, r,u), and in the parametric τ -description
L̃(t, r, ṫ, ṙ) ≡ L̃(x, ẋ), and homogeneous of degree 1 in terms of the ẋi. This homogeneity leads
to the general form:

L̃ = T ṫ+R · ṙ, (2.5)

where T = ∂L̃/∂ṫ and Ri = ∂L̃/∂ṙi are still some unknown functions of the kinematical
variables and their derivatives, which are homogeneous functions of zero degree in terms of the
derivatives. This homogeneity is independent whether the particle is free or not. The functions
T and Ri are not independent. In fact, if in the expression (2.5) we take the derivative of both
members with respect to ṙi, we get

Ri =
∂L̃

∂ṙi
= ṫ

∂T

∂uj

∂uj
∂ṙi

+Ri + ṙj
∂Rj

∂uk

∂uk
∂ṙi

=
∂T

∂ui
+Ri + uj

∂Rj

∂ui
,

71



72 CHAPTER 2. EXAMPLES OF SPINNING PARTICLES

because ∂uj/∂ṙi = δij/ṫ, and we thus arrive to

∂T

∂ui
+ uj

∂Rj

∂ui
= 0. (2.6)

We also know that because T and Ri are partial derivatives of L̃ and this is a continuous and
derivable function, the following equality of crossed derivatives holds

∂2L̃

∂ṫ∂ṙi
=

∂2L̃

∂ṙi∂ṫ
,

∂Ri

∂ṫ
=
∂T

∂ṙi
,

but these functions depend on these derivatives through the variables variables ui = ṙi/ṫ, and
therefore

∂Ri

∂ṫ
=
∂Ri

∂uj

∂uj

∂ṫ
=
∂Ri

∂uj

(
− ṙj
ṫ2

)
=
∂T

∂ṙi
=
∂T

∂uj

∂uj
∂ṙi

=
∂T

∂uj

δij

ṫ
⇒ ∂T

∂ui
+ uj

∂Ri

∂uj
= 0,

which is another relation of the type (2.6), which suggests that ∂Ri/∂uj = ∂Rj/∂ui.

2.1.1 Free point particle

If the particle is free, dynamical equations must be invariant for the set of equivalent inertial
observers, since a change of reference frame cannot modify its dynamical laws. If it is under
some interaction, the dynamical equations will not be invariant under the kinematical group
because the group transformations a�ect the kinematical variables and their derivatives, but
not to the mechanisms which produce the interaction, like �elds, magnets, etc.

Associated to this manifold X, the gauge function for this system is

α(g;x) = ξ(g, x) = m
(
v2t/2 + v ·R(µ)r

)
, (2.7)

where the parameter m is interpreted as the mass of the system and ξ(g, g′) is the exponent of
G. If the transformation is in�nitesimal δg, to �rst order in the group parameters gives

α(δg;x) = mR(δµ)r · δv = λi(x)δvi,

and α(δg;x) is di�erent from zero if the transformation is a Galilei boost, and thus the
Lagrangian is invariant under traslations and rotations. Under Galilei boosts the function
λi(x) = mri.

If instead of making that in�nitesimal analysis we make the analysis under �nite Galilei
transformations the transformation of the free Lagrangian under a general �nite transformation
of the Galilei group is

L̃(x′, ẋ′) = L̃(x, ẋ) +m
(
v2ṫ/2 + v ·R(µ)ṙ

)
. (2.8)

Then

T ′ =
∂L̃′

∂ṫ′
=

(
∂L̃

∂ṫ
+

1

2
mv2

)
∂ṫ

∂ṫ′
+

(
∂L̃

∂ṙi
+mvjR(µ)ji

)
∂ṙi

∂ṫ′
, (2.9)

but from (2.3) and (2.4) we get ∂ṫ/∂ṫ′ = 1 and ∂ṙi/∂ṫ′ = −R−1(µ)ikvk, respectively, and thus

T ′ = T − 1

2
mv2 − v ·R(µ)R. (2.10)

Similarly
R′ = R(µ)R+mv. (2.11)
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The conjugate momenta of the independent degrees of freedom qi = ri, are pi = ∂L̃/∂ṙi, and
consequently Noether's theorem leads to the following constants of the motion:
a) Under time translations the gauge function (2.7) vanishes, δt = δb, M = 1, while δri = 0
and the constant reduces to the following expression R · dr/dt− L/ṫ = −T .
b) Under space translations also α(g;x) ≡ 0, δt = 0, M = 0, while δri = δai, Mij = δij and
the conserved observable is R.
c) Under pure Galilei transformations δt = δb and M = 0, while δri = tδvi and Mij = tδij , but
now the gauge function to �rst order in the velocity parameters is α(δv;x) = mr · δv, and we
get mr − P t.
d) Under rotations α(g;x) ≡ 0, δt = 0 andM = 0, while δri = −εijkrjnkδα andMik = −εijkrj
the conserved quantity is r ×R.

Collecting all terms we can give them the following names:

temporal momentum H = −T, (2.12)

linear momentum P = R = p, (2.13)

kinematical momentum K = mr − P t, (2.14)

angular momentum J = r × P . (2.15)

We reserve for these observables the same symbols in capital letters as the corresponding
group generators which produce the space-time transformations that leave dynamical equa-
tions invariant. Even their names make reference to the corresponding group transformation
parameter.

In general, what we have de�ned as the temporal momentum, usually takes the name of en-
ergy or Hamiltonian of the system. However, all observables associated to the uniparametric
symmetry groups are never de�nite positive. All of them can take both signs, but by energy we
understand an observable which is de�nite positive. Actually, the energy should be de�ned as
E = |H|. This is important in order to classify the di�erent particles we are going to �nd, in
particular in the relativistic formulation, where the sign of H, is another intrinsic property, inde-
pendent of the inertial observer. In the relativistic formulation we call particle a mechanical system
for which H > 0 and antiparticle when H < 0. In both cases, if particle and antiparticle have mass
m and they are at rest, Hp = mc2 and Ha = −mc2, but its energy is E = mc2 = |H|. By abuse of
language and because historically this observable has been denoted by energy, it is possible that
along these notes we shall use the name of energy for this observable H.
For the kinematical momentum we can �nd in the literature alternative names. Levy-Leblond calls
it Galilei momentum and sometimes it is called static momentum because it has dimensions of
mass×distance. Being consistent with this notation, we should call it `Poincaré or Lorentz momen-
tum' in a relativistic approach. Nevertheless we shall use the name of kinematical momentum for
this observable K in either the relativistic or non-relativistic formalism.

If we take the τ -derivative in (2.14) of the kinematical momentum K̇ = 0, because it is a
constant of the motion, it implies that P = mṙ/ṫ = mu = R, where u is the velocity of the
particle. If we take into account the relation (2.6), then

∂T

∂ui
= −uj

∂Rj

∂ui
= −ujmδij = −mui, ⇒ T (u) = −1

2
mu2 + T0,

where T0 is constant. Now the Lagrangian of the free Galilei point particle is

L̃0 = T ṫ+R · ṙ =
1

2
m
ṙ2

ṫ
+ T0ṫ ⇒ L0 =

1

2
mu2 + T0.

From the point of view of in�nitesimal trasnformations, since L̃0(t, r, ṫ, ṙ) depends on these
variables, they transform according to (2.1-2.4), and the di�erent generators when acting on these
variables are

H =
∂

∂t
, P = ∇, J = r ×∇+ ṙ ×∇ṙ, K = t∇+ ṫ∇ṙ.
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If the Lagrangian is invariant under translations, then HL̃0 = 0 and P L̃0 = 0, which imply that
L̃0 is not a function of t and r, respectively. Under rotations JL̃0 = 0, and this implies that it is a
function of ṙ2 and of ṫ and must be homogeneous of �rst degree in these derivatives. Finally, if it is
invariant under Galilei boosts KL̃0 = 0, and thus ∂L̃0/∂ṙ = 0, and will be independent of ṙ. Since
this is not possible because the Lagrangian always has to be a function of all derivatives of the
kinematical variables, implies that KL̃0 = d(f(t, r))/dτ , i.e., a total τ -derivative, with dimensions
of mass×distance, and thus dynamical equations are invariant. According to the structure of the
gauge function (2.7), we have

KL̃0 = mṙ =
d

dτ
(mr). ṫ∇ṙL̃0 = mṙ, ⇒ L̃0 =

1

2
m

ṙ2

ṫ
+ F (ṫ),

where F (ṫ) is an arbitrary function of ṫ which has to be homogeneous of degree 1. It has the form

F = −T0ṫ, with T0 a constant, which can be interpreted as the internal energy.

2.1.2 Center of mass observer

The six conditions P = 0 and K = 0, imply u = 0 and r = 0, such that the particle is at
rest and located at the origin of the observer's frame. To uniquely de�ne an observer we need
also to �x an arbitrary rotation and time translation. Nevertheless, we shall call to the class of
observers to whom P = 0 and K = 0, the center of mass observer. These six conditions will
also be used to de�ne the center of mass observer in the relativistic case.

From (2.10) and (2.11) we see that the energy and linear momentum transform as:

H ′ = H + v ·R(µ)P +
1

2
mv2, (2.16)

P ′ = R(µ)P +mv. (2.17)

Then, if H0 and P = 0 are the energy and linear momentum measured by the center of mass
observer, for any arbitrary observer who sees the particle moving with velocity u, it follows
from (2.16) and (2.17) that

H = H0 +
1

2
mu2 = H0 + P 2/2m, P = mu.

The Lagrangian for the point particle is thus

L = T ṫ+R · ṙ = −Hṫ+ P · ṙ = −H0ṫ+
m

2

ṙ2

ṫ
, (2.18)

with H0 an arbitrary constant which plays no role in the dynamics and can be taken H0 = 0.
It will be related to the mc2 term of the relativistic point particle.

If we de�ne the spin of the system, as the angular momentum with respect to the point r,
which represents the location of the center of mass of the particle, then

S ≡ J − 1

m
K × P = J − r × P = 0. (2.19)

It vanishes, so that the point particle is a spinless system.

2.1.3 Interaction with some external source

The most general Lagrangian of the point particle is of the form L̃ = T ṫ+R · ṙ, where the
functions T and R are functions of t, ṫ, r, ṙ and homogeneous of zero degree of the derivatives ṫ
and ṙ, and therefore they are functions of u = ṙ/ṫ. In the free case, the Lagrangian is invariant
under translations and thus independent of t and r, and take the form in the Galilei case, as

T0 = −
1

2
mu2 = −Hm, R0 = mu = Pm
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while in the Poincaré case, as we shall see in section 2.3, they are

T0 =
−mc2√
1− u2/c2

= −Hm, R0 =
mu√

1− u2/c2
= Pm.

The free Lagrangian either relativistic or nonrelativistic, can be written as L̃0 = T0ṫ+R0 · ṙ =
−Hmṫ + Pm · ṙ. We have denoted all these magnitudes related to the free Lagrangian, which
depend on the mass of the particle, with a subindex m, to indicate that they are mechanical
properties.

In the general case, if the particle is interacting with some external source, the dynamical
equations are not invariant under translations, because if we translate the particle but not the
external source the dynamics will be di�erent. The general Lagrangian will be a function of t
and r, but the homogeneity of L̃ in terms of ṫ and ṙ will still hold, and also its di�erence with L̃0.
We can de�ne this di�erence of these two homogeneous functions as the interacting Lagrangian
L̃I = L̃− L̃0. This homogeneous structure of this function implies that L̃I = A0ṫ+A · ṙ, where
A0 = ∂L̃I/∂ṫ, and A = ∂L̃I/∂ṙ.

The functions A0 and A, which depend on the external source, will be in general, functions
of the variables of the particle t, r,u. It is clear that these terms modify the above de�nitions
of H and P of the free particle, and now H = −∂L̃/∂ṫ = Hm−A0 and P = ∂L̃/∂ṙ = Pm+A.
The function −A0 is the modi�cation of the mechanical temporal momentum Hm, and A is the
modi�cation of the mechanical linear momentum Pm, due to the external interaction. Also the
other observables K and J are modi�ed by the external source.

We are going to see that the dependence on u, of the functions A0 and A, is unnecessary.
Those �elds, in general, will be functions of the spacetime variables and independent of the
velocity. Let us consider the Galilei case. The dynamical equations from the Lagrangian

L =
m

2

(
dr

dt

)2

+A0(t, r) +A(t, r) · u,

are
∂A0

∂ri
+ uj

∂Aj

∂ri
− d

dt
(mui +Ai) = 0, i = 1, 2, 3

i.e.,

m
d2ri
dt2

=
∂A0

∂ri
− ∂Ai

∂t
+ uj

(
∂Aj

∂ri
− ∂Ai

∂rj

)
where the last term in brackets, is an antisymmetric function in i and j, and thus it can be
written as ϵijkBkuj , and therefore the time variation of the mechanical linear momentum of the
point particle is

dPm

dt
= m

d2r

dt2
= E + u×B, (2.20)

with

E = ∇A0 −
∂A

∂t
, B = ∇×A,

is the Lorentz force associated to the �elds E and B which are functions only of t and r. In the
relativistic case we shall also obtain dPm/dt = E+u×B, but the expression of Pm = γ(u)mu,
is di�erent, as we shall see.

In the case that A0 and A are functions of u, the dynamical equations are:

∂A0

∂ri
+ uj

∂Aj

∂ri
− d

dt

(
mui +

∂A0

∂ui
+Ai + uj

∂Aj

∂ui

)
= 0.
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But because of the homogeneity of L̃I = A0ṫ + Aj ṙj , if we derivate both sides with respect to
ṙj , we get:

Aj = ṫ
∂A0

∂uj

1

ṫ
+ ṙi

∂Ai

∂uj

1

ṫ
+Aj ,

so that the additional term of the dynamical equations

∂A0

∂ui
+ uj

∂Aj

∂ui
= 0,

vanishes and does not take part in the dynamics, simmilarly as if A0 andA, were independent of
u, as we assumed before. The same argument can be used in the relativistic case, and therefore
the most general force, de�ned as the time derivative of the linear momentum, is a Lorentz force
with only spacetime �elds.

For the time variation of the mechanical energy, only the force related to the �eldE produces
work. In fact, in the nonrelativistic case,

Hm =
m

2

(
dr

dt

)2

,
dHm

dt
= m

dr

dt
· d

2r

dt2
= u ·E.

In the relativistic case, Hm = γ(u)mc2, Pm = γ(u)mu, but because it is an elementary
particle, the atomic principle requires that the invariant expression which de�nes the mass by
H2

m/c
2 − P 2

m = m2c2, does not change under the interaction. If we take the time derivative of
this expression, we have:

2

c2
Hm

dHm

dt
− 2Pm ·

dPm

dt
= 0,

dHm

dt
= u · dPm

dt
= u ·E.

In both cases, the time variation of the mechanical energy of the particle is the work done by
the force E along the trajectory of the center of mass of the particle. Because the external
�elds are de�ned at the position r, this point is also the location of the center of charge of the
particle.

Since B = ∇×A, satis�es ∇ ·B = 0, we have a pseudovector �eld with no sources and of
null divergence. If we take the curl of E, because the curl of ∇× (∇A0), vanishes, these �elds
satisfy the following equations:

∇×E = −∂B
∂t

, ∇ ·B = 0, (2.21)

evaluated at least in the region where the particle is located, and they are part of Maxwell's
equations of the electromagnetic �eld. They are vector �elds and therefore we need to know, to
completely de�ne them, ∇ ·E and ∇×B and the corresponding boundary conditions. These
extra equations relate the �elds with the external sources. In the case of Maxwell's equations
they are:

∇ ·E =
1

ϵ0
ρ, ∇×B =

1

ϵ0c2
j +

1

c2
∂E

∂t
(2.22)

and they do not appear until we establish that part of the total Lagrangian which describes the
sources which generate the interaction, i.e., the free Lagrangian of the external �elds and how
they interact with the particle.

In the case of the electromagnetic �eld ρ represents the electric charge density and j the
vector current density. If we take the divergence of the second equation and using the �rst we
arrive to:

∇ · j +
∂ρ

∂t
= 0,

which is the fundamental conservation law of the electric charge.
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For a point particle of charge e, localized at point r at time t these densities are ρ =
eδ(3)(r−x)δ(t−T ) and j = eδ(3)(r−x)δ(t−T )u, where x is another point of space and T any
other instant of time and δ(x− a) the usual Dirac's delta-function. Maxwell's equations (2.21)
do not depend on the particle, while those of (2.22) show how the presence of the particle, and
therefore the charge and current associated to it modi�es locally the �elds in the surrounding
area. We have to remark that what appear here are spacetime derivatives of the �elds with
respect to the kinematical variables of the particle, and thus they refer to how these �elds,
generated by some external sources, are changing in the neibourhood of the particle. The
conservation law of the electric charge shows the existence of a scalar property linked to the
particle, which is carried by the particle along its trajectory, This enhances the interpretation
that the point r is the support or localization of the charge e.

This formalism does not guarantee that the �elds A0 and A, or their derived vector �elds
E and B, satisfy all Maxwell's equations, but that the interaction is invariant under the trans-
formation (2.23), as we shall see in a minute. It seems to indicate that the possible interaction
of a point particle can undergone is through a Lorentz type force, in terms of the vector �elds
E and B without any restriction on its scope and range.

Gravity, as a possible interaction, is left aside by the de�nition of the Restricted Relativity
Principle. In this way, without further restrictions, it is not possible to determine classically
the other short range interactions like the weak and strong interactions, which are con�ned to
regions of order of 10−15 to 10−18 m, around the particles where the quantum phenomena are
relevant. These other interactions are described usually in a quantum context, through a local
gauge invariance hypothesis and they are not predicted in a classical formalism.

The �elds A0 and A, are not uniquelly determined, because what appears in the dynamical
equations are their spacetime derivatives. If we modify them in the form

A0 → A0 +
∂Λ(t, r)

∂t
, Ai → Ai +

∂Λ(t, r)

∂ri
, (2.23)

where Λ(t, r) is an arbitrary function of the kinematical variables, the Lagrangian L̃I is modi�ed
in the form

∂Λ(t, r)

∂t
ṫ+

∂Λ(t, r)

∂ri
ṙi =

dΛ

dτ
,

which is a total derivative and can be deleted because do not modify the dynamical equations.
The transformation (2.23), which leaves invariant the dynamical equations, while modifying the
external �elds at any point of spacetime, is called a local gauge transformation.

It seems that if we have a transformation that leaves invariant the dynamical equations
we can obtain some conservation law by using Noether's theorem. But this transformation is
not related to any one-parameter group of transformations but it is a general transformation
generated by an arbitrary function Λ, which transforms the Lagrangian with the addition of a
total derivative.

2.2 Galilei free spinning particle

The most general nonrelativistic particle 1 is the system whose kinematical space X is the
largest homogeneous space of the Galilei group G, i.e., the Galilei group itself. We shall describe
the state of the elementary particle at any instant τ , by the knowledge of the time t(τ), the
position of a point r(τ), the velocity of this point u(τ) = dr/dt and the orientation of a
Cartesian frame of unit vectors ei(τ), i = 1, 2, 3, linked to that point. These nine components

1 M. Rivas, Classical Particle Systems: I. Galilei free particles, J. Phys. A 18, 1971 (1985).
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(ei)j can be expressed in terms of three essential parameters ρ(τ), as we can see in the appendix
2.8 about a parameterization of rotations, which are given by:

(ei)j = R(ρ)ji =
1

1 + ρ2
[(1− ρ2) δji + 2ρjρi + 2εikjρk] (2.24)

This selection of the orientation variables in any inertial reference frame is completely arbitrary,
because these unit vectors have no physical reality. This means that the Lagrangian cannot be an
explicit function of them, since any other arbitary selection would produce the same value of the
action. But the important feature is that in the dynamical evolution the orientation changes, the
particle rotates, and therefore the Lagrangian is going to be an explicit function of the angular
velocity of the particle, and this angular velocity is independent of the initial selection of the unit
vectors. This means that any observer who changes at any time the orientation unit vectors, does
not modify the value of the angular velocity in that frame, as we shall see below.

In addition to the kinematical group as a symmetry group we shall have another symmetry group,
the group of rotations of the local frame associated to the particle. We shall call it the local
rotation group and we shall denote by SO(3)L. It commutes with the whole Galilei group and
therefore the spacetime symmetry group is at least G ⊗SO(3)L. The result is that the Lagrangian
L̃ has to be a function of the orientation variables ρ and ρ̇ through its dependence of the angular
velocity ω, which is expressed in terms of ρ and ρ̇ in the form (2.35), as we shall see.

Then the kinematical variables are the ten real variables x(τ) ≡ (t(τ), r(τ),u(τ),ρ(τ)) with
domains t ∈ R, r ∈ R3, u ∈ R3 and ρ ∈ R3

c similarly as the corresponding group parameters.
The relationship between the values x′(τ) and x(τ) they take at any instant τ for two arbitrary
inertial observers, and in the passive representation of rotations, is given by:

t′(τ) = t(τ) + b, (2.25)

r′(τ) = R(µ)r(τ) + vt(τ) + a, (2.26)

u′(τ) = R(µ)u(τ) + v, (2.27)

ρ′(τ) =
µ+ ρ(τ)− µ× ρ(τ)

1− µ · ρ(τ)
. (2.28)

Among these kinematical variables there exist the di�erential constraints u(τ) = ṙ(τ)/ṫ(τ),
that together with the homogeneity condition of the Lagrangian L̃ in terms of the derivatives
of the kinematical variables:

L̃(x, ẋ) = (∂L̃/∂ẋi)ẋi, (2.29)

reduce from ten to six the essential degrees of freedom of the system.
These degrees of freedom are the position r(t) and the orientation ρ(t). The Lagrangian

depends on the second derivative of r(t) and the �rst derivative of ρ(t). Expression (2.29) is
explicitly given by:

L̃ = T ṫ+R · ṙ +U · u̇+ V · ρ̇, (2.30)

where the functions T = ∂L̃/∂ṫ, Ri = ∂L̃/∂ṙi, Ui = ∂L̃/∂u̇i, Vi = ∂L̃/∂ρ̇i, will be in general
functions of the ten kinematical variables (t, r,u,ρ) and homogeneous functions of zero degree
in terms of the derivatives (ṫ, ṙ, u̇, ρ̇).

The generalized coordinates are r, u and ρ, and their canonical cojugate momenta are:

pr =
∂L

∂(dr/dt)
− d

dt

(
∂L

∂(d2r/dt2)

)
=
∂L̃

∂ṙ
− d

dt

(
∂L̃

∂u̇

)
= R− dU

dt
,

pu =
∂L

∂(du/dt)
=
∂L̃

∂u̇
= U ,
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pρ =
∂L

∂(dρ/dt)
=
∂L̃

∂ρ̇
= V .

As canonical conjugate variables, pr is the conjugate momentum of r, pu is that of u anf pρ is
the conjugate momentum of the orientation variables ρ.

By assuming that the evolution parameter τ is group invariant, the derivatives of the kine-
matical variables transform under G:

ṫ′(τ) = ṫ(τ), (2.31)

ṙ′(τ) = R(µ)ṙ(τ) + vṫ(τ), (2.32)

u̇′(τ) = R(µ)u̇(τ), (2.33)

ρ̇′(τ) =
(ρ̇(τ) + µ× ρ̇(τ))(1− µ · ρ(τ))

(1− µ · ρ(τ))2
+

µ · ρ̇(τ)(µ+ ρ(τ) + µ× ρ(τ))

(1− µ · ρ(τ))2
. (2.34)

Instead of the derivative ρ̇(τ), which transforms in a complicated way, we can de�ne the
angular velocity of the particle ω as a linear function of it in the passive representation, in the
form

ω =
2

1 + ρ2
(−ρ̇+ ρ× ρ̇). (2.35)

It is a linear function of ρ̇, and transforms as:

ω′(τ) = R(µ)ω(τ). (2.36)

Two inertial observers measure the same absolute value of the angular velocity. The inverse
transformation of (2.35) is

ρ̇ =
1

2
(−ω − ρ× ω + ρ(ρ · ω)) , (2.37)

We interpret the rotation matrix R(ρ) as the rotation that carries the initial frame linked to
the body at instant τ = 0 to the frame at instant τ , as in a rigid body. Then, the three columns
of matrix R(ρ) represent the Cartesian components of the three unit vectors linked to the body
when chosen parallel to the laboratory frame at instant τ = 0.

Expression of the angular velocity.
If at instant τ = 0 we have the orientation axes ei(0), which de�ne by columns the rotation matrix
R(ρ(0)), at any instant τ they will be

((e1(τ))(e2(τ))(e3(τ))) = R(ρ(τ))R(ρ(0))

where R(ρ(τ)) is the global rotation experienced by the particle, and the change per unit time τ

((ė1(τ))(ė2(τ))(ė3(τ))) = Ṙ(ρ(τ))R(ρ(0)) = Ṙ(ρ(τ))R−1(ρ(τ))((e1(τ))(e2(τ))(e3(τ)))

and thus the velocity of any axis, considered as a vector column, is the action on the vector, at the
instant τ , of the matrix

dei

dτ
= Ṙ(ρ(τ))R−1(ρ(τ))ei(τ) = Ωei(τ),

where Ω = ṘR−1 = ṘRT is an antisymmetric matrix. In fact, at any instant τ any rotation matrix
satis�es, R(ρ(τ))RT (ρ(τ)) = I, where the superindex T means the transpose matrix, and I is the
3× 3 unit matrix. If we take the τ -derivative of this expression, ṘRT + RṘT = Ω+ ΩT = 0, and
thus the three essential components of the antisymmetric matrix Ω de�ne a three-vector ω

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ,
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such that we can write the dynamics of any unit vector as

dei

dτ
= ω × ei. (2.38)

and ω is interpreted as the angular velocity of rotation of the local frame associated to the particle.
The components of ω, expressed as functions of the variables ρ and ρ̇ are given in (2.35).

If any inertial observer changes the matrix of orientation R(τ), made of the three unit vectors,
at the instant τ , by any other matrix R′(τ) = R(τ)M , where M is any orthogonal matrix, then
R′T (τ) = MTRT (τ), and for this observer Ω′ = Ṙ′R′T = ṘMMTRT = ṘRT = Ω, and thus any
selection of the orientation produces the same expression of the angular velocity in the correspond-
ing reference frame. This justi�es that the Lagrangian does not depend explicitely on the variables
ρ, and depends only on them through its dependence of the angular velocity.

Expression (2.28) corresponds to R(ρ′(τ)) = R(µ)R(ρ(τ)). Therefore

Ω′ = Ṙ(ρ′(τ))RT (ρ′(τ)) = R(µ)Ṙ(ρ(τ))RT (ρ(τ))RT (µ)

= R(µ)ΩR−1(µ),

and this leads to the equation (2.36) in terms of the essential components ω of the antisymmetric
matrix Ω.

In this way the last part of the Lagrangian (∂L̃/∂ρ̇i)ρ̇i can be writen as

V · ρ̇ ≡ ∂L̃

∂ρ̇i
ρ̇i =

∂L̃

∂ωj

∂ωj

∂ρ̇i
ρ̇i = W · ω, (2.39)

due to the linearity of ω in terms of ρ̇ and where Wi = ∂L̃/∂ωi. Thus the most general form
of the Lagrangian of a nonrelativistic particle can also be written instead of (2.30) as:

L̃ = T ṫ+R · ṙ +U · u̇+W · ω (2.40)

and where the functions T , R, U and W are unknown functions of the variables (t, r,u,a,Ω),
to be determined. Here a = u̇/ṫ = du/dt, is the acceleration of the point (please do not confuse
with the space translation parameter), and the variable Ω = ω/ṫ is the angular velocity in the
time evolution description. But these observables are not explicit functions of the orientation
variables ρ. All these features are independent of whether the particle is free or it is under some
interaction.

Because we are using an arbitrary evolution parameter τ , the same for all inertial ob-
servers, and we can take it as dimensionless, the Lagrangian L̃ has dimensions of action,
and therefore each one of the terms of its expansion (2.40) also has dimension of action.
This means that every one of the unknown functions Fi = ∂L̃/∂ẋi has dimensions of ac-
tion divided by the dimension of the corresponding kinematical variable xi, because if τ is
dimensionless xi and ẋi, have the same dimension. Therefore, T will have dimension of (ac-
tion/time)=energy, R dimension of (action/length)=mass×velocity, i.e., linear momentum, U
that of (action/velocity)=mass×distance or static momentum, and �nally W dimension of ac-
tion or angular momentum, because ω is dimensionless.

2.2.1 Free spinning particle

Since X is the whole Galilei group G the most general gauge function is just the group
exponent:

α(g;x) = ξ(g, hx) = m(v2t(τ)/2 + v ·R(µ)r(τ)), (2.41)

similar to (2.7), and this allows us to interpret the parameter m as the mass of the system.
Under the action of an arbitrary element of the Galilei group, the Lagrangian L̃ transforms
according to:

L̃(gx(τ), d(gx(τ))/dτ) = L̃(x(τ), ẋ(τ)) + dα(g;x(τ))/dτ. (2.42)
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This leads through some straightforward calculations, similar to the ones performed in (2.9)-
(2.11), to the following form of transformation of the functions:

T ′(τ) = T (τ)− v ·R(µ)R(τ)−mv2/2, (2.43)

R′(τ) = R(µ)R(τ) +mv, (2.44)

U ′(τ) = R(µ)U(τ), (2.45)

W ′(τ) = R(µ)W (τ). (2.46)

2.2.2 Noether constants of the motion

Using the action of the Galilei group on the kinematical space given by (2.25)-(2.28),
Noether's theorem de�nes the following constants of the motion for the free particle:

a) Under time translation the action function is invariant, λ(x) = 0, and as usual we call the
corresponding conserved quantity, the total temporal momentum of the particle H. Since
δt = δb and δq(s)i = 0, M0 = 1 and M (s)

i = 0, by applying (1.37) we have:

H = −(L− pi(s)q
(s)
i )M0 = −(L̃/ṫ− pi(s)q

(s)
i ) = −T −R · u−U · u̇/ṫ−W · ω/ṫ

+(R− dU/dt) · u+U · u̇/ṫ+ V · ρ̇/ṫ,

and since W · ω = V · ρ̇, it turns out that

H = −T − dU

dt
· u. (2.47)

b) Under spatial translations, A(x1, x2) is invariant, λi(x) = 0, and this de�nes the total linear
momentum of the system. We have now:

δt = 0, M0 = 0, δri = δaj , M
(0)
ij = δij , δui = 0, M

(1)
ij = 0,

δρi = 0, M
(ρ)
ij = 0,

and then

P = R− dU

dt
= pr. (2.48)

c) Under a pure Galilei transformation of velocity δv, A(x1, x2) is no longer invariant but taking
into account (1.13) and the gauge function (2.41), it transforms as δA = mr2 ·δv−mr1 ·δv and
thus, λi(x) = mri, and this de�nes the total kinematical momentum K, in the following
way:

δt = 0, M0 = 0, δri = δvit, M
(0)
ij = δijt, δui = δvi, M

(1)
ij = δij ,

δρi = 0, M
(ρ)
ij = 0,

and thus
K = mr − P t−U . (2.49)

From K̇ = 0, this leads to P = mu−dU/dt, and thus by identi�cation with (2.48), the function
R = mu irrespective of the particular Lagrangian. The total linear momentum does not lie
along the velocity of the point r.
d) Finally, under rotations A(x1, x2) remains invariant, Bi(x) = 0, and the corresponding
constant of the motion, the total angular momentum of the system, with respect to the
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origin of observer's frame, comes from the in�nitesimal transformation of value δµi = δαi/2,
i.e., half of the rotated in�nitesimal angle, and then

δt = 0, M0i = 0, δri = ϵikjδαjrk, M
(r)
ij = ϵikjrk,

δui = ϵikjδαjuk, M
(u)
ij = ϵikjuk,

δρi = δαj(δij + ϵikjρ
k + ρiρj)/2, M

(ρ)
ij = (δij + ϵikjρ

k + ρiρj)/2.

Because the constant of the motion is

Jj = −priM (r)
ij − puiM

(u)
ij − pρiM

(ρ)
ij

which leads to
−Piϵikjrk = ϵjkirkPi, −Uiϵikjuk = ϵjkiukUi,

from (2.35)
∂ωk

∂ρ̇i
=

2

1 + ρ2
(−δki + ϵkliρl)

−ViM (ρ)
ij = −∂L̃0

∂ωk

∂ωk

∂ρ̇i
M

(ρ)
ij =Wj ,

because
∂ωk

∂ρ̇i
M

(ρ)
ij = −δkj ,

and therefore, in vector notation

J = r × P + u×U +W = L+Z +W = r × P + S, (2.50)

where all terms have dimension of action or angular momentum. L = r × P represents the
orbital angular momentum, Z = u×U is the angular momentum associated to the dependence
of the Lagrangian on the acceleration and, as we shall see, comes from the relative orbital motion
of the center of charge around the center of mass (or Zitterbewegung) and W comes from the
dependence of the Lagrangian on the angular velocity and we interpret as the rotative part of
the angular momentum.

Since J represents the angular momentum of the particle with respect to the origin of the
reference frame, S represents the angular momentum of the particle with respect to the point
r. Because dJ/dt = 0, the function S satis�es dS/dt = P × u and it is not a constant of the
motion, even for a free particle. It is the classical angular momentum which satis�es the same
dynamical equation as Dirac's spin operator in the quantum case.

e) We have mentioned at the beginning of this section, that in addition to the invariance of
dynamical equations under the Galilei group, we also have the invariance of the Lagrangian
under the local rotation group SO(3)L. This group only transforms the kinematical orientation
variables leaving the rest untouched. The kinematical variables transform under this group:

t′ = t, r′ = r, u′ = u, R(ρ′) = R(ρ)M(α), ∀M(α) ∈ SO(3)L,

The transformation of ρ variables, in the in�nitesimal case is

ρ′ =
ρ+ δα/2− ρ× δα/2

(1− ρ · δα/2)
, δρi = δαj

1

2
(δij + ρiρj − ϵiljρl) =M

(L)
ij δαj .
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The conserved magnitudes come from the momenta pρ = V , and they are:

Tj = −ViM (L)
ij = − ∂L̃

∂ωk

∂ωk

∂ρ̇i
M

(L)
ij ,

but
∂ωk

∂ρ̇i
M

(L)
ij =

−1
1 + ρ2

(
(1− ρ2)δkj + 2ρkρj + 2ϵkjsρs

)
and this term is in fact the k-component, of opposite sign, of the unit vector ej ,i.e., (ej)k, given
in (2.24), and thus these constants of the motion are

Tj = −Wk(−ej)k = W · ej , (2.51)

the projection, on the particle unit vectors, of the angular momentum W associated

to the rotation.
From a di�erent point of view, the conservation of the linear momentum P comes from the

invariance of L under translations and thus because it is independent of the position variables
r. Then from the dynamical equations with respect to these degrees of freedom, we can obtain:

∂L

∂ri
− d

dt

(
∂L

∂(dri/dt)

)
+
d2

dt2

(
∂L

∂(d2ri/dt2)

)
= 0,

d

dt

[
∂L

∂(dri/dt)
− d

dt

(
∂L

∂(d2ri/dt2)

)]
= 0,

since ∂L/∂ri = 0, and we get again (2.48).
The conservation of the projections Ti can be obtained from the dynamical equationes related

to the orientation degrees of freedom. Since L̃ depends on ρ and ρ̇ through its dependence on
the angular velocity ω, these dynamical equations can be rewritten as

∂L̃

∂ρi
− d

dτ

(
∂L̃

∂ρ̇i

)
= 0,

∂L̃

∂ωj

∂ωj

∂ρi
− d

dτ

(
∂L̃

∂ωj

∂ωj

∂ρ̇i

)
= 0,

∂L̃

∂ωj
=Wj ,

and they lead to
dW

dτ
= ω ×W . (2.52)

For the dynamics of the unit vector ei, we have seen in (2.38) that

dei
dτ

= ω × ei,

and therefore for Ti = W · ei, taking the derivative with respect to τ ,

dTi
dτ

= (ω ×W ) · ei +W · (ω × ei) = 0.

We shall see the importance of these conserved components of the spin in the quantum case,
to classify the states of the electron.

Exercise: Show that if a Lagrangian depends on the orientation variables ρ and ρ̇ in terms of the
angular velocity ω(ρ, ρ̇), through (2.35), then the dynamical equations related to the orientation
degrees of freedom,

∂L̃

∂ρi
− d

dτ

(
∂L̃

∂ρ̇i

)
= 0,

can be transformed into

dW /dτ = ω ×W , where Wi =
∂L̃

∂ωi
.
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2.2.3 Spin with respect to the center of mass

We can also consider the spin for a free particle with respect to its center of mass, once we
accurately identify the center of mass of the particle.

The center of mass observer is de�ned as that inertial observer for whom P = 0 and K = 0.
These six conditions do not de�ne uniquely an inertial observer but rather a class of them up
to a rotation and an arbitrary time translation. In fact, the condition P = 0 establishes the
class of observers for which the center of mass is at rest, and K = 0 is the additional condition
to locate it at the origin of coordinates, at least for the point particle. We are going to see that
the same happens for the general spinning particle.

This comes from the analysis of (2.49), where k = U/m is an observable with dimensions
of length, and taking the derivative with respect to τ of both sides, taking into account that
Ṗ = 0, we have:

K̇ = 0 = mṙ − P ṫ−mk̇, i.e., P = m
d(r − k)

dt
. (2.53)

Then the point q = r−k is moving at constant speed and we say that it represents the position
of the center of mass of the system. Thus, the observable k = r− q is just the relative position
of point r with respect to the center of mass, which is de�ned as

q = r − 1

m
U . (2.54)

Therefore P = 0 and K = 0 give rise to dq/dt = 0, and r = k, i.e., q = 0, as we pointed out.
With this de�nition, the kinematical momentum can be written as K = mq − P t, in terms of
the center of mass position q and the total linear momentum P .

The spin of the system, with respect to the center of mass, is de�ned as the di�erence
between the total angular momentum J and the orbital angular momentum of the center of
mass motion q × P , and thus

SCM = J − q × P = J − 1

m
K × P = S + k × P = −mk × dk

dt
+W . (2.55)

We see that can also be written as the angular momentum S with respecto to the point r, plus
the orbital angular momentum of this point k×P with respecto to the center of mass. The spin
SCM , is expressed in terms of the constants of the motion J , K and P , and is also a constant
of the motion. Alternatively we can describe the spin with respect to the center of mass SCM ,
according to the last expression in terms of the rotational part W and the term −k×mdk/dt
which suggests a contribution of (anti)orbital type coming from the motion of point r around
the center of mass. It is related to the zitterbewegung or more precisely to the function U = mk
which re�ects the dependence of the Lagrangian on the acceleration. The other term W comes
from the dependence on the other three degrees of freedom ρi, and thus on the angular velocity.
This zitterbewegung is the motion of the center of charge around the center of mass. Point r,
as representing the position of the center of charge, has been also suggested in previous works
for the relativistic electron. 2

Because J̇ = 0, and that dW /dτ = ω ×W and the expression of P , (2.48), this implies
the general relation for a free particle

ṙ ×R+ u̇×U + ω ×W = 0, (2.56)

which is also valid in the relativistic case and which re�ects the fact that velocity, acceleration
and angular velocity are not independent magnitudes. In a certain sense, we can take as the local

2 A.O. Barut and A.J. Bracken, Phys. Rev. D 23, 2454 (1981).
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frame linked to point r, the Frenet-Serret triad. From the derivatives ṙ y r̈, we can determine
the tangent and normal vector, and their cross product de�nes the binormal, and therefore the
derivative of this triad will also produce the angular velocity which will be a function of the
other derivatives.

In the nonrelativistic case R and ṙ have the same direction, the above relation reduces to

u̇×U + ω ×W = 0. (2.57)

2.2.4 Spin dynamics

Since the angular momentum is an observable de�ned with respect to a de�nite point, and
the elementary particle has two characteristic points r and the center of mass q, we can analyze
the dynamics of the angular momenta with respect to these points, S and SCM , respectively.
In any case, if we know the angular momentum with respect to a point, we can compute the
angular momentum with respect to another point. For the free particle, the angular momentum
with respect to the origin of the inertial reference frame, is written alternatively as:

J = q × P + SCM = r × P + S

By taking the time derivative we get,

dS

dt
= P × u,

dSCM

dt
= 0.

However, as we mentioned in the Preamble , if an external force F applied at point r is acting
on the particle, the torque of this force with respect to the origin will produce the variation of
the total angular momentum J ,

dJ

dt
= r × F = u× P + r × dP

dt
+
dS

dt

but dP /dt = F , and therefore the spin S satis�es exactly the same dynamical equation than
in the free case,

dS

dt
= P × u,

but now P is not a constant of the motion. For the other

dJ

dt
= r × F = v × P + q × dP

dt
+
dSCM

dt

and thus
dSCM

dt
= (r − q)× F ,

If the spin with respect to the center of mass is not conserved, this means that for an elementary
particle q ̸= r, and thus the center of mass and center of charge will be two di�erent points.

2.2.5 Transformation of several observables

The di�erent functions of the expansion of the Lagrangian L̃, transform under the Galilei
group according to (2.43)-(2.46). If we derivate the third equation with respect to τ and divide
by ṫ′ = ṫ, it gives

dU ′

dt′
= R(µ)

dU

dt
, u′ · dU

′

dt′
= u · dU

dt
+ v ·R(µ)dU

dt
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This implies that the linear momentum P and temporal momentum H, transform between
Galilei observers in the same form (2.16-2.17) as in the case of the free point particle.

H ′ = H + v ·R(µ)P +
1

2
mv2, (2.58)

P ′ = R(µ)P +mv. (2.59)

In this way, if H0 and P 0 = 0, are the values they take for the center of mass observer, then
for any other observer who sees the center of mass moving at the speed v

H = H0 +
1

2
mv2 = H0 +

P 2

2m
, P = mv.

Therefore, the magnitude H −P 2/2m = H0 is a constant and invariant property, independent
of the inertial observer. It de�nes an intrinsic property of the particle. The spacetime part of
L̃, which is related to the gauge variant part which de�nes the mass, takes the general form

T ṫ+R · ṙ = −Hṫ+ P · ṙ.

In fact
−H ′ṫ′ + P ′ · ṙ′ = −Hṫ+ P · ṙ +

1

2
mv2ṫ+mv ·R(µ)ṙ.

In this way, the second part of the expansion of the Lagrangian U · u̇ +W · ω, is necessarily
invariant under the Galilei group. The other intrinsic parameter of the elementary particle, the
spin or internal rotation, will be related to that part. If we express the Hamiltonian in terms
of the invariants H0 and m, the �rst part remain

−Hṫ+ P · ṙ = −H0ṫ+
mṙ2

2ṫ
− 1

2m

(
dU

dt

)2

ṫ.

The �rst term is a total derivative and can be deleted, the second term gives the gauge variation
of the Lagrangian, and the third is necessarily Galilei invariant.

The transformation os the spin with respect to the center of mass SCM de�ned in (2.55),
comes from the transformation of k = U/m and W ,

k′ = R(µ)k,
dk′

dt′
= R(µ)

dk

dt
, W ′ = R(µ)W

and this leads to
S′

CM = R(µ)SCM .

Therefore S′2
CM = S2

CM , is a constant and invariant property between inertial observers. It is
another intrinsic property of the elementary particle. The Lagrangian of an spinning elementary
particle will depend explicitely of these two invariants mass m and center of mass spin SCM .

We cannot say the same about the spin with respect to the point r, S. S = u × U +W
transforms in the way:

S′ = u′ ×U ′ +W ′ = (R(µ)u+ v)×R(µ)U +R(µ)W = R(µ)S + v ×R(µ)U ,

and its absolute value depends on the relative velocity v among observers and, therefore, it is
not an intrinsic property.

The center of mass q transforms like the point r:

q′(τ) = R(µ)q(τ) + vt(τ) + a.

This feature does not hold in the relativistic case and the center of mass does not transform like
the position of the point r. This is because q and r are considered simultaneously in a reference
frame and therefore their transformed points q′ and r′ are not considered simultaneous in the
other relativistic reference frame. In the relativistic case the de�niton of the center of mass q
depends also on the acceleration of the point r.
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2.2.6 Galilei spinning particle of (anti)orbital spin

To analyze the spin structure of the particle, and therefore the di�erent contributions to the
spin coming from these functions U and W , let us consider the following simpler example.

Consider a Galilei particle whose kinematical space isX = G/SO(3), so that any point x ∈ X
can be characterized by the seven variables x ≡ (t, r,u), u = dr/dt, which are interpreted as
time, position and velocity of the particle respectively. In this example we have no orientation
variables. The Lagrangian will also depend on the next order derivatives, i.e., on the velocity
which is already considered as a kinematical variable and on the acceleration of the particle.
Rotation and translation invariance implies that L will be a function of only u2, (du/dt)2 and
u ·du/dt = d(u2/2)/dt, but this last term is a total time derivative and it will not be considered
here.

Since from condition (2.57) U ∼ u̇, let us assume that our elementary system is represented
by the following Lagrangian, which when written in terms of the three degrees of freedom and
their derivatives is expressed as

L =
m

2

(
dr

dt

)2

− m

2ω2

(
d2r

dt2

)2

. (2.60)

Parameter m is the mass of the particle because the �rst term is gauge variant in terms of the
gauge function (2.41) de�ned by this constant m, while parameter ω of dimensions of time−1

represents an internal frequency. It is the frequency of the internal zitterbewegung.
In terms of the kinematical variables and their derivatives, and in terms of some group

invariant evolution parameter τ , the Lagrangian can also be written as

L̃ =
m

2

ṙ2

ṫ
− m

2ω2

u̇2

ṫ
, (2.61)

where the dot means τ -derivative. If we consider that the evolution parameter is dimensionless,
all terms in the Lagrangian have dimensions of action. Because the Lagrangian is a homogeneous
function of �rst degree in terms of the derivatives of the kinematical variables, L̃ can also be
written as

L̃ = T ṫ+R · ṙ +U · u̇, (2.62)

where the functions accompanying the derivatives of the kinematical variables are de�ned and
explicitly given by

T =
∂L̃

∂ṫ
= −m

2

(
dr

dt

)2

+
m

2ω2

(
d2r

dt2

)2

,

R =
∂L̃

∂ṙ
= m

dr

dt
, (2.63)

U =
∂L̃

∂u̇
= −m

ω2

d2r

dt2
. (2.64)

Dynamical equations obtained from Lagrangian (2.60) are:

1

ω2

d4r

dt4
+
d2r

dt2
= 0, (2.65)

whose general solution is:

r(t) = A+Bt+C cosωt+D sinωt, (2.66)

in terms of the 12 integration constants A, B, C and D.
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When applying Noether's theorem to the invariance of dynamical equations under the Galilei
group, the corresponding constants of the motion can be written in terms of the above functions
in the form:

temporal momentum H = −T − u · dU
dt
, (2.67)

linear momentum P = R− dU

dt
= mu− dU

dt
, (2.68)

kinematical momentum K = mr − P t−U , (2.69)

angular momentum J = r × P + u×U . (2.70)

It is the presence of the U function that distinguishes the features of this system with respect
to the point particle case. We �nd that the total linear momentum is not lying along the
direction of the velocity u, and the spin structure is directly related to the function U , i.e., to
the dependence of the Lagrangian on the acceleration.

If we substitute the general solution (2.66) in (2.67-2.70) we see in fact that the integration
constants are related to the above conserved quantities

H =
m

2
B2 − mω2

2
(C2 +D2), (2.71)

P = mB, (2.72)

K = mA, (2.73)

J = A×mB −mωC ×D. (2.74)

We see that the kinematical momentum K in (2.69) di�ers from the point particle case
(2.14) in the term −U , such that if we de�ne the vector k = U/m, with dimensions of length,
then K̇ = 0 leads from (2.69) to the equation:

P = m
d(r − k)

dt
,

and q = r−k, de�nes the position of the center of mass of the particle that is a di�erent point
than r and using (2.64) is given by

q = r − 1

m
U = r +

1

ω2

d2r

dt2
. (2.75)

In terms of it, dynamical equations (2.65) can be separated into the form:

d2q

dt2
= 0, (2.76)

d2r

dt2
+ ω2(r − q) = 0, (2.77)

where (2.76) is just eq. (2.65) after twice di�erentiating (2.75), and Equation (2.77) is (2.75)
after collecting all terms on the left hand side.

From (2.76) we see that point q moves in a straight trajectory at constant velocity while
the motion of point r, given in (2.77), is an isotropic harmonic motion of angular frequency ω
around the point q.

The spin of the system with respect to the center of mass, SCM is de�ned as

SCM = J − q × P = J − 1

m
K × P , (2.78)
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and since it is written in terms of constants of the motion it is clearly a constant of the motion,
and its magnitude S2

CM is also a Galilei invariant quantity that characterizes the system. In
terms of the integration constants it is expressed as

SCM = −mωC ×D. (2.79)

From its de�nition we get

SCM = u×U + k × P = −m(r − q)× d

dt
(r − q) = −k ×mdk

dt
, (2.80)

which appears as the (anti)orbital angular momentum of the relative motion of point r around
the center of mass position q at rest, so that the total angular momentum can be written as

J = q × P + SCM = L+ SCM . (2.81)

It is the sum of the orbital angular momentum L associated to the motion of the center of
mass and the spin part SCM . For a free particle both L and SCM are separately constants of
the motion. We use the term (anti)orbital to suggest that if vector k represents the position
of a point of mass m, the angular momentum of this motion is in the opposite direction as the
obtained spin observable. But as we shall see in a moment, vector k does not represent the
position of the mass m but rather the position of the charge e of the particle.

2.2.7 Interaction with an external electromagnetic �eld

But if q represents the center of mass position, then what position does point r represent?
Point r represents the position of the charge of the particle. This can be seen by considering
some interaction with an external �eld. The homogeneity condition of the Lagrangian in terms
of the derivatives of the kinematical variables leads us to consider an interaction term of the
form

L̃I = −eϕ(t, r)ṫ+ eA(t, r) · ṙ, (2.82)

which is linear in the derivatives of the kinematical variables t and r and where the external
potentials are only functions of t and r. We can also consider more general interaction terms of
the form N(t, r,u) · u̇, and also more general terms in which functions ϕ and A also depend on
u and u̇. If the interaction Lagrangian depends on u̇ this implies that the interaction modi�es
the de�nition of the observable U = mk which de�nes the spin of the free system. But if the
system is elementary the spin de�nition cannot be changed, so that (2.82) is the most general
interaction term. See the discussion in section 2.1.3 about the independence of the potentials
ϕ and Ai of the velocity variables.

Dynamical equations obtained from L+ LI are

1

ω2

d4r

dt4
+
d2r

dt2
=

e

m
(E(t, r) + u×B(t, r)) , (2.83)

where the electric �eld E and magnetic �eld B are expressed in terms of the potentials in
the usual form, E = −∇ϕ − ∂A/∂t, B = ∇ × A. Dynamical equations (2.83) can again be
separated into the form

d2q

dt2
=

e

m
(E(t, r) + u×B(t, r)) , (2.84)

d2r

dt2
+ ω2(r − q) = 0. (2.85)

The center of mass q satis�es Newton's equations under the action of the total external Lorentz
force, while point r still satis�es the isotropic harmonic motion of angular frequency ω around
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point q. The external force modi�es the motion of the CM but does not modify its internal
relative motion according to the Atomic Principle. But the external force and the �elds are
de�ned at point r and not at point q. It is the velocity u of point r that appears in the
magnetic term of the Lorentz force. Point r clearly represents the position of the charge. In
fact, this minimal coupling we have considered is the coupling of the electromagnetic potentials
with the particle current, that in the relativistic case can be written as jµAµ, but the current
jµ is associated to the motion of a charge e at point r.

Figure 2.1: Charge motion in the C.M. frame.

This charge has an oscillatory motion of very high frequency ω that, in the case of the
relativistic electron is ω = 2mc2/ℏ ≃ 1.55× 1021s−1. The average position of the charge is the
center of mass, but it is this internal orbital motion, usually known as the zitterbewegung, that
gives rise to the spin structure for this model and also to the magnetic properties of the particle,
as we shall see later.

When analyzed in the center of mass frame (see Fig. 2.1), q = 0, r = k, the system reduces
to a point charge whose motion is in general an ellipse, but if we choose C = D, and C ·D = 0,
it reduces to a circle of radius a = C = D, orthogonal to the spin. Then if the particle has
charge e, it has a magnetic moment that according to the usual classical de�nition is: 3

µ =
1

2

∫
r × j d3r =

e

2
k × dk

dt
= − e

2m
SCM , (2.86)

where j = eδ3(r − k)dk/dt is the current associated to the motion of a charge e located at
point k. The magnetic moment is orthogonal to the zitterbewegung plane and opposite to the
spin if e > 0. It also has a non-vanishing oscillating electric dipole d = ek, orthogonal to µ
and therefore to SCM in the center of mass frame, such that its time average value vanishes for
times larger than the natural period of this internal motion. Although this is a nonrelativistic
example we see in (2.86) that its gyromangnetic ratio is g = 1. In order to obtain g ̸= 1 it is
necessary another contribution to the spin not related to this relative motion. It is interesting,
nevertheless, to point out and compare with Dirac's relativistic analysis of the electron, 4 in
which both momenta µ and d appear, giving rise to two possible interacting terms in Dirac's
Hamiltonian. We shall come back to this analysis later when we study the elementary relativistic
particles.

3 J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, NY (1998), 3rd. ed. p.186.
4 P.A.M. Dirac, The Principles of Quantum mechanics, Oxford Univ. Press, 4th ed. (1967).
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2.2.8 Spinning particle in a uniform magnetic �eld

Let us consider in detail the interaction of this model of particle with spin of orbital nature
in an external uniform magnetic �eld B. It is an exercise that can be solved explicitly. The
advantage of a model de�ned in terms of a Lagrangian function is that we do not need to state
any dynamical equation for spin, because the spin is a function of the independent degrees of
freedom and therefore its dynamics can be obtained from them. The result is that we shall
obtain as a �rst order approximation a torque equation of the usual form dSCM/dt = µ ×B,
when the magnetic moment µ is properly interpreted in terms of the charge motion.

In this case, the system of equations (2.84-2.85) reduce to

d2q

dt2
=

e

m
u×B,

d2r

dt2
+ ω2(r − q) = 0.

With the de�nition of the variables v = dq/dt, it is equivalent to a linear system of twelve
di�erential equations of �rst order for the components of r, u, q and v. If we de�ne a new
dimensionless time variable τ = ωt, then the above system depends only on the dimensionless
parameter a = eB/mω which is the quotient between the cyclotron frequency |ωc| = eB/m and
ω, the natural frequency of the internal motion.

By taking the direction of the uniform magnetic �eld along the OZ axis, the external force
is orthogonal to it. Then if we call q3 and r3 the corresponding coordinates along that axis of
the centre of mass and center of charge, they satisfy

d2q3
dt2

= 0,
d2q3
dt2

+ ω2(r3 − q3) = 0 (2.87)

whose general solution in terms of the initial data q3(0), r3(0), v3(0) and u3(0) is

q3(t) = q3(0) + v3(0)t, (2.88)

r3(t) = (r3(0)− q3(0)) cosωt+
1

ω
(u3(0)− v3(0)) sinωt+ q3(0) + v3(0)t. (2.89)

Similarly, the other components of the center of mass in terms of the new time variable are

d2q1
dτ2

= a
dr2
dτ

,
d2q2
dτ2

= −a dr1
dτ

,

and once integrated we get

dq1
dτ

= ar2 + b1,
dq2
dτ

= −ar1 + b2, (2.90)

where b1 and b2 are two integration constants with dimensions of length. Thus we are left
with the integration of a �rst order system formed by these two last equations (2.90) and the
equations for the other two components of the center of charge that can be written as

dr1
dτ

= u1,
dr2
dτ

= u2, (2.91)

du1
dτ

= q1 − r1,
du2
dτ

= q2 − r2. (2.92)

The matrix of this linear system in terms of the variables q1, q2, r1, r2, u1 and u2, taken in
this order, is just

M =



0 0 0 a 0 0
0 0 −a 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 −1 0 0 0
0 1 0 −1 0 0

 ,
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whose characteristic equation is λ6 + 2λ4 + λ2 + a2 = 0. It is shown that it has six di�erent
roots, corresponding to the normal modes of the system. If we call λ = iz, these new variables
verify z2(1− z2)2 = a2, and thus by solving the cubic equation z(1− z2) = a, the six solutions
of the form ±iz will be the six eigenvalues of the system. If we de�ne

k =
1

3
arcsin

(
3
√
3a

2

)
, (2.93)

then the six eigevalues are ±iωj , j = 1, 2, 3, where:

ω1 =
2√
3
sin k, ω2 = − cos k − 1√

3
sin k, ω3 = cos k − 1√

3
sin k. (2.94)

If 3
√
3|a|/2 ≤ 1 then the six roots are purely imaginary and the motion is three-periodic with

these three frequencies. Otherwise, if there exist real roots, the corresponding solution will be
exponential. In general, for the electron, as we shall see in the next chapter, the zitterbewegung
frequency is ω = 2mc2/ℏ, and thus

a/B = e/mω = eℏ/2m2c2 = 1.13× 10−10Tesla−1,

so that even with very strong magnetic �elds the parameter a is very small and the usual
solution will be oscillatory.

The general solution of the complete system will be a linear combination of these three
oscillations and it will depend on twelve integration constants that will be expressed in terms
of the initial position and velocity of the center of mass and center of charge. The general form
for the evolution of the center of charge is:

r1(τ) = A cosω1τ +B sinω1τ + C cosω2τ +D sinω2τ + E cosω3τ

+ F sinω3τ + b2/a,

r2(τ) = B cosω1τ −A sinω1τ +D cosω2τ − C sinω2τ

+ F cosω3τ − E sinω3τ − b1/a,
r3(t) = (r3(0)− q3(0)) cosωt

+
1

ω
(u3(0)− v3(0)) sinωt+ q3(0) + v3(0)t,

where
b1/a = v1(0)/aω − r2(0), b2/a = v2(0)/aω + r1(0).

For the center of mass coordinates we get

q1(τ) = (1− ω2
1) (A cosω1τ +B sinω1τ)

+ (1− ω2
2) (C cosω2τ +D sinω2τ)

+ (1− ω2
3) (E cosω3τ + F sinω3τ) + b2/a,

q2(τ) = (1− ω2
1) (B cosω1τ −A sinω1τ)

+ (1− ω2
2) (D cosω2τ − C sinω2τ)

+ (1− ω2
3) (F cosω3τ − E sinω3τ)− b1/a,

q3(t) = q3(0) + v3(0)t.

The six unknown constants A,B,C,D,E, and F are of dimensions of length and satisfy the
linear system  1 1 1

ω1 ω2 ω3

ω2
1 ω2

2 ω2
3

A
C
E

 =

 −v2(0)/aω
−u2(0)/ω

r1(0)− q1(0)

 ,
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and  1 1 1
ω1 ω2 ω3

ω2
1 ω2

2 ω2
3

B
D
F

 =

 v1(0)/aω
u1(0)/ω

r2(0)− q2(0)

 ,

where q(0), v(0) and r(0), u(0), are respectively the position and velocity of the center of mass
and center of charge at time t = 0.

If we call N the inverse of the matrix containing the frequencies of the above equations, it
is:

N =
1

∆

ω2ω3(ω3 − ω2) ω2
2 − ω2

3 ω3 − ω2

ω1ω3(ω1 − ω3) ω2
3 − ω2

1 ω1 − ω3

ω1ω2(ω2 − ω1) ω2
1 − ω2

2 ω2 − ω1

 ,

where ∆ = (ω1 − ω2)(ω2 − ω3)(ω3 − ω1), in such a way that we can obtain the �nal expression
of the integration constants in terms of the initial conditions.

To lowest order in a, since k ≈
√
3a/2, the normal modes are:

ω1 = a+O(a3), ω2 = −1−
a

2
+

3a2

8
+O(a3), ω3 = 1− a

2
− 3a2

8
+O(a3). (2.95)

In terms of the physical parameters and in the time evolution description, these normal fre-
quencies are to lowest order:

ω1 = ωc, ω2 = ω − ωc

2
− 3ω2

c

8ω
, ω2 = ω +

ωc

2
− 3ω2

c

8ω
, (2.96)

where ωc = eB/m and ω are the cyclotron and zitterbewegung frequency, respectively.
To properly characterize these initial values in terms of physical parameters, like the radius

of the internal motion R0, the cyclotron radius Rc, the center of mass velocity v and the
zitterbewegung frequency ω, let us consider an electron that is sent with a velocity v orthogonal
to the external uniform magnetic �eld B. We take the XOY plane such that the initial position
of the center of mass is on the OX axis at the coordinate Rc = −vm/eB, and the initial velocity
v along the positive direction of the OY axis. With this convention, the center of mass will have
a precession around the OZ axis with cyclotron angular velocity |ωc| in the positive direction
while for a positive charged particle the initial position will be chosen as −|Rc| on the OX axis
and the angular velocity will point in the negative OZ axis.

The initial position of the center of charge is characterized by the three parameters ϕ, θ
and ψ, where θ and ϕ represent the initial orientation of the internal angular velocity ω, and
parameter ψ is the initial phase position of the center of charge as shown in Figure 2.2. If all
these three parameters are zero, ω is pointing along OZ and the initial position of the charge
is at point Rc +R0 on the OX axis.

We thus have as initial conditions for our system, written in column matrix form:

q(0) =

Rc

0
0

 , r(0) =

Rc

0
0

+Roz(ϕ)Roy(θ)Roz(ψ)

R0

0
0

 ,

v(0) =

 0
v
0

 , u(0) =

 0
v
0

+Roz(ϕ)Roy(θ)Roz(ψ)

 0
ωR0

0

 ,

where Roz(α) will represent a rotation in the active sense, of value α around the OZ axis. Since
the spin is opposite to the internal angular velocity, its initial value is

SCM (0) = Roz(ϕ)Roy(θ)

 0
0
−S

 , (2.97)
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Figure 2.2: Initial phase ψ of the charge and initial orientation (θ, ϕ) of angular velocity ω.

where S = mωR2
0. Thus the initial conditions to determine the coe�cients of the general

solution are: −v2(0)/aω
−u2(0)/ω

r1(0)− q1(0)

 =

 Rc

aRc − αR0

βR0

 ,

 v1(0)/aω
u1(0)/ω

r2(0)− q2(0)

 =

 0
γR0

δR0

 ,

where Rc = −vm/eB, ωc = −eB/m = −aω, as before and the constant parameters:

α = − sinϕ cos θ sinψ + cosϕ cosψ,

β = cosϕ cos θ cosψ − sinϕ sinψ,

γ = − cosϕ cos θ sinψ − sinϕ cosψ,

δ = sinϕ cos θ cosψ + cosϕ sinψ.

To lowest order in a, the frequencies become:

ω1 − ω2 = 1 +
3

2
a, ω2 − ω3 = −2, ω3 − ω1 = 1− 3

2
a,

ω1 + ω2 = −1 +
a

2
, ω2 + ω3 = −a, ω3 + ω1 = 1 +

a

2
,

ω1ω2 = −a
(
1 +

a

2

)
, ω2ω3 = −

(
1− a2

4

)
, ω3ω1 = a

(
1− a

2

)
,

and thus the inverse matrix N to order O(a2) is

N =

 1 + 2a2 −a −1− 9a2/4
a/2− a2 −1/2 + a/2− 3a2/4 1/2− 3a/4 + 9a2/8
−a/2− a2 1/2 + a/2 + 3a2/4 1/2 + 3a/4 + 9a2/8

 .

In this way the coe�cients of the general solution, to �rst order in a, are:

A = Rc − βR0 + aR0α,

B = −R0(aγ + δ),

C =
R0

2
(α+ β)− aR0

4
(2α+ 3β),

D =
R0

2
(δ − γ) + aR0

4
(2γ − 3δ),
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E =
R0

2
(β − α) + aR0

4
(3β − 2α),

F =
R0

2
(δ + γ) +

aR0

4
(2γ + 3δ),

and the coe�cients
b1/a = −δR0, b2/a = βR0.

This motion depends on the cyclotron radius Rc, only through the parameter A, and the
remaining terms depend on the internal radius R0.

The general solution, neglecting terms of the order aR0, can be written in a vector form as:

r(t) = Roz(ωct)

Rc

0
0

+ (I−Roz(ωct))R(ϕ, θ, ψ)

R0

0
0


+ Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

R0

0
0

+O(aR0),

where I is the 3 × 3 unit matrix and R(ϕ, θ, ψ) ≡ Roz(ϕ)Roy(θ)Roz(ψ). The �rst two terms
represent the center of mass motion to this order of approximation, while the third is precisely
the relative motion of the center of charge around the center of mass. The neglected contribution
of order aR0 can be written as

O(aR0)

= −Jz
[
Roz(ωct)R(ϕ, θ, ψ)−Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

] 0
aR0

0


−Jz

sin(ωt)
2
Roz

(
−ωct

2

)
R(ϕ, θ, ψ)

 aR0

0
0

 ,
where

Jz =

 0 −1 0
1 0 0
0 0 0

 ,

is the 3 × 3 generator of rotations around the OZ axis. The �rst two terms represent the
correction to this order of the center of mass motion and the third is the correction of the internal
relative motion. The presence of the generator Jz in this term means that this correction does
not make any contribution to the motion along the OZ axis. The solution along OZ is exactly:

q3(t) = 0, r3(t) = −R0 sin θ cos(ωt+ ψ), (2.98)

i.e., a harmonic motion of amplitude R0 sin θ, and frequency ω.
The relative position of the center of charge with respect to the center of mass veri�es:

k(t) = Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

R0

0
0



−Jz

sin(ωt)
2
Roz

(
−ωct

2

)
R(ϕ, θ, ψ)

 aR0

0
0

 , (2.99)
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and if we neglect contributions to order aR0, it just reduces to the �rst term

k(t) ≈ Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

R0

0
0

 , (2.100)

that represents an oscillation with the natural frequency ω of the zitterbewegung around the
initial spin axis, with a backwards precession with an angular velocity ωc/2.

Figure 2.3: Motion of the center of charge (red) and center of mass of a negative charged
particle in a uniform magnetic �eld. The spin with respect to the center of mass precess
in the opposite direction to the cyclotronic motion and with half the angular velocity. The
velocity of the center of mass is orthogonal to the �eld.

The center of charge and center of mass trajectory is depicted in the Figure 2.3, where the
curly trajectory is the motion of the center of charge.

To study the spin dynamics, we just substitute the general solution in its analytical de�nition

SCM (t) = −mk(t)× dk(t)

dt
, (2.101)

where we need to calculate the derivative of (2.100). To calculate this derivative, we have to
take into account that

Roz(ωt) = exp(Jzωt),

and therefore
Ṙoz(ωt) = exp(Jzωt)Jzω = Roz(ωt)Jzω = JzωRoz(ωt).

By taking the derivative of (2.100) we get the following terms:

dk

dt
= Roz

(
−ωct

2

)
JzR(ϕ, θ, ψ + ωt)

−ωcR0/2
0
0


+ Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

 0
ωR0

0

 , (2.102)

where  0
ωR0

0

 = ωJz

R0

0
0

 . (2.103)
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Of these terms, the �rst is of order ωcR0 = vR0/Rc = aωR0 = ac, and thus even with very high
magnetic �elds it can be neglected.

The dynamics of the spin with respect to the center of mass is reduced to

SCM (t) = Roz

(
−ωct

2

)
R(ϕ, θ, ψ + ωt)

 0
0

−mωR2
0

 = Roz

(
−ωct

2

)
S(0), (2.104)

where SCM (0) is given in (2.97). The spin is precessing backwards with half the angular velocity
of the cyclotron motion while its absolute value remains constant at �rst order. We represent
in Figure 2.4 its evolution during the same time interval as the one depicted in Figure 2.3 with
the initial orientation θ = 30◦ and ϕ = 90◦, where we can observe, in addition to the precession
of constant absolute value, a tiny oscillation of the next order contribution.

Figure 2.4: Precession of spin with respect to the center of mass SCM around the OZ axis,
and its projection (in blue) on the XOY plane during the same time than in the �gure 2.3.

From another point of view, the relationship between tha spin and magnetic moment is given
by (2.86), and the dynamics of the spin with respect to the center of mass depends on the torque
of the magnetic �eld B,

dSCM

dt
= µ×B = − e

2m
SCM ×B = Ω× SCM .

The constant angular velocity of precession of the spin, is Larmor's angular frequency

Ω =
eB

2m
= −ωc

2
,

since ωc = −eB/m, i.e., half and of opposite direction to the cyclotronic angular velocity,as can be

seen in the Figure 2.4. This produces the �rst order contribution, since at this order the absolute

value of spin is conserved. This approach does not contain the additional terms of correction to

the normal modes ωi, which can be relevant in high energy processes, and that can be obtained

using the exact general solution.

2.2.9 Dynamics of the spin with respect to the center of charge S

It is interesting to compare the evolution of the center of mass spin SCM with that of the
center of charge spin S = u × U , which satis�es either in the free case and under interaction
the same dynamcial equation

dS

dt
= p× u.
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In the �gure 2.5 we represent its evolution, as well as its projection on the XOY plane, during
a complete turn of the electron.

Figure 2.5: Motion of the center of charge spin S, and its projection (in green) onto the
plane XOY , during a complete turn of the CM of the electron. Its evolution is always or-
thogonal to the linear momentum p. The dynamics of the center of mass spin S represents
the evolution, in the quantum case, of Dirac's spin operator, S = ℏσ/2.

Since the center of mass spin is written as

SCM = S + k × p, (2.105)

where k is the relative position of the CC with respect to the CM. If we consider the average
value of this expression during a complete turn of the center of charge, during this short time
the linear momentum is almost constant and thus and the average value of k is zero, this implies
that < SCM >=< S >. We can show that by depicting the evolution of both spins SCM and
S, of 2.4 and 2.5, respectively. In the �gure 2.6 we see this superposition.

Since Dirac's spin operator S = 1
2ℏσ satis�es the dynamical equation dS/dt = p × u, it

is the dynamics of the center of charge spin which represents the evolution od Dirac's spin
operator.

Although this analysis of the average values of the spin has been done with a nonrelativistic
model, this result is completely general since the relationship between both spins (2.105) is the
same in the relativistic case and the average value the relative position k, during a turn, is zero.

2.2.10 Energy of the particle

The energy of the system is

H = −T − u · dU
dt
, (2.106)

that can be expressed as:

H =
m

2

(
dr

dt

)2

− m

2ω2

(
d2r

dt2

)2

+
m

ω2

dr

dt
· d

3r

dt3
+ eV (r, t),

and, since the function V (r, t) = 0 in the presence of a constant magnetic �eld, it becomes:

H =
m

2

(
dq

dt

)2

− m

2

(
dk

dt

)2

− mω2

2
k2 =

(P − eA)2

2m
+H0. (2.107)
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Figure 2.6: Superposition of the dynamics of both spins. The dynamics of the center of
mass spin SCM (in red), is the average value during a turn of the center of charge of the
dynamics of the center of charge spin S. The center of mass spin is the average value
during a turn of the center of charge of Dirac's spin.

To lowest order the contribution comes from

q(t) = Roz(ωct)

Rc

0
0

+ (I−Roz(ωct))R(ϕ, θ, ψ)

R0

0
0

 .

Thus

dq

dt
= Roz(ωct)

 0
v
0

−Roz(ωct) JzR(ϕ, θ, ψ)

ωcR0

0
0

 ,

in such a way that taking into account (2.99) and (2.102)

(
dq

dt

)2

= v2 +

JzR(ϕ, θ, ψ)
ωcR0

0
0

2

− 2

 0
v
0

 ·
JzR(ϕ, θ, ψ)

ωcR0

0
0

 ,
(
dk

dt

)2

= ω2R2
0 +

JzR(ϕ, θ, ψ + ωt)

−ωcR0/2
0
0

2

+2

JzR(ϕ, θ, ψ + ωt)

−ωcR0/2
0
0

 ·
R(ϕ, θ, ψ + ωt)

 0
ωR0

0

 .
Since

R(ϕ, θ, ψ + ωt) =

 β(t) γ(t) cosϕ sin θ
δ(t) α(t) sinϕ sin θ

− sin θ cos(ωt+ ψ) sin θ sin(ωt+ ψ) cos θ

 ,
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JzR(ϕ, θ, ψ + ωt) =

−δ(t) −α(t) − sinϕ sin θ
β(t) γ(t) cosϕ sin θ
0 0 0

 ,

where

α(t) = − sinϕ cos θ sin(ψ + ωt) + cosϕ cos(ψ + ωt),

β(t) = cosϕ cos θ cos(ψ + ωt)− sinϕ sin(ψ + ωt),

γ(t) = − cosϕ cos θ sin(ψ + ωt)− sinϕ cos(ψ + ωt),

δ(t) = sinϕ cos θ cos(ψ + ωt) + cosϕ sin(ψ + ωt)

then

JzR(ϕ, θ, ψ + ωt)

ωcR0

0
0

 = ωcR0

−δ(t)β(t)
0

 .

Consequently (
dq

dt

)2

= v2 + ω2
cR

2
0(δ(0)

2 + β(0)2)− 2vωcR0β(0),(
dk

dt

)2

= ω2R2
0 +

ω2
cR

2
0

4
(δ(t)2 + β(t)2) + ωωcR

2
0(δ(t)γ(t)− β(t)α(t)).

Because
δ(t)γ(t)− β(t)α(t) = − cos θ,

δ(0)2 + β(0)2 = 1− sin2 θ cos2 ψ,

δ(t)2 + β(t)2 = 1− sin2 θ cos2(ψ + ωt),

if we write ωc in terms of the parameter a, ωc = −aω, in the case of the electron ωR0 = c, the
energy of this system to lower order of approximation in a is:

H = H0 − a
(
mc2 cos θ

2
−mvcβ(0)

)

+a2
mc2

2

(
δ(0)2 + β(0)2 − 1

4
(δ(t)2 + β(t)2)

)
.

The lowest order of the interaction energy can be expressed as:

HI = −1

2
amc2 cos θ = − eB

2m

mc2

ω
cos θ = −µ ·B, (2.108)

and since S = mωR2
0 = mc2/ω, Sz = −S cos θ, it implies

µz =
eS cos θ

2m
= −eSz

2m
, (2.109)

or
µ = − e

2m
SCM . (2.110)

The interaction energy can also be written as

HI = − eB
2m

S cos θ =
e

2m
B · SCM =

−ωc

2
· SCM , (2.111)

i.e., as the scalar product of the spin with respect to the center of mass and the angular velocity
of precession of this spin.
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2.2.11 Spinning Galilei particle with orientation

Another simple example of a spinning particle is the one in which the spin is related only
to the angular variables which describe orientation.

Let us assume now a dynamical system whose kinematical space is X = G/R3
v, where

R3
v ≡ {R3,+} is the 3-parameter Abelian subgroup of pure Galilei transformations. Then,

the kinematical variables are x ≡ (t, r,ρ), which are interpreted as the time, position and
orientation respectively.

The Lagrangian for this model takes the general form

L̃ = T ṫ+R · ṙ +W · ω.

Because of the structure of the exponent (2.247), the gauge function for this system can be
taken the same as before. The general relationship (2.57) leads to W × ω = 0, because the
Lagrangian is independent of u̇, and therefore W and ω must be collinear. According to the
transformation properties of the Lagrangian, the third term W ·ω is Galilei invariant and since
W and ω are collinear, we can take W ∼ ω and one possible Lagrangian that describes this
model is of the form:

L̃ =
m

2

ṙ2

ṫ
+
I

2

ω2

ṫ
. (2.112)

The di�erent Noether's constants are

H =
m

2

(
dr

dt

)2

+
I

2
Ω2, P = mu,

K = mr − P t, J = r × P +W ,

where u = dr/dt is the velocity of point r, and Ω = ω/ṫ is the time evolution angular velocity.
Point r is moving at a constant speed and it also represents the position of the center of mass.
The spin is just the observable S ≡W that satis�es the dynamical equation dS/dt = ω×S = 0,
and thus the frame linked to the body rotates with a constant angular velocity Ω.

The spin takes the constant value S = IΩ, whose absolute value is independent of the
inertial observer and also the angular velocity Ω = ω/ṫ is constant. The parameter I plays the
role of a principal moment of inertia, suggesting a linear relationship between the spin and the
angular velocity, which corresponds to a particle with spherical symmetry. The particle can
also be considered as an extended object of gyration radius R0, related to the other particle
parameters by I = mR2

0.
This system corresponds classically to a rigid body with spherical symmetry where the

orientation variables ρ can describe for instance, the orientation of its principal axes of inertia
in a suitable parameterization of the rotation group. This is a system of six degrees of freedom.
Three represent the position of the center of charge r and the other three ρ, represent the
orientation of a Cartesian frame linked to that point r. Since for this system there is no
dependence on the acceleration, the center of mass and the center of charge will be represented
by the same point.

In the center of mass frame there is no current associated to this particle and therefore it
has neither magnetic nor electric dipole structure. As seen in previous examples, all magnetic
properties seem therefore to be related to the zitterbewegung part of the spin and are absent
in this rigid body-like model.
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RELATIVISTIC PARTICLES

2.3 Relativistic point particle

See the Appendix about the Poincaré group at the end of this chapter for the group notation
used throughout this section.

The kinematical space is the quotient structure X = P/L, where P is the Poincaré group
and the subgroup L is the Lorentz group. Then every point x ∈ X is characterized by the
variables x ≡ (t(τ), r(τ)), with domains t ∈ R, r ∈ R3 as the corresponding group parameters,
b and a, respectively, in such a way that under the action of a group element g ≡ (b,a,v,µ) of
P they transform as:

t′(τ) = γt(τ) + γ(v ·R(µ)r(τ))/c2 + b, γ ≡ (1− v2/c2)−1/2 (2.113)

r′(τ) = R(µ)r(τ) + γvt(τ) +
γ2

(1 + γ)c2
(v ·R(µ)r(τ))v + a, (2.114)

and are interpreted as the time and position of the system. If, as usual, we assume that the
evolution parameter τ is invariant under the group, taking the τ -derivative of (2.113) and (2.114)
we get

ṫ′(τ) = γṫ(τ) + γ(v ·R(µ)ṙ(τ))/c2, (2.115)

ṙ′(τ) = R(µ)ṙ(τ) + γvṫ(τ) +
γ2

(1 + γ)c2
(v ·R(µ)ṙ(τ))v. (2.116)

The velociof the point u = dr/dt transforms between inertial observers as

u′(τ) =
ṙ′

ṫ′
=

R(µ)u(τ) + γv +
γ2

(1 + γ)c2
(v ·R(µ)u(τ))v

γ(1 + v ·R(µ)u(τ)/c2)
. (2.117)

In this way we should obtain the transformation laws of the di�erent time derivatives, like
acceleration and so on.

If from (2.117) we calculate the absolute value of the velocity, this gives rise to:

u′
2
=

u2 − c2

γ2 (1 + v ·R(µ)u(τ)/c2)2
+ c2. (2.118)

In principle, the value of the velocity of a point is unrestricted, but if u < c then u′ < c for
every inertial observer, and the same if u > c, u′ > c and also if u = c it implies that u′ = c.
The relativistic description produces three di�erent kinds of pointlike particles, according to
the value of its velocity, whether the velocity u will be u < c, u = c or u > c, for every inertial
observer. For the cases u = c and u > c it is not possible to �nd an observer at rest with
respecto to the particles, because the group parameter v of the Poincaré grup is restricted to
v < c.

The homogeneity condition of the Lagrangian, in terms of the derivatives of the kinematical
variables, reduces to three the number of degrees of freedom of the system. This leads to the
general expression

L̃ = T ṫ+R · ṙ, (2.119)

where T = ∂L̃/∂ṫ and Ri = ∂L̃/∂ṙi, will be functions of t and r and homogeneous functions of
zero degree of ṫ(τ) and ṙ(τ).
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2.3.1 Free point particle

If the particle is free, the dynamical equations will be invariant under P, and the Lagrangian
will also be invariant because the Poincaré group has no non trivial exponents and the possible
gauge functions associated to this group can be reduced to zero.

From the in�nitesimal point of view, since L̃0(t, r, ṫ, ṙ) depends on these variables which trans-
form according to (2.113-2.116), the di�erent generators of the Poincaré group, when acting on
functions of these variables, are:

H =
∂

∂t
, P = ∇, J = r ×∇+ ṙ ×∇ṙ, K =

r

c2
∂

∂t
+ t∇+

ṙ

c2
∂

∂ṫ
+ ṫ∇ṙ,

like the Galilei case, except the generator of the Lorentz boosts K, which has a di�erent structure
because the in�nitesimal transformation of velocity δv a�ects, not only to the space variables r
and ṙ like the Galilei case, but also to the time variables t and ṫ.

If HL̃0 = 0 and P L̃0 = 0, implies that L̃0 is not a function of t and r. If JL̃0 = 0 implies
that it is a function ṙ2 and also of ṫ and has to be homogeneous of degree 1 in these derivatives.
Finally, if it is invariant under the Lorentz boosts KL̃0 = 0, and therefore(

ṙ

c2
∂

∂ṫ
+ ṫ∇ṙ

)
L̃0 = 0,

which implies that L̃0 is an arbitrary function of c2ṫ2− ṙ2. The condition of homogeneity of degree

1 in these derivatives and that it has dimension of action implies that a possibility is s
√
c2ṫ2 − ṙ2,

with s a parameter of dimensions of mass×velocity, for instance mc.

Because the Lagrangian is invariant under P, the functions T and R transform under the
group P in the form:

T ′ = γT − γ(v ·R(µ)R), (2.120)

R′ = R(µ)R− γvT/c2 + γ2

1 + γ
(v ·R(µ)R)v/c2. (2.121)

We thus see that T and R are invariant under translations and therefore they must be functions
independent of t and r.

The conjugate momenta of the generalized variables qi = ri are pi = ∂L̃/∂ṙi, and conse-
quently Noether's theorem leads to the following constants of the motion, that are calculated
similarly as in the Galilei case except for the invariance under pure Lorentz transformations.
We have now no gauge function and the variations are δt = r · δv/c2, Mi = ri/c

2 and δr = tδv,
Mij = tδij and thus we get:

temporal momentum H = −T, (2.122)

linear momentum P = R = p, (2.123)

kinematical momentum K = Hr/c2 − P t, (2.124)

angular momentum J = r × P . (2.125)

The energy (temporal momentum) and the linear momentum transform as:

H ′(τ) = γH(τ) + γ(v ·R(µ)P (τ)), (2.126)

P ′(τ) = R(µ)P (τ) +
γv

c2
H(τ) +

γ2

(1 + γ)c2
(v ·R(µ)P (τ))v. (2.127)

They transform like the contravariant components of a four-vector Pµ ≡ (H/c,P ). The
observables cK and J are the essential components of the antisymmetric tensor Jµν = −Jνµ =
xµP ν − xνPµ, cKi = J i0 and Jk = ϵkilJ

il/2.
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Taking the τ derivative of the kinematical momentum, K̇ = 0, we get P = H ṙ/c2ṫ = Hu/c2,
where u = ṙ/ṫ is the velocity of the particle and the point r represents both the center of mass
and center of charge position of the particle.

The six conditions P = 0 and K = 0, imply u = 0 and r = 0, so that the system is at
rest and placed at the origin of the reference frame, similarly as in the nonrelativistic case. We
again call this class of observers the center of mass observer.

From (2.126) and (2.127) we see that the magnitude (H/c)2 − P 2 = (H ′/c)2 − P
′2 is a

Poincaré invariant and a constant of the motion of dimensions (mass×velocity)2. Since P 2 =
(H/c)2u2/c2 < (H/c)2, if u < c, and it is de�nite positive. We write this magnitude as m2c2

in terms of a positive number m, the rest mass of the particle. By using the expression of
P = Hu/c2, we get

H = ±mc2(1− u2/c2)−1/2 = ±γ(u)mc2.

We are going to see that the sign of H, is another Poincaré invariant property of the particle

For the center of mass observer, P = 0, and thus H = ±mc2. If H > 0 for the center of mass
observer, then from (2.126) we get that for any other observer, H ′ = γH ≥ H > 0, since γ ≥ 1. If
H < 0, also in this case H ′ = γH ≤ H < 0. The sign of H is another invariant between observers
and therefore an intrinsic property of the particle. If H > 0 the system is called a particle, and
antiparticle if H < 0.

The velocity u < c, otherwise H will be imaginary. If u > c the invariant (H/c)2 − P 2 < 0
and it is not possible to de�ne the rest mass of the system. By substitution of the found
expressions for T and R in (2.119), there are two possible Lagrangians for a point particle of
mass m, characterized by the sign of H

L̃ = ∓mc
√
c2ṫ2 − ṙ2. (2.128)

The system described by the Lagrangian (2.128) with the sign +, has a temporal momentum
H < 0, and represents an antiparticle, while that of sign −, H > 0. Particles and antiparticles
appear more symmetrically in the relativistic formulation.

Expansion of this Lagrangian to lowest order in u/c, in the case of positive H, we get

L̃ = −mc2ṫ+ m

2

ṙ2

ṫ
,

where the �rst term −mc2ṫ that can be withdrawn is just the equivalent to the Galilei internal
energy term−H0ṫ of (2.18). The Lagrangian withH < 0 has as nonrelativistic limit−(m/2)ṙ2/ṫ
which is not obtained in the Galilei case. See section 2.7 to analyze the di�erence between
particles and antiparticles, as far as its interaction properties are concerned.

The spin of this system, de�ned as the angular momentum with respect to the point r, is

S ≡ J − q × P = J − c2

H
K × P = 0, (2.129)

vanishes, so that the relativistic point particle is also a spinless system.

2.4 Relativistic spinning particles

There are three maximal homogeneous spaces of P, all of them at �rst parameterized by
the variables (t, r,u,ρ), where the velocity variable u can be either u < c, u = c or u > c. We
shall call these kinds of particles by the following names: The �rst one, since the motion of the
position of the charge r satis�es u < c, we call a Bradyon, from the Greek term βραδυς ≡ slow.
Bradyons are thus particles for which point r never reaches the speed of light. The second class
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of particles (u = c) will be called Luxons because point r is always moving at the speed of light
for every observer, and �nally those of the third group, because u > c, are called Tachyons,
from the Greek ταχυς ≡ fast.

For the second class we use the Latin denomination Luxons in spite of the Greek one of
photons, because this class of particles will supply the description not only of classical photons
but also a classical model of the electron. This class of models is very important and it has
no nonrelativistic limit. Therefore the models this manifold produce have no nonrelativistic
equivalent. The �rst class corresponds to a kinematical space that is the Poincaré group itself
and produces models equivalent to the ones analyzed in the non-relativistic case. Readers
interested on these models and of tachyons should go through the book by the author. When
quantizing tachyons these models do not describe half integer spin particles. To describe the
classical electron and the photon we shall consider next the case of luxons.

2.5 Luxons

Let us consider those elementary particles whose kinematical space is the manifold X gen-
erated by the variables (t, r,u,ρ) with domains t ∈ R, r ∈ R3, ρ ∈ R3

c as in the previous case,
and u ∈ R3 but now with u = c. Since u = c we shall call this kind of particles Luxons. This
manifold is in fact a homogeneous space of the Poincaré group P, and therefore, according to
our de�nition of elementary particle has to be considered as a possible candidate for describing
the kinematical space of an elementary system. In fact, if we consider the point in this manifold
x ≡ (0, 0,u, 0), the little group that leaves x invariant is the one-parameter subgroup Vu of pure
Lorentz transformations in the direction of the vector u. Then X ∼ P/Vu, is a nine-dimensional
homogeneous space.

For this kind of systems the variables t, r transform according to (2.113) and (2.114),
respectively and the derivatives as in (2.115) and (2.116). For the velocity u the transformation
is obtained from the quotient of (2.116) by (2.115) and is

u′(τ) =

R(µ)u(τ) + γv +
γ2

(1 + γ)c2
(v ·R(µ)u(τ))v

γ(1 + v ·R(µ)u(τ)/c2)
. (2.130)

From here we obtain that

u
′2 =

u2 − c2

γ2 (1 + v ·Ru/c2)2
+ c2,

and thus if u = c for some observer, this implies u′ = c, for any other one, so that the manifold
is a homogeneous space of P.

The general transformation of the orientation variables ρ are obtained from (2.259) but now
the functions F and G, which involve some γ(u) factors, become in�nite and in the limit u→ c
they take the form

ρ′(τ) =
µ+ ρ(τ) + µ× ρ(τ) + F c(v,µ;u(τ),ρ(τ))

1− µ · ρ(τ) +Gc(v,µ;u(τ),ρ(τ))
, (2.131)

where the functions F c and Gc are given now by:

F c(v,µ;u,ρ) =
γ(v)

(1 + γ(v))c2
[u× v + u(v · µ) + v(u · ρ)

+ u× (v × µ) + (u× ρ)× v + (u · ρ)(v × µ)

+ (u× ρ)(v · µ) + (u× ρ)× (v × µ)] , (2.132)
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Gc(v,µ;u,ρ) =
γ(v)

(1 + γ(v))c2
[u · v + u · (v × µ) + v · (u× ρ)

− (u · ρ)(v · µ) + (u× ρ) · (v × µ)] . (2.133)

Since u′ = u = c, the absolute value of the velocity vector is conserved and it means that u′

can be obtained from u by an orthogonal transformation, so that the transformation equations
of the velocity under P, (2.130) can be expressed as:

u′ = R(ϕ)u, (2.134)

where the kinematical rotation of parameter ϕ is

ϕ =
µ+ F c(v,µ;u(τ), 0)

1 +Gc(v,µ;u(τ), 0)
=

µ+ γ
(1+γ)c2

[u× v + u(v · µ) + u× (v × µ)]

1 + γ
(1+γ)c2

[u · v + u · (v × µ)]
. (2.135)

In this case there also exist among the kinematical variables the constraints u = ṙ/ṫ.
Equation (2.131) also corresponds to

R(ρ′) = R(ϕ)R(ρ), ρ′ =
ϕ+ ρ− ϕ× ρ

1− ϕ · ρ
, (2.136)

with so that the three unit vectors e′i which de�ne by columns the rotation matrix R(ρ′), and
ei those which corresponds to the rotation matrix R(ρ), transform with the same rotation as
the velocity u,

e′i = R(ϕ)ei, i = 1, 2, 3,

with the same ϕ in both cases, as in (2.135).
Since the variable u(τ) = c, during the whole evolution, we can distinguish two di�erent kinds
of systems, because, by taking the derivative with respect to τ of this expression u̇(τ) ·u(τ) = 0,
i.e., systems for which u̇ = 0 or massless systems as we shall see, and systems where u̇ ̸= 0
but always orthogonal to u. These systems will correspond to massive particles whose charge
internal motion occurs at the constant velocity c, although their center of mass moves with
velocity below c. This kind of particles are consistent with the analysis performed in the
preamble for elementary objects whose center of charge and center of mass are two di�erent
points.

2.5.1 Massless particles. (The photon)

If u̇ = 0, u is constant and the system follows a straight trajectory with constant velocity,
and therefore the kinematical variables reduce simply to (t, r,ρ) with domains and physical
meaning as usual as, time, position and orientation, respectively. The derivatives ṫ and ṙ
transform like (2.115) and (2.116) and instead of the variable ρ̇ we shall consider the linear
function ω de�ned in (2.35) that transforms under P:

ω′(τ) = R(ϕ)ω(τ), (2.137)

where, again, ϕ is given by (2.135).

In fact, from (2.136), since u̇ = 0, taking the τ -derivative,

Ṙ(ρ′) = R(ϕ)Ṙ(ρ),

the antisymmetric matrix Ω = Ṙ(ρ)RT (ρ) has as essential components the angular velocity ω,

Ω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2.138)
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It transforms as

Ω′ = Ṙ(ρ′)RT (ρ′) = R(ϕ)Ṙ(ρ)RT (ρ)RT (ϕ) = R(ϕ)ΩRT (ϕ),

and this matrix transformation leads for its essential components to (2.137).

For this system there are no constraints among the kinematical variables, and, since u̇ = 0,
the general form of its Lagrangian is

L̃ = T ṫ+R · ṙ +W · ω. (2.139)

Funtions T = ∂L̃/∂ṫ, Ri = ∂L̃/∂ṙi, Wi = ∂L̃/∂ωi, will depend on the variables (t, r,ρ) and are
homogeneous functions of zero degree in terms of the derivatives of the kinematical variables
(ṫ, ṙ,ω). Since ṫ ̸= 0 they will be expressed in terms of u = ṙ/ṫ and Ω = ω/ṫ, which are the
true velocity and angular velocity of the particle respectively.

Invariance of the Lagrangian under P leads to the following transformation form of these
functions under the group P:

T ′ = γT − γ(v ·R(µ)R), (2.140)

R′ = R(µ)R− γvT/c2 + γ2

(1 + γ)c2
(v ·R(µ)R)v, (2.141)

W ′ = R(ϕ)W . (2.142)

They are translation invariant and therefore independent of t and r. They will be functions
of only (ρ,u,Ω), with the constraint u = c. Invariance under rotations forbids the explicit
dependence on ρ, so that the dependence of these functions on ρ and ρ̇ variables is only
through the angular velocity ω.

Noether's theorem gives rise, as before, to the following constants of the motion:

temporal momentum H = −T, (2.143)

linear momentum P = R, (2.144)

kinematical momentum K = Hr/c2 − P t−W × u/c2, (2.145)

angular momentum J = r × P +W . (2.146)

In this case the system has no zitterbewegung term u × U , because the Lagrangian does not
depend on u̇ and U vanishes. The particle, located at point r, is moving in a straight trajectory
at the speed of light and therefore it is not possible to �nd an inertial rest frame observer.
Although we have no center of mass observer, we de�ne the spin as the angular momentum
with respect to the point r by S = J − r × P = W .

If we take in (2.146) the τ -derivative we get dS/dt = P × u. Since P and u are two
non-vanishing constant vectors, then the spin has a constant time derivative. It represents a
particle with a continuously increasing angular momentum. This is not what we understand by
an elementary particle except if this constant dS/dt = 0. Therefore for this system the spin is
a constant of the motion and P and u must be collinear vectors.

Energy (temporal momentum) and linear momentum are in fact the components of a four-
vector and with the spin they transform as

H ′ = γH + γ(v ·R(µ)P ), (2.147)

P ′ = R(µ)P + γvH/c2 +
γ2

(1 + γ)c2
(v ·R(µ)P )v, (2.148)

S′ = R(ϕ)S. (2.149)
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The relation between P and u can be obtained from (2.145), taking the τ -derivative and the
condition that the spin W is constant, K̇ = 0 = −H ṙ/c2 + P ṫ, i.e., P = Hu/c2. If we take
the scalar product of this expression with u we also get H = P · u.

Then, from (2.147) and (2.148), an invariant and constant of the motion, which vanishes, is
(H/c)2 − P 2. The mass of this system is zero. It turns out that for this particle both H and
P are non-vanishing for every inertial observer. Otherwise, if one of them vanishes for a single
observer they vanish for all of them. By (2.149), S2 is another Poincaré invariant property of
the system that is also a constant of the motion.

The �rst part of the Lagrangian T ṫ + R · ṙ = −Hṫ + P · ṙ, which can be written as
−(H − P · u)ṫ = 0, also vanishes. Then the Lagrangian is reduced to the third term S · ω. A
massles particle moving along a straight line at the speed of light, necessarily has to depend on
extra orientation variables, otherwise L̃ = 0, i.e., photons necessarily rotate. The relativistic
formulation forbids the existence of massive point particles moving along a straight line at the
speed of light.

We see from (2.134) and (2.149) that the dimensionless magnitude ϵ = S · u/Sc is another
invariant and constant of the motion, and we thus expect that the Lagrangian will be explicitly
dependent on both constant parameters S and ϵ. Taking into account the transformation
properties under P of u, ω and S, given in (2.134), (2.137) and (2.149) respectively, it turns
out that the spin must necessarily be a vector function of u and ω.

If the spin is not transversal, as it happens for real photons, then S = ϵ Su/c where ϵ = ±1,
and thus the free Lagrangian �nally becomes:

L̃ =

(
ϵ S

c

)
ṙ · ω
ṫ

. (2.150)

From this Lagrangian the temporal momentum is H = −∂L̃/∂ṫ = S · Ω, where Ω = ω/ṫ
is the angular velocity of the particle. The linear momentum is P = ∂L̃/∂ṙ = ϵ SΩ/c, and,
since P and u are parallel vectors, Ω and u must also be parallel, and if the energy is de�nite
positive, then Ω = ϵΩu/c.

This means that the energy H = SΩ. For photons we know that S = ℏ, and thus H = ℏΩ =
hν. In this way the frequency of a photon is the frequency of its rotational motion around the
direction of its trajectory. We thus see that the spin and angular velocity for H > 0 particles
have the same direction, although they are not analytically related, because S is invariant under
P while Ω is not. When we change of inertial observer the spin remains the same while the
frequency experiences the Doppler e�ect.

If the laboratory observer OL sees another inertial observer O moving with velocity v both with
the axes parallel, the relationship between them os given by a boost L(v) and perhaps some space
and time translation. For the relationship between the energy and linear momentum measurements
of a photon only involves the boost L(v), which is the Jacobian of the transformation. If observer
O emits photons of frequency ν, the measurements performed by OL are given by

HL = γH + γv · p, pL = p+ γHv/c2 +
γ2

(1 + γ)c2
(v · p)v.

Since H = hν, p = Hu/c2, for the frequency mesaured in OL we get

νL = γν(1 + v · u/c2)

where u is the velocity of the del photon measured by O. Let us assume that the origin of O
departs from OL. The photons which arrive to OL are those such that v · u = −vc, and the
detected frequency is

νL = γν(1− v/c) = ν

√
1− v/c

1 + v/c
, νL < ν.
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However if OL sees O approaching, the photons which measures are those for which v ·u = vc, and
the detected frequency is larger:

νL = γν(1 + v/c) = ν

√
1 + v/c

1− v/c
, νL > ν.

We say that the Lagrangian (2.150) represents a photon of spin S and polarization ϵ. A set of
photons of this kind, all with the same polarization, corresponds to circularly polarized light,
as has been shown by direct measurement of the angular momentum carried by these photons.

Left and right polarized photons correspond to ϵ = 1 and ϵ = −1, respectively. Energy is
related to the angular frequency H = ℏΩ, and linear momentum to the wave number P = ℏk,
that therefore is related to the angular velocity vector by k = ϵΩ/c. If it is possible to talk
about the `wave-length' of a single photon this will be the distance run by the particle during
a complete turn.

The antiphotons, i.e., those particles for which H < 0, they satisfy H = S ·Ω = p·u < 0 and
therefore the spin and and the angular velocity have opposite direction and the same happens
for the velocity and linear momentum. In any case they have the same energy than the photons
with H > 0. To determine whether a material system absorbs a photon or an antiphoton we
have to measure separately the velocity of the photon and the linear momentum, which have
to be opposite to each other. It seems that the radiation of normal matter produces photons,
because the radiation preasure has the direction of the motion, and thus linear momentum and
velicity are parallel. In the electron-positron interaction, in order to the particles approach to
each other by means of an interchange of a photonic particle, this has to be an antiphoton.
However in the electron-electron interaction the particles separate from each other and they
interchange a photon. See the section 2.7 for the analysis of particles and antiparticles.

The relationship between the di�erent observables for the photon (H > 0) and the antipho-
ton (H < 0) is represented in the �gure 2.7

Figure 2.7: Relative orientation between the di�erent observables u, S, Ω y p, for the
photon H > 0 on the left hand side column and for the antiphoton H < 0 on the right hand
side, for the two possible helicities ϵ = ±1. S = ϵSu/c, p = Hu/c2 = ϵSΩ/c.

If the possible states of a photon are represented in vector form like | sign(H), ϵ >, the states
represented on the left of the �gure are |+,+ > and |+,− >, and those of the right by |−,+ >
and |−,− >, respectively. They are independent and orthogonal states. If the radiation �eld
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is only composed of photons (H > 0), then the classical description of the vector states of the
monochromatic light is given by complex vectors of the two-dimensional complex space C2 and
the di�erent polarized states by the Poincaré sphere, as a convex linear combination of pure
states (See Appendix 3.4). See the section 2.7 for the analysis and detection of antiphotons.

Beth's experiment

Beth's experiment 5 performed in 1936, consists in producing a beam of monocromatic
circularly polarized light of frequency ν, which is sent into a plate attached to a torsion pendulum
(see �gure 2.8). Photons are absorbed by the plate, and therefore energy and linear momentum
are transfered, and also angular momentum. If the power of the beam is P the beam contains
n = P/hν photons per second, all of them with the spin in the same direction. When absorbed,
the angular momentum of the plate J , with respect to the point O, changes with time as
dJ/dt = nℏ per second, so that the torque M of the external forces produced by the torsion of
the pendulum must equilibrate this variation.

Figure 2.8: A monocromatic circularly polarized light beam of intensity n photons per
second, are absorbed by a plate which is in equilibrium by means of a torsion pendulum.
When photons are absorbed, the plate rotates an angle ϕ, to the left or right, according
to the left or right polarization of the beam. This experiment veri�es that all photons of
the beam have the same spin orientation

For a thread of length L, radius a and torsion modulus µ, the torque of the external forces
which produce a rotation of angle ϕ, is:

M = µ
πa4

2L
ϕ.

By measuring the angle ϕ rotated by the plate, one checks in this experiment that M = nℏ,
because each absorbed photon contributes with an angular momentum of value ℏ.

But this Beth's device is also an analyzer of the photon polarization. If the circularly
polarized light beam turns the plate to the right, the beam contains photons with their spins
pointing forward. If the disc rotates left, all the photons of the beam have their spins pointing
backward.

5 R. A. Beth, Mechanical detection and measurement of the angular momentum of light, Phys. Rev. 50, 115
(1936).
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Allen's Experiment

In two photon beams of the same power P the number of photons per unit time n = P/hν
is inversely proportional to the photon frequency ν. If instead of using visible light of frequency
νv ≃ 1015Hz we use light of microwave frequency νm ≃ 109Hz of the same power, we have up
to 106 times more photons available to transfer their angular momentum.

This is the proposal of Allen (1966)6 of using, instead of a torsional pendulum, an electric
dipole of 2.4 mg of mass, inside a resonant cavity with a circularly polarized wave of 9.3 GHz
of frequency and λ =3.22 cm.

Figure 2.9: Resonant cavity at a frequency of 9.3 MHz. A 2.4 mg aluminium needle (in
red) is suspended on a pivot. It is oriented along the direction of a linearly polarized wave
of a maser. Another perpendicular and linearly polarized wave with a phase shift of 90◦

is superposed, so that the needle is under the action of a circularly polarized wave. It
is located at a distance of λ/4 from the bottom so that the e�ect of the re�ected wave
reinforces the torque and the needle turns faster.

The �rst proposal of Allen is to use an aluminium needle on a pivot closer to the end of a
resonant cavity. The size of the needle is half the wave length of the radiation.

A linearly polarized wave with the electric �eld along the direction of the needle will induce
an oscillating electric dipole. This induced electric dipole has a phase shift of π/2 with respect
to the electric �eld, and thus it reaches its maximum when the �eld vanishes. If the wave is
polarized in the transversal direction does not induce any electric dipole. But if we superpose
another linearly polarized wave in the orthogonal direction to the induced electric dipole, with
a phase shift of 90◦ with respect to the previous wave, such that the maximum of this �eld is
reached when the electric dipole is high, both halves of the needle are under opposite forces
and, therefore, this torque produces the rotation of the needle (�gure 2.9).

If the needle is at a distance of λ/4 from the bottom of the cavity where the two linearly
polarized waves are re�ected, this e�ect is reinforced, because if the transversal wave is retarded
90◦ with respect to the parallel wave, its re�ected wave is advanced 90◦ and the angular mo-
mentum of the wave has the same direction as the incident wave. In corpuscular terms, the
incident and re�ected photons both have the spin in the same direction and, when absorbed
they transfer the same amount ℏ of angular momentum to the needle.

In Beth's experiment it is checked numerically that there is a linear relationship between
the number of absorbed photons per unit time n and the torsion torque M of the pendulum.

6P.J. Allen, A radiation torque experiment, Am. J. Phys. 34 1185 (1966)
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In Allen's experiment we do not know the transversal surface of the needle to estimate the
number of photons absorbed per unit time. It is also di�cult to estimate the friction betweeen
the needle and the pivot and also with the air.

To minimize the friction with the pivot, Allen makes use of a new design where the needle
is supended above a liquid drop of phtalate of butile. In both experiments the dipole reaches
a limit velocity of rotation since friction forces increase with the velocity of rotation. It is
mentioned that with a power of 500 mW the needle reaches a velocity of 10 rpm.

We do not know if this experiment has been done with a disc of a de�nite surface, instead of
a needle, attached to the corresponding torsion pendulum, where the absorption of the number
photons will be easier to determine, and therefore the transfer of angular momentum.

2.5.2 Massive particles. (The electron)

If we consider now the other possibility, u̇ ̸= 0 but orthogonal to u, then variables ṫ and ṙ
transform as in the previous case (2.115) and (2.116), but for u̇ and ω we have:

u̇′ = R(ϕ)u̇+ Ṙ(ϕ)u, (2.151)

ω′ = R(ϕ)ω + ωϕ, (2.152)

where the rotation of parameter ϕ is again given by (2.135) and vector ωϕ is:

ωϕ =
γRu× v − (γ − 1)R(u× u̇) + 2γ2(v ·R(u× u̇))v/(1 + γ)c2

γ(c2 + v ·Ru)
. (2.153)

Expression (2.151) is the τ -derivative of (2.134) and can also be written in the form:

u̇′ =
R(ϕ)u̇

γ(1 + v ·R(µ)u/c2)
. (2.154)

Expression (2.152) comes from R(ρ′) = R(ϕ)R(ρ) and taking the τ -derivative of this expression
Ṙ(ρ′) = Ṙ(ϕ)R(ρ) +R(ϕ)Ṙ(ρ), because parameter ϕ depends on τ through the velocity u(τ),
and therefore

Ω′ = Ṙ(ρ′)RT (ρ′) = R(ϕ)ΩRT (ϕ) + Ṙ(ϕ)RT (ϕ).

R(ϕ)ΩRT (ϕ) corresponds to R(ϕ)ω and the antisymmetric matrix Ωϕ = Ṙ(ϕ)RT (ϕ) has as
essential components the ωϕ vector, i.e., equation (2.153).

The homogeneity condition of the Lagrangian leads to the general form

L̃ = T ṫ+R · ṙ +U · u̇+W · ω, (2.155)

where T = ∂L̃/∂ṫ, Ri = ∂L̃/∂ṙi, Ui = ∂L̃/∂u̇i and Wi = ∂L̃/∂ωi, and Noether's theorem
provides the following constants of the motion:

temporal momentum H = −T − (dU/dt) · u, (2.156)

linear momentum P = R− (dU/dt), (2.157)

kinematical momentum K = Hr/c2 − P t− S × u/c2, (2.158)

angular momentum J = r × P + S. (2.159)

In this case the spin S, i.e. the angular momentum with respecto to the point r, is de�ned as
in the Galilei case, by

S = u×U +W = Z +W . (2.160)
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Like in the Galilei case, we also have invariance of dynamical equations under the local
rotations group SO(3)L which a�ect only to the orientation variables without modi�cation of
the angular velocity, like in (2.51). We obtain another three constants of the motion

Local angular Momentum Ti = W · ei, (2.161)

which are the projection on the body axes of the rotative part of the spin W .
Expressions (2.156, 2.157) imply that H/c and P transform like the components of a four-

vector, similarly as in (2.126-2.127), thus de�ning the invariant and constant of the motion
(H/c)2 −P 2 = m2c2, in terms of the positive parameter m which is interpreted as the mass of
the particle.

Observable S transforms as:

S′(τ) = γR(µ)S(τ)− γ2

(1 + γ)c2
(v ·R(µ)S(τ))v +

γ

c2
(v ×R(µ)(S(τ)× u)), (2.162)

an expression that corresponds to the transformation of an antisymmetric tensor Sµν with strict
components S0i = (S × u)i/c, and Sij = ϵijkSk, which transform under the Poincaré group as,

S′µν = Λµ
σ(v,µ)Λ

ν
λ(v,µ)S

σλ, Λ(v,µ) = L(v)R(µ)

If we de�ne the vector k = S×u/H, with dimensions of length, the kinematical momentum
(2.158) can be rewritten as

K = Hq/c2 − P t,

where q = r − k, represents the center of mass position of the particle. The time derivative
of this expression we obtain a linear relationship between H and P as in the case of the point
particle:

P =
H

c2
v, v =

dq

dt

in terms of the velocity of the center of mass v. This implies that again H and P are expressed
in terms of the center of mass velocity and the invariant m, like for the point particle as

H = γ(v)mc2, P = γ(v)mv.

If we call vCM to the center of mass velocity, it transforms among inertial observers like:

v′
CM (τ) =

R(µ)vCM (τ) + γv +
γ2

(1 + γ)c2
(v ·R(µ)vCM (τ))v

γ(1 + v ·R(µ)vCM (τ)/c2)
. (2.163)

Although the Poincaré transformation of the position of the center of mass does not correspond
with the center of mass of the electron in the new reference system, the center of mass velocity
is efectively the transformed of that velocity. If vCM = 0 is the velocity of the center of mass
in the center of mass frame, then the velocity in another frame is v, where v is the velocity of
the center of mass frame for that arbitrary observer.

The spin with respect to the center of mass, is de�ned as usual by

SCM = J − q × P = J − c2

H
K × P , (2.164)

and is a constant of the motion. It takes the form

SCM = S + k × P = S +
1

H
(S × u)× P . (2.165)
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The helicity SCM · P = S · P = J · P , is also a constant of the motion. We can construct
the constant Pauli-Lubanski four-vector

wµ ≡ (P · SCM , HSCM/c) = (P · S, HS/c+ (S × u)× P /c) =
H

c2
(v · SCM , cSCM ), (2.166)

which is expressed for the free particle in terms of constants of the motion and therefore it is
another constant of the motion. Its absolute value −wµwµ = m2c2S2

CM , where SCM is the spin
in the center of mass frame, is another constant of the motion for the free particle. If we accept
the atomic principle it has to take the same value even under some external interaction. It is
expressed in terms of the invariant properties, and therefore intrinsic values, m and SCM of the
particle, where S2

CM is the absolute value squared of the SCM , which in the quantum case is
3ℏ2/4. The absolute value of this spin is not invariant and for an observer which sees the center
of mass moving with velocity v, takes the value:

S′2
CM =

(
c2 − v2

c2 − v2 cos2 ϕ

)
S2
CM ,

where ϕ is the angle between v and SCM .

2.5.3 Motion of the electron in the CM frame

The center of mass frame is de�ned by the conditions P = K = 0. For this class of observers
q = 0 and v = 0, the center of mass is at rest and located at the origin of the reference frame.
The spin S = SCM is constant, H = ±mc2 and from (2.158) we obtain

r = ± 1

mc2
S × u. (2.167)

This is the dynamical equation of the point r for the center of mass observer and this internal
motion takes place on a plane orthogonal to the constant spin S. The scalar product with u
gives r · dr/dt = 0, and therefore the radius of this motion (the zitterbewegung) is constant.
Taking the time derivative of both sides of (2.167), we get mc2u = ±(S × du/dt), because
the spin is constant in this frame, which implies that u and S are orthogonal. If we derivate
again this expression we conclude that du/dt and S are also orthogonal. If we introduce in
(2.167) this expression of u and taking into account the orthogonality between the spin and the
acceleration, we get for the particle and antiparticle,

d2r

dt2
+ ω2r = 0, ω =

mc2

S
. (2.168)

which is exactly the same equation of the Preamble (2) and of the nonrelativistic particle (2.75)
when the center of mass is at rest. Taking in (2.167) the cross product with u and using the
orthogonality of the spin with the velocity we arrive to

S = ±mu× r. (2.169)

Since S and u = c are constant, the motion is a circle of radius R0 = S/mc. For the
electron we take in the quantum case S = ℏ/2, and the radius is ℏ/2mec = 1.93 × 10−13 m.,
half Compton's wave length of the electron. The frequency of this motion in the C.M. frame
is ν = 2mec

2/h = 2.47 × 1020 s−1, and ω = 2πν = 1.55 × 1021 rad s−1. The ratio of this
radius to the so-called classical radius Rcl = e2/8πε0mec

2 = 1.409 × 10−15 m, is precisely
Rcl/R0 = e2/2ε0hc = 1/136.97 = α, the �ne structure constant. The radius of the electron,
estimated from high energy e−e scattering in the experiments performed at the LEP in CERN,
give the value Re < 10−19 m. The analysis of the measurement of the gyromagnetic ratio g in
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a Penning trap gives a smaller value Re < 10−22m.7 If we compare with the Bohr radius, the
estimated radius of a circular trajectory of an electron of the Hydrogen atom, with an orbital
angular momentum L = 1, is RB = 4πϵ0ℏ2/mee

2, RB/R0 = 2/α ≈ 274.

There are two di�erent types of particles, as far as the sign of H is concerned. In both the
energy is mc2. It is called particle the object with H > 0 and antiparticle with H < 0. The
kinetics of this is opposite to the other once the spin direction is �xed. Particle and antiparticle
have the time reversed motion of each other. Motions of this sort, in which the particle is
moving at the speed of light, can be found in early literature, but the distinction between the
motion of center of charge and center of mass is not su�ciently clari�ed. 8, 9

Nevertheless, in the model we are analyzing, the idea that the electron has a size of the
order of the zitterbewegung radius is a plausible macroscopic vision but it is not necessary to
maintain any longer, because the only important point from the dynamical point of view is the
center of charge position, whose motion completely determines the dynamics of the particle. In
this form, elementary particles, the kind of objects we are describing, look like extended objects.
Nevertheless, although some kind of related length can be de�ned, they are dealt with as point
particles with orientation because the physical attributes are all located at the single point r.
The dynamics of equation (2.167) for the particle, can be represented in �gure 2.10, and for
the antiparticle in �gure 2.11, where we have separated the two contributions to the total spin
S = Z +W , related respectively to the orbital and rotational motion.

Figure 2.10: Motion of the center of charge of the electron in the center of mass frame.
The (anti)orbital part Z = u × U of the spin has the direction of S while the part W , in
the direction of the angular velocity ω, has the opposite direction. The spin is orthogonal
to the velocity of the center of charge and to the separation between CC and CM.

7H. Dehmelt, A single atomic particle forever �oating at rest in free space: New value for Electron radius,
Physica Scripta T22, 102-110 (1988)

8 M. Mathisson, Acta Phys. Pol. 6, 163 (1937); 6, 218 (1937)
9 M.H.L. Weyssenhof, Acta Phys. Pol. 9, 46 (1947). M.H.L. Weyssenhof and A. Raabe, Acta Phys. Pol. 9,

7 (1947); 9, 19 (1947).
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2.5.4 The spin and the center of mass position for an arbitrary observer

If we take in (2.158) the τ -derivative and the scalar product with the velocity u we get the
Poincaré invariant relation:

H = P · u+
1

c2
S ·
(
du

dt
× u

)
. (2.170)

In this way, the temporal momentum or Dirac's Hamiltonian, is the sum of two terms,
one translational, related to P , which vanishes for the center of mass observer, and another
rotational and related to S, which never vanishes. In the quantum case it will be related to
H = cP · α + βmc2, in terms of the α and β Dirac matrices. Since cα is usually interpreted
as the local velocity operator u of the electron, 10 we have H = P ·u+ βmc2 and this relation
suggests the identi�cation

β =
1

mc4
S ·
(
du

dt
× u

)
.

Here all magnitudes on the right-hand side are measured in the center of mass frame. We shall
come back to this relation after quantization of this system.

We are going to express the general form of the spin observable and the position of the
center of mass in terms of the kinematics of the center of charge position. The transformation
equation for the function S, (2.162) can also be written as

S′ = γ(1 + v ·R(µ)u/c2)R(ϕ)S, (2.171)

and therefore, from this expresion and (2.154), S · u̇ = S′ · u̇′ which vanish in any reference
frame, and also from (2.134), S′ · u′ = γ(1 + v · R(µ)u/c2)S · u, which also vanishes. Since
the center of charge spin is orthogonal to u and u̇, for the center of mass observer, it is also
orthogonal to u and u̇ for any other inertial observer.

An alternative method of verifying this is to take the time derivative in (2.158) and (2.159), and
thus

Hu− c2P − dS

dt
× u− S × du

dt
= 0,

dS

dt
= P × u,

i.e.,

S × du

dt
= (H − u · P )u.

and a �nal scalar product with S, leads to (H − u · P )u · S = 0. The �rst factor does not vanish
since the invariant H2/c2 −P 2 = m2c2 is positive de�nite and if H = u ·P , then (u ·P )2/c2 −P 2

with u ≤ c is always negative, then S ·u = 0. If we take the time derivative of this last expression,
with the condition that dS/dt is orthogonal to u, we obtain S · u̇ = 0. The observable S has
always the direction of the non-vanishing vector u̇× u for positive temporal momentum particles
and the opposite direction for antiparticles of negative temporal momentum.

If we take the time derivative of the kinematical momentum (2.158) for the free particle, we
get

Hu− c2P +
dS

dt
× u+ S × du

dt
= 0.

Taking into account that dS/dt = P × u and making a cross product with du/dt we get

S =

(
H − u · P
(du/dt)2

)
du

dt
× u, (2.172)

and q = r − S × u/H leads for the center of mass position to

q = r +
c2

H

(
H − u · P
(du/dt)2

)
du

dt
. (2.173)
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Figure 2.11: Motion of the center of charge of the positron in the center of mass frame.
The part W of the spin of the positron is oriented opposite to the angular velocity. The
part Z has the usual orbital direction and therefore the same direction as S.

The expression (2.172) of the spin with respect to the center of charge can be rewritten as

S =
(Hṫ− P · ṙ)

u̇2 u̇× u.

Because from (2.134) we know that u′ = R(ϕ)u and from (2.154) that u̇′ = R(ϕ)u̇/γ(1 + v ·
R(µ)u/c2), it implies that u̇′2 = u̇2/γ2(1 + v · R(µ)u/c2)2 and the numerator (Hṫ − P · ṙ) is

Poincaré invariant, and from this we obtain the previous expression for the transformation of S,

(2.171).

From the geometrical point of view, since the vector u is tangent to the trajectory of the center
of charge and its derivative is orthogonal to it, the spin with respect to the center of charge
(2.172) has the direction opposite to the binormal and in the same direction for the antiparticle.

The center of mass, with respect to the center of charge, is in the direction of the acceleration
for the particle and antiparticle. The point r makes a central motion around the center of mass.
If from (2.173) we express the acceleration in terms of r− q, the spin with respect to the point
r can also be written as

S = −H
c2
(r − q)× u = ∓γ(v)m(r − q)× u, (2.174)

which enhances its antiorbital character for the particle H > 0 and of orbital orientation for
the antiparticle. It is expressed in terms of the two characteristic points r and q and their
corresponding velocities u and v and of the positive parameter m, the mass of the particle.
Because the total spin has two parts S = Z +W , this means that for the antiparticle the part
Z has the direction of S while the rotational part W has the opposite orientation, and therefore
this part W is opposite to the angular velocity as depicted in the �gure 2.11. This feature is
the same than for photons and antiphotons. For photons the spin is of rotational nature like
W , and has the same direction than the angular velocity while for antiphotons has the opposite
orientation.

10 J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley Reading, MA (1967).
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The spin with respect to the center of mass can be obtained from S, from the mechanical
linear momentum for the particle P p = γ(v)mv, in the form,

SCMp = Sp + (r − q)× P p = −γ(v)m(r − q)× (u− v),

while for the antiparticle P a = −γ(v)mv

SCMa = Sa + (r − q)× P a = γ(v)m(r − q)× (u− v).

From these expressions can be checked that for the free particle the spin SCM is a conserved
magnitude. In fact, for the free particle v = const., the time derivative of of r− q is u− v and
the derivative of u has the direction of the vector r − q. The spin S, in the case of the free
particle is not conserved and its time derivative leads us to dS/dt = P ×u, for the particle and
antiparticle.

Under interaction we have,

dS

dt
= P × u− 1

c2
γ(v)2

(
v · dv

dt

)
S,

dSCM

dt
= (r − q)× F − 1

c2
γ(v)2

(
v · dv

dt

)
S,

where the last term is of the order S/c2, and can be neglected, the dynamical equation of S is
the same than in the free case and the time variation of SCM is the torque with respect to the
CM of the external forces de�ned at the CC.

The �nal expressions of both spins are

S = ∓γ(v)m(r − q)× u, SCM = ∓γ(v)m(r − q)× (u− v), (2.175)

where the expression of SCM has the same structure, with the sign included and without the
factor γ(v), than the non-relativistic spin.

Since P = Hv/c2 for both particle and antiparticle, the expression of the center of mass
position (2.173) is

q = r +

(
c2 − v · u
(du/dt)2

)
du

dt
. (2.176)

We see that the particle has mass and spin, and the center of charge moves in circles at the
speed of light in a plane orthogonal to the spin, for the center of mass observer. All these
features are independent of the particular Lagrangian of the type (2.155) we can consider.

2.5.5 Poincaré invariance of Dirac's Hamiltonian

The expression which gives rise to Dirac's equation is Poincaré invariant and it takes the
same form in any reference frame. In fact, if from (2.170) we take all terms to the left hand
side and multiply by ṫ, we get

ṫH − ṙ · P − 1

c2
S · (u̇× u) = 0.

The �rst part ṫH − ṙ · P = ẋµPµ = ẋ
′µP ′

µ, with ẋ
µ ≡ (cṫ, ṙ) and Pµ ≡ (H/c,P ), is Poincaré

invariant. The term which contains the spin we see from (2.134), (2.154) and (2.171), that the
velocity u, acceleration u̇ and spin S, respectively, transform:

u′ = R(ϕ)u, u̇′ =
R(ϕ)u̇

γ(1 + v ·R(µ)u/c2)
, S′ = γ

(
1 +

v ·R(µ)u
c2

)
R(ϕ)S,

and we deduce that
S′ · (u̇′ × u′) = S · (u̇× u).
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2.5.6 Dirac analysis

To end this section and with the above model of the electron in mind, it is convenient to
remember some of the features that Dirac 11 obtained for the motion of a free electron. Let
point r be the position vector on which Dirac's spinor ψ(t, r) is de�ned. When computing the
velocity of point r, Dirac arrives at:

a) The velocity u = i/ℏ[H, r] = cα, is expressed in terms of α matrices and writes, `. . . a
measurement of a component of the velocity of a free electron is certain to lead to the result
±c'.

b) The linear momentum does not have the direction of this velocity u, but must be related
to some average value of it: . . . `the x1 component of the velocity, cα1, consists of two parts,
a constant part c2p1H−1, connected with the momentum by the classical relativistic formula,
and an oscillatory part, whose frequency is at least 2mc2/h, . . .'.

c) About the position r: `The oscillatory part of x1 is small, . . . , which is of order of
magnitude ℏ/mc, . . .'.

d) When analyzing, in his original 1928 paper, 12 the interaction of the electron with an
external electromagnetic �eld, after performing the square of Dirac's operator, he obtains two
new interaction terms:

eℏ
2mc

Σ ·B +
ieℏ
2mc

α ·E, (2.177)

where the electron spin is written as S = ℏΣ/2 and

Σ =

(
σ 0
0 σ

)
,

in terms of σ-Pauli matrices and E and B are the external electric and magnetic �elds, re-
spectively. He says, `The electron will therefore behave as though it has a magnetic moment
(eℏ/2mc)Σ and an electric moment (ieℏ/2mc)α. The magnetic moment is just that assumed
in the spinning electron model' (Pauli model). `The electric moment, being a pure imaginary,
we should not expect to appear in the model.'

However, if we look at our classical model, we see that for the center of mass observer, there
is a non-vanishing electric and magnetic dipole moment

d = ek =
e

mc2
S × u, µ =

e

2
k × dk

dt
= − e

2m
Z, (2.178)

where S is the total spin and Z = −mk × dk/dt is the zitterbewegung part of spin. The time
average value of d is zero, and the average value of µ is the constant vector µ.

e) In his book 13 analyzes the dynamics of the spin S = ℏσ/2 and arrives to the conclusion
that

dS

dt
= p× cα = p× u,

for the free and interacting electron. This di�erential equation is the same as the dynamical
equation of the spin with respect to the center of charge. Dirac's spin operator represents the
angular momentum of the electron with respect to the center of charge.

This classical model gives rise to the same kinematical prediction as the nonrelativistic model
described in Sec.2.2.7. If the charge of the particle is negative, the current of Fig.2.10 produces
a magnetic moment that necessarily has the same direction as the spin. If the electron spin and
magnetic moments are antiparallel, then we need another contribution to the total spin, di�erent
from the zitterbewegung. All real experiments to determine very accurately the gyromagnetic

11 P.A.M. Dirac, The Principles of Quantum mechanics, Oxford Univ. Press, 4th ed. Oxford (1967).
12 P.A.M. Dirac, Proc. Roy. Soc. Lon. A117, 610 (1928).
13 P.A.M. Dirac, The principles of Quantum Mechanics, Oxford 4th edition 1958, p. 266



120 CHAPTER 2. EXAMPLES OF SPINNING PARTICLES

ratio are based on the determination of precession frequencies, but these precession frequencies
are independent of the spin orientation. However, the di�culty to separate electrons in a Stern-
Gerlach type experiment, suggests to perform polarization experiments in order to determine
in a direct way whether spin and magnetic moment for elementary particles are either parallel
or antiparallel. We have suggested a couple of plausible experiments to determine the relative
orientation between the spin and magnetic moment of free electrons and also for electrons in
the outer shell of atoms14, which are considered in section 4.2.7.

Another consequence of the classical model is that it enhances the role of the so-called
minimal coupling interaction jµAµ. The magnetic properties of the electron are produced by
the current of its internal motion and not by some possible distribution of magnetic dipoles, so
that the only possible interaction of a point charge at r with the external electromagnetic �eld
is that of the current jµ, associated to the motion of point r, with the external potentials.

2.6 The dynamical equation of the spinning electron

We have seen that for relativistic particles with u = c and u and u̇ orthogonal vectors, the
position vector r moves in circles according to the dynamical equation (2.167) in the center
of mass frame, as depicted in �gure 2.10. But this solution is independent of the particular
Lagrangian we choose as an invariant function of the kinematical variables and their derivatives,
which accomplish with this orthogonality u · u̇ = 0, requirement. We are going to analyze this
dynamical equation for any arbitrary inertial observer.15

As mentioned in the Preamble, let us consider the trajectory r(t), t ∈ [t1, t2] followed by
a point for an arbitrary inertial observer O. Any other inertial observer O′ is related to the
previous one by a transformation of a kinematical group such that their relative space-time
measurements of any space-time event are given by

t′ = T (t, r; g1, . . . , gr), r′ = R(t, r; g1, . . . , gr),

where the functions T and R de�ne the action of the kinematical group G, of parameters
(g1, . . . , gr), on space-time. Then the description of the trajectory of that point for observer O′

is obtained from

t′(t) = T (t, r(t); g1, . . . , gr), r′(t) = R(t, r(t); g1, . . . , gr), ∀t ∈ [t1, t2].

If we eliminate t as a function of t′ from the �rst equation and substitute into the second we
shall get

r′(t′) = r′(t′; g1, . . . , gr). (2.179)

Since observer O′ is arbitrary, equation (2.179) represents the complete family of trajectories of
the point for all inertial observers. Elimination of the r group parameters among the function
r′(t′) and their time derivatives will give us the di�erential equation satis�ed by the trajectory
of the point. This di�erential equation is invariant by construction because it is independent of
the group parameters and therefore independent of the inertial observer. If G is the Poincaré
group, it is a ten-parameter group so that we have to work out in general up to the fourth
derivative to obtain su�cient equations to eliminate the ten group parameters. Therefore the
order of the di�erential equation is dictated by the number of parameters and the structure of
the kinematical group.

14M. Rivas, Are the electron spin parallel or antiparallel vectors?, ArXiv:physics/0112057.
15M. Rivas, The dynamical equation of the spinning electron, J. Phys. A, 36, 4703, (2003),

ArXiv:physics/0112005.
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2.6.1 The relativistic spinning electron

Let us assume the above electron model. For the center of mass observer O∗, the trajectory
of the center of charge of the electron is contained on the XOY plane and if we write in vector
form, and with units R0 = ℏ/2mc, ω0 = 2mc2/ℏ

r∗(t∗) = R0

 cosω0t
∗

sinω0t
∗

0

 ,
dr∗

dt∗
= c

− sinω0t
∗

cosω0t
∗

0

 ,

For the center of mass observer O∗ this point satis�es the di�erential equation

d2r∗(t∗)

dt∗2
= −ω2

0r
∗(t∗). (2.180)

Since the center of charge is moving at the speed of light for the center of mass observer O∗ it
is moving at this speed for every other inertial observer O. Now, the relationship of space-time
measurements between the center of mass observer O∗ and any arbitrary inertial observer O, is
given by:

t(t∗; g) = γ (t∗ + v ·R(α)r∗(t∗)) + b,

r(t∗; g) = R(α)r∗(t∗) + γvt∗ +
γ2

1 + γ
(v ·R(α)r∗(t∗))v + a.

The velocity of the point for the observer O

r(1) =
dr

dt
=
dr/dt∗

dt/dt∗
,

and the same method for the remaining derivatives.
With the shorthand notation for the following expressions:

K(t∗) = R(α)r∗(t∗), V (t∗) = R(α)
dr∗(t∗)

dt∗
=
dK

dt∗
,

dV

dt∗
= −ω2

0K,

B(t∗) = v ·K/c2, A(t∗) = v · V /c2 = dB

dt∗
,

dA

dt∗
= −ω2

0B,

where A is dimensionless and B of dimension of time. K has dimension of length and V of
velocity. In particular

dt

dt∗
= γ(1 + v · V /c2) = γ(1 +A),

and
K2 = R2

0, V 2 = c2, K · V = 0, K · v = c2B, V · v = c2A.

By making use of the relation (2.180) and its derivatives, we get the following expressions for
the subsequent time derivatives of the point r in the arbitrary reference frame O:

r(1) =
1

γ(1 +A)

(
V +

γ

1 + γ
(1 + γ + γA)v

)
(2.181)

r(2) =
ω2
0

γ2(1 +A)3

(
−(1 +A)K +BV +

γ

1 + γ
Bv

)
, (2.182)

r(3) =
ω2
0

γ3(1 +A)5
(
−3ω2

0B(1 +A)K − (1 +A− 3ω2
0B

2)V +



122 CHAPTER 2. EXAMPLES OF SPINNING PARTICLES

γ

1 + γ
(A(1 +A) + 3ω2

0B
2)v

)
(2.183)

r(4) =
ω4
0

γ4(1 +A)7
(
(1 +A)(1− 2A− 3A2 − 15ω2

0B
2)K−

(7 + 4A− 3A2 − 15ω2
0B

2)BV −
γ

1 + γ
(1− 8A− 9A2 − 15ω2

0B
2)Bv

)
. (2.184)

From these derivatives we obtain(
r(1) · r(1)

)
= ω2

0R
2
0 = c2,

(
r(1) · r(2)

)
= 0, (2.185)(

r(2) · r(2)
)

= −
(
r(1) · r(3)

)
=

ω4
0R

2
0

γ4(1 +A)4
, (2.186)(

r(2) · r(3)
)

= −1

3

(
r(1) · r(4)

)
=

ω5
0R

2
0

γ5(1 +A)6
(2ω0B), (2.187)(

r(3) · r(3)
)

=
ω6
0R

2
0

γ6(1 +A)8
(
1−A2 + 3ω2

0B
2
)
, (2.188)(

r(2) · r(4)
)

=
ω6
0R

2
0

γ6(1 +A)8
(
−1 + 2A+ 3A2 + 9ω2

0B
2
)
, (2.189)(

r(3) · r(4)
)

=
4ω7

0R
2
0

γ7(1 +A)10
(
1 +A+ 3ω2

0B
2
)
(ω0B). (2.190)

Since ω0B is dimensionless, the dimensionality of these terms is contained in the coe�cients
ωk
0R

2
0, i.e., L

2T−k.
By inspection of equations (2.181-2.184) we see that the four time derivatives of the position

vector can be expressed as a linear combination of the three vectors V , K y v, where the �rst
two vectors are orthogonal and the third is a constant vector which, in general, it is not a linear
combination of the other two:

v = r(1) − 3Bγ(1 +A)r(2) +
γ2(1 +A)3

ω2
0

r(3), (2.191)

V =
γA

1 + γ
r(1) +

3γ2B

1 + γ
(1 + γ + γA)(1 +A)r(2) − γ3(1 +A)3

(1 + γ)ω2
0

(1 + γ + γA) r(3)(2.192)

K =
γB

1 + γ
r(1) +

γ2(1 +A)

(1 + γ)ω2
0

[3ω2
0B

2γ − (1 + γ)(1 +A)]r(2) − γ4B(1 +A)3

(1 + γ)ω2
0

r(3).(2.193)

It is clear that the three derivatives r(i), i = 2, 3, 4, can be expressed as a linear combination of
the three vectors V , K and v. If we de�ne

d1 = γ(1 +A)r(1), d2 =
γ2(1 +A)3

ω2
0

r(2), d3 =
γ3(1 +A)5

ω2
0

r(3), d4 =
γ4(1 +A)7

ω4
0

r(4),

we get the relation:
(1− 2A− 3A2 + 3ω2

0B
2)d2 − 6Bd3 + d4 = 0,

which in terms of the derivatives r(i), becomes

(1− 2A− 3A2 + 3ω2
0B

2)r(2) − 6Bγ(1 +A)2r(3) +
1

ω2
0

γ2(1 +A)4r(4) = 0, (2.194)

and represents the Poincaré invariant di�erential ecuation which satis�es the position of the
center of charge, in any inertial reference frame.
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From equations (2.186)-(2.188) we can express the magnitudes A, B and γ in terms of these
scalar products between the di�erent time derivatives (r(i) · r(j)), i, j = 2, 3. The constraint
that the velocity is c implies that all these and further scalar products for higher derivatives
can be expressed in terms of only three of them. The expression of the coe�cients A, B and γ,
in terms of the di�erent scalar products of these time derivatives is:

1 +A =
8(r(2) · r(2))5/2/R0

4(r(2) · r(2))5/2/R0 + 4(r(2) · r(2))(r(3) · r(3))− 3(r(2) · r(3))2
, (2.195)

ω0B =
4(r(2) · r(2))5/4(r(2) · r(3))/R1/2

0

4(r(2) · r(2))5/2/R0 + 4(r(2) · r(2))(r(3) · r(3))− 3(r(2) · r(3))2
, (2.196)

γ =
4(r(2) · r(2))5/2/R0 + 4(r(2) · r(2))(r(3) · r(3))− 3(r(2) · r(3))2

8(r(2) · r(2))11/4/(cR1/2
0 )

. (2.197)

with R0 = c/ω0 and therefore all terms in the numerator and denominator have the same
spacetime dimensions.

We thus arrive to:

r(4) − 3(r(2) · r(3))
(r(2) · r(2))

r(3) +

(
2(r(3) · r(3))
(r(2) · r(2))

− 3(r(2) · r(3))2

4(r(2) · r(2))2
− (r(2) · r(2))1/2

)
r(2) = 0. (2.198)

It is a fourth order ordinary di�erential equation which contains as solutions motions at the
speed of light. In fact, if (r(1) · r(1)) = c2, then by derivation we have (r(1) · r(2)) = 0 and the
next derivative leads to (r(2) · r(2)) + (r(1) · r(3)) = 0. If we take this into account and make
the scalar product of (2.198) with r(1), we get (r(1) · r(4)) + 3(r(2) · r(3)) = 0, which is another
relationship between the derivatives as a consequence of |r(1)| = c.

Let us go to compare with the most general di�erential equation of a point in three dimen-
sional space given in the Preamble (6),

r(4) −
(
2κ̇

κ
+
τ̇

τ

)
r(3) +

(
κ2 + τ2 +

κ̇τ̇

κτ
+

2κ̇2 − κκ̈
κ2

)
r(2) + κ2

(
κ̇

κ
− τ̇

τ

)
r(1) = 0,

where the dots over κ and τ represent time derivatives. The di�erential equation for the center
of charge of the electron describes a helical motion helicoidal because the term in the �rst
derivative r(1), is lacking. This implies, according to the mentioned result in the Preamble, that
there exists a constant relation between curvature and torsion. In fact, if the coe�cient of r(1)

is zero, this implies that κ̇/κ = τ̇ /τ , and therefore the coe�cient of r(3) has to be −3κ̇/κ. Since
the curvature κ = |d2r/ds2| = (r(2) · r(2))1/2/c2, in terms of the time derivatives and taking
another time derivative, we get,

κ̇ =
1

c2
(r(2) · r(3))

(r(2) · r(2))1/2
,

3κ̇

κ
=

3(r(2) · r(3))
(r(2) · r(2))

,

which is in fact the coe�cient of r(3) in (2.198).
Because in terms of the arc length used as a parameter, and in terms of the three Frenet-

Serret unit vectors,

r(1) = t, r(2) = κn, r(3) = −κ2t+ κ̇n+ κτb,

it implies that
(r(3) · r(3))
(r(2) · r(2))

= κ2 + τ2 +

(
κ̇

κ

)2

,
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and the coe�cient of r(2), if we consider the relationship between curvature and torsion is

κ2 + τ2 + 3

(
κ̇

κ

)2

− κ̈

κ
=

(r(3) · r(3))
(r(2) · r(2))

+ 2

(
κ̇

κ

)2

− κ̈

κ
,

and since
κ̈

κ
=

(r(3) · r(3)) + (r(2) · r(4))
(r(2) · r(2))

− (r(2) · r(3))2

(r(2) · r(2))2
,

where the scalar product (r(2) · r(4)) can be expressed in terms of the other three. If we add
the terms (2.186)-(2.188), this coe�cient is

(r(2) · r(4)) = 1

R0
(r(2) · r(2))3/2 − 2(r(3) · r(3)) + 15(r(2) · r(3))2

4(r(2) · r(2))

2

(
κ̇

κ

)2

− κ̈

κ
=

(r(3) · r(3))
(r(2) · r(2))

− 3(r(2) · r(3))2

4(r(2) · r(2))2
− 1

R0
(r(2) · r(2))1/2,

and we �nally obtain the coe�cient of the derivative r(2).
If we select as a boundary condition a velocity |r(1)(0)| ̸= c, this di�erential equation also

contains solutions in which the point is not moving at the constant velocity c. But if |r(1)(0)| = c,
then the solution satis�es |r(1)(t)| = c, for any time t.

2.6.2 The center of mass

The center of mass position is de�ned by

q = r +
1

ω2
0

γ2(1 +A)3r(2) = r +
2(r(2) · r(2)) r(2)

(r(2) · r(2))3/2/R0 + (r(3) · r(3))− 3(r(2) · r(3))2

4(r(2) · r(2))

. (2.199)

in such a way that its time derivative represents the velocity v of the origin of the observer
frame O∗ with respect to O. In fact, its time derivative is

q(1) = r(1) +
1

ω2
0

γ2(1 +A)3r(3) +
1

ω2
0

3γ2(1 +A)2(−ω2
0B)

γ(1 +A)
r(2) = v,

i.e., expression (2.191) because dA/dt∗ = −ω2
0B and we have to divide by dt/dt∗ = γ(1 + A).

We can check that q and q(1) vanish for the center of mass observer.
If we take the next time derivative

q(2) =
1

1 +A

(
1− 2A− 3A2 + 3ω2

0B
2
)
r(2) − 6Bγ(1 +A)r(3) +

1

ω2
0

γ2(1 +A)3r(4) = 0,

which is another form of the dynamical equation of the free particle (2.194) y (2.198).
Because

(q − r)2 =
1

ω4
0

γ4(1 +A)6(r(2) · r(2)),

q(1) · r(1) = c2 +
1

ω2
0

γ2(1 +A)3(r(3) · r(1)) = c2 − 1

ω2
0

γ2(1 +A)3(r(2) · r(2))

by (2.186) and thus
c2 − q(1) · r(1)

(q − r)2
=

ω2
0

γ2(1 +A)3
.
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which is the inverse of the coe�cient of r(2) in the de�nition of q. Then, the fourth order
dynamical equation (2.198) for the position of the charge can also be rewritten here as a system
of two second order di�erential equations for the positions q and r

d2q

dt2
= 0,

d2r

dt2
=
c2 − v · u
(q − r)2

(q − r) , (2.200)

with v = q(1) and u = r(1), i.e., a free motion for the center of mass and a kind of central
motion for the charge around the center of mass.

If we consider the general expression for the center of mass obtained in (2.173), because
P = Hv/c2, it can also be written as

q = r +

(
c2 − v · u
(du/dt)2

)
du

dt
, ⇒ du

dt
=
d2r

dt2
=

(du/dt)2

c2 − v · u
(q − r)

which when compared with (2.200) we obtain the relation

c2 − v · u =

∣∣∣∣dudt
∣∣∣∣ |q − r|, or

∣∣∣∣dudt
∣∣∣∣ = c2 − v · u

|q − r|
=
c2

R
,

because the acceleration is always normal, and where R is the curvature radius of the trajectory
of the center of charge. Thus, the separation between the center of mass and center of charge
satis�es

|q − r| = R
(
1− v · u

c2

)
.

This separation is not constant. If we start with the electron at rest and boost it in the direction
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Figure 2.12: Projection on the plane XOY of the motion of the center of charge (blue)
and center of mass (red) of a free electron with v/c = 0.2. The trajectory on the left,
the electron is boosted on the zitterbewegung plane and the spin is orthogonal to this
trajectory and the separation between CC and CM is not constant. The trajectory on the
right corresponds to an electron polarized with the spin pointing in the forward direction.
Here the separation between both points is constant. Both motions have a spatial period
of value d = vγ(v)T0 =1.28255, in these units.

orthogonal to the zitterbewegung plane, then v · u = v2 and in this case the trajectory is a
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helix of constant curvature and torsion and the separation is constant, R0, which is related to
the constant curvature radius by

R = R0γ(v)
2.

In any other situation this v · u is not constant and the separation oscillates. For instance, if
we boost the electron with a velocity v contained on the zitterbewegung plane, the trajectory
of the center of charge is �at and in units R0 = 1, and v/c = 0.2, we get the picture on the
left of the �gure 2.12. We see that the separation oscillates between |q − r| = 0.8R0 and
|q − r| = 1.2R0. In fact, in these units the internal period is T0 = 2πR0/c = 2π, for the center
of mass observer. For the laboratory observer this period is T = γ(v)T0, during this time the
center of mass moves a distance d = vγ(v)T0 = 1.28255 in these units. We see this is the spatial
period of the above �gure. The trajectory on the right, is produced if the electron is boosted
in the direction orthogonal to the zitterbewegung plane and the spin is pointing forward. The
spatial periodicity is exactly the same and the separation between the center of mass and center
of charge remains constant.

For the non-relativistic electron we get in the low velocity case v/c → 0 and |q − r| = R0,
the equations of the Galilei case

d2q

dt2
= 0,

d2r

dt2
= ω2

0(q − r). (2.201)

a free motion for the center of mass and a harmonic motion around q for the position of the
charge, of constant frequency ω0 = c/R0.
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Figure 2.13: Projection on the plane XOY , of the motion of the CC and CM, with velocities
v/c=0.2,0.3,0.4 y 0.5. Remark that the relative separation of the CM oscillates between
(1− v/c)R0 and (1 + v/c)R0, for this spin orientation.

In the �gure 2.13 is represented the motion of the CC and CM on the plane XOY for four
di�erent velocities, in which we appreciate that the relative separation between these centers
oscillates in the interval between (1 − v/c)R0 and (1 + v/c)R0. The wavelength (the distance
followed by the CM during a complete turn of the CC) of these motions are, respectively 1.28255,
1.97597, 2.74221 and 3.6276. In the �gure 2.14 the same motions as before but with the CM
velocity perpendicular to the zitterbewegung plane. In this case the separation between these
centers is constant.
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Figure 2.14: Projection on the plane XOZ, of the motion of the CC and CM, with velocities
v/c=0.2,0.3,0.4 and 0.5. Remark that the relative separation between the CC and the CM
is constant, but the length followed by the CM during a turn of the CC is the same as in
the previous �gure.

The �gure 2.15 represents a three-dimensional picture, of the motion of the CC and CM
when the CM velocity v is oriented an angle of 30◦ with respect to the zitterbewegung plane.
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Figure 2.15: Motion of the CC and CM where the velocity of the CM v/c =0.1 and it
is oriented 30◦, with respect to the zitterbewegung plane. The separation |q − r| is not
constant, but this vector q − r is always orthogonal to the velocity vector of the center of
charge u.
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2.6.3 Interaction with some external �eld

In the most general situation, the Lagrangian which describes an interacting electron is of
the form

L̃ = L̃m(u, ṫ, ṙ, u̇,ω) + L̃I(t, r, ṫ, ṙ), (2.202)

where the free Lagrangian L̃m is related to the mechanical properties of the electron, its mass
m and spin SCM , is independent of t and r and the dependence of the orientation ρ and ρ̇ is
through the dependence on ω. For the interaction Lagrangian L̃I , there is no dependence on
u̇ and ω, because according to the atomic principle m and SCM cannot be modi�ed by any
interaction, and therefore the functions which de�ne the spin U = ∂L̃/∂u̇, and W = ∂L̃/∂ω,
must come from only of the mechanical part L̃m. It is in the part L̃I where the interactive
properties of the particle are contained. In the time evolution description Lm = Lm(u,a,Ω)
where a is the acceleration of the point r, Ω = ω/ṫ and LI = −eϕ(t, r)+eA(t, r) ·u, which only
depends on the charge of the particle e and the external potentials. The dynamical equations
of the three degrees of freedom r, are

− d

dt

(
∂Lm

∂u

)
+
d2

dt2

(
∂Lm

∂a

)
+
∂LI

∂r
− d

dt

(
∂LI

∂u

)
= 0.

The part related to Lm is reduced to −dPm/dt, where Pm is the mechanical linear momen-
tum while the part related to LI supplies the Lorentz force, de�ned at the charge position r.
Separating the time derivative of the linear momentum to the left hand side, we get

dPm

dt
= F , (2.203)

while the de�nition of the center of mass remains the same,

d2r

dt2
=
c2 − v · u
(q − r)2

(q − r) . (2.204)

This equation also comes from the de�nition of the spin with respect to the center of charge (2.174)

S = −H
c2

(r − q)× u.

In the de�ntion of S = u × U + W only the functions U and W appear, and these mechanical
properties are not modi�ed by the interaction because L̃I does not depend on u̇ and on ω. If the
spin S is not modi�ed by the interaction, this means that in the above de�nition, the function H
represents the mechanical temporal momentum Hm, which is also unmodi�ed by the interaction,
because its de�nition comes from the Lagrangian L̃m, and therefore the de�nition of the center of
mass

q − r =
u× S

Hm
,

which leads to the equation (2.204), remains the same under interaction.

But the mechanical linear momentum is written in terms of the center of mass velocity as
P = mγ(v)v, so that the free dynamical equations (2.200) in the presence of an external �eld
have been replaced by (2.203) and (2.204). We are going to modify (2.203),

dPm

dt
= mγ(v)

dv

dt
+mγ(v)3

(
v · dv

dt

)
v

c2
= F ,

and taking the scalar product with v, it gives

mγ(v)3
(
v · dv

dt

)
= F · v
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and leaving the highest order derivative dv/dt = d2q/dt2 on the left hand side, we get the
di�erential equations which describe the evolution of the center of mass and center of charge
of a spinning electron, under the action of an external electromagnetic �eld and in any inertial
reference system:

d2q

dt
=

e

mγ(v)

[
E + u×B − 1

c2
v ([E + u×B] · v)

]
, (2.205)

d2r

dt
=

c2 − v · u
(q − r)2

(q − r) . (2.206)

where

v =
dq

dt
, u =

dr

dt
,

with the constraint |u| = c. We can compare these relativistic equations with the non-relativistic
ones of the Galilei particle (2.84) and (2.85). For the other three degrees of freedom the same
dynamical equation holds (2.52)

∂Lm

∂ρ
− d

dt

(
∂Lm

∂(dρ/dt)

)
= 0,

dW

dt
= Ω×W . (2.207)

because the dependence on these orientation variables is through Ω and the interaction La-
grangian LI is independent of them.

From equation (2.206), if we take the scalar product of both members with (q−r), it gives:

(q − r) · du
dt

= c2 − v · u.

On the other side

d

dt
(q · u− r · u) = v · u+ q · du

dt
− c2 − r · du

dt
= 0,

and the function (q− r) ·u is a �rst integral of the system. If we take again the scalar product
with u in both sides of (2.206), we see that this �rst integral vanishes because u · du/dt = 0.
The velocity vector u is always orthogonal to the vector q − r.

2.6.4 Boundary conditions

The di�erential equations for the center of charge r of a spinning particle (2.198) are ordinary
di�erential equations of fourth order. To single out a solution we have two possibilities. From
the variational point of view we have to supply the values of the kinematical variables r(t1) and
u(t1) at the initial instant t1 and also the values of r(t2) and u(t2) at the �nal time t2. If what
we want is to single out a unique solution by giving boundary values at the initial time t1, we
have to give the values of r(t1), u(t1), a(t1) and w(t1), of the position, velocity, acceleration
and jerk, respectively, at the initial time t1, i.e., the values of the variables ri up to third order
derivatives at that time. It seems that we need to provide 12 initial values, but they are a
smaller number because u(t1) = c and u(t1) · a(t1) = 0, and these two constraints reduce to 10
the number of initial independent values.

However, according to (2.205) and (2.206), the fourth order di�erential equations for the
variable r have been separated into a system of second order di�erential equations for the
variables q and r, of the center of mass and center of charge, respectively. Therefore, to obtain
a solution in terms of the boundary conditions at the initial time we have to supply the values
of the r(t1), u(t1), q(t1) and v(t1), of the positions and velocities of both points, evaluated at
t1. This has the advantage that we shall use as a boundary condition the center of mass velocity
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of the electron. When preparing the experiment we can estimate the value of the electron linear
momentum and therefore its center of mass velocity. We shall also give the initial location of
the center of mass q and therefore the initial values of r and u should be expressed in terms of
the initial spin orientation. This initial spin orientation could be controlled by means of some
external magnetic �eld.

Let us assume that for the center of mass observer the spin of the electron is along OZ axis
as is depicted in the �gure 2.16 with the center of mass at the origin in this frame. The center
of charge is located at a point of coordinates (R0, 0, 0), along the OX axis. For this observer
the values at the initial time of position, velocity and acceleration are:

r(0) = R0

 1
0
0

 , u(0) = c

 0
−1
0

 , a(0) = cω0

−10
0

 ,

Figure 2.16: The electron in the CM reference system, with the spin along OZ axis. The
position of the CC on the XOY plane is �xed by the phase ψ.

If at the initial time the center of charge is at a phase ψ and the spin orientation is changed
by the zenithal angle θ and azimuthal angle ϕ, since the rotation matrices are

ROZ(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 ,

ROY (θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , ROZ(ϕ) =

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


the rotated initial variables are r0 = ROZ(ϕ)ROY (θ)ROZ(ψ)r(0), and the same for the remain-
ing ones, and thus

r0 = R0

 cos θ cosϕ cosψ − sinϕ sinψ
cos θ sinϕ cosψ + cosϕ sinψ

− sin θ cosψ

 , u0 = c

 cos θ cosϕ sinψ + sinϕ cosψ
cos θ sinϕ sinψ − cosϕ cosψ

− sin θ sinψ

 ,

a0 = −cω0

 cos θ cosϕ cosψ − sinϕ sinψ
cos θ sinϕ cosψ + cosϕ sinψ

− sin θ cosψ

 ,
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because the relative rotation has been already performed in the center of mass frame. Any
other equivalent observer will be related to the center of mass observer by means of a Poincaré
transformation, written as x′ = T (b)T (d)L(v)x, without any rotation which has also been
performed in the center of mass frame. It is the composition of a boost or Lorentz transformation
L(v) with a relative velocity v, which becomes for observer O′ the velocity of the center of mass
of the particle, followed by a spatial translation T (d) and a time translation T (b), and thus we
have 10 essential parameters which characterize the initial boundary variables. The time and
space variables for observer O′ are

t′0 = γ
(
t0 +

v · r0
c2

)
+ b, r′0 = r0 + γvt0 +

γ2

1 + γ

(v · r0)v
c2

+ d,

where b is the time translation, d the space translation and v the relative velocity of O, as
measured by O′, and therefore, the center of mass velocity of the particle. If we consider that
the initial time to integrate the system, corresponds to time t′0 = 0 in this reference frame, this
corresponds to γt0 = −γv ·r0/c2− b, for the center of mass observer, so that the initial position
of the center of charge at the laboratory frame is at t′0 = 0,

r′0 = r0 −
γ

1 + γ

(v · r0)v
c2

− bv + d.

For the other variables is

u′
0 =

u0 + γv + γ2

(1+γ)c2
(v · u0)v

γ(1 + v · u0/c2)
, (2.208)

a′
0 =

(1 + v · u0/c
2)a0 − (v · a0/c

2)u0 − γ
(1+γ)c2

(v · a0)v

γ2(1 + v · u0/c2)3
, (2.209)

These boundary conditions contain information of the velocity v of the center of mass of the
electron. If they are interpreted as boundary conditions at initial time t′0 = 0, of the system of
equations (2.205) and (2.206), it means that we know r′0, u

′
0, v

′
0 = v and we need still to know

q′0, the initial position of the center of mass.
If we consider that the center of mass position given in (2.173) with H = γmc2, and

P = γmv, we get

q = r +

(
c2 − v · u
(du/dt)2

)
du

dt
,

and therefore the boundary condition for the center of mass in the laboratory frame will be

q′0 = r′0 +
c2 − v · u′

0

a′
0
2 a′

0,

in terms of the position, velocity and acceleration of the center of charge. From the expressions
of r0 and a0 we see that a0 = −(ω0c/R0)r0 = −ω2

0r0. Taking the squared of a′
0

a′
0
2
=

ω4
0R

2
0

γ4(1 + v · u0/c2)4
,

From the expression of u′
0, and by multiplying with v the terms

c2 − v · u′
0 =

c2

γ2(1 + v · u0/c2)
,

c2 − v · u′
0

a′2
0

a′
0 =

1

ω2
0

γ2(1 + v · u0/c
2)3a′

0

and therefore the boundary condition for the center of mass position, is

q′0 = r′0 +
1

ω2
0

γ2(1 + v · u0/c
2)3a′

0 =
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= r0 −
γ

1 + γ
(v · r0/c2)v − bv + d− (1 + v · u0/c

2)r0 + (v · r0/c2)u0 +
γ

1 + γ
(v · r0/c2)v,

i.e.,

q′0 =
(v · r0)u0 − (v · u0)r0

c2
− bv + d =

1

c2
v × (u0 × r0)− bv + d. (2.210)

As a summary, to characterize the boundary conditions at the initial time t′0 = 0, in the
laboratory reference system, we have to give the values of the positions and velocities of the CC
and CM, respectively

r′0 = r0 −
γ

1 + γ

(v · r0)v
c2

− bv + d, u′
0 =

u0 + γv + γ2

(1+γ)c2
(v · u0)v

γ(1 + v · u0/c2)
, (2.211)

q′0 =
1

c2
v × (u0 × r0)− bv + d v′

0 = v, (2.212)

and where the magnitudes r0, u0 are those magnitudes measured in the center of mass reference
frame.

When we �x t′0 = 0, and that the CM is located at the origin in the centre of mass reference
frame, we are using six boundary conditions, the three components of the velocity of the CM in
the laboratory frame, the initial phase ψ and the spin orientation θ, ϕ for the CM observer. For
particles leaving from a di�erent point that the origin and at a di�erent time we have to use
the 3 components of the initial displacement d and the initial time displacement b. We have up
to 10 boundary conditions, as a result that we have two constraints u = c and u · a = 0.

In general, the initial CM position given above, although for the center of mass observer is
located at the center of the zitterbewegung motion, for the laboratory observer is contained in
the zitterbewegung plane, and is depicted in the �gure 2.17 where the distance to the center
is v sin θ in dimensionless units. From here we see that if v is orthogonal to the ziterbewegung
plane, v · r0 = v · u0 = 0, and the CM is at the origin and the separation with the CC is
constant, as was analyzed in the section 2.6.2.

Figure 2.17: Initial position of the CM when the velocity v is at an angle θ with the direction
orthogonal to the zitterbewegung plane. The separation is perpendicular to the vectors v
and u0 × r0 and of value O−CM = v sin θ in these dimensionless units. It is independent of
the initial CC position.

In the �gure 2.13, since θ = 90◦, we see that the CM is displaced to the left of the central
position, in a direction perpendicular to the velocity v, at the distances v/c = 0.2, 0.3, 0.4 and
0.5.
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In the pictures 2.18, we represent the plane motion on the plane XOZ of the CC and CM
when the spin is orthogonal to the velocity v, θ = ϕ = 90◦, with various initial positions of the
CC phase. In all cases the CM initial position is the same, but not the CC position.
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Figure 2.18: Projection on the XOY plane, of the CC and CM motion, with velocity
v/c = 0.2, θ = ϕ = 90◦ and the initial phase ψ = 0, 90◦, 180◦, 270◦. In all cases the initial CC
position is di�erent, but that of the CM is the same, at a distance v/c sin θ =-0.2 from the
origin.

2.6.5 Natural units

We have a natural unit of velocity c and also a spatial scale factor R0, the radius of the
zitterbewegung for the center of mass observer. If we de�ne the dimensionless magnitudes
r = R0r̃, t̃ = ω0t, with ω0 = c/R0, this means that

u =
dr

dt
= R0

dr̃

dt̃
ω0 = c

dr̃

dt̃
,

du

dt
= c

d2r̃

dt̃2
ω0 =

c2

R0

d2r̃

dt̃2
.

and the di�erential equation (2.206) in natural units becomes

d2r̃

dt̃2
=

1− ṽ · ũ
(q̃ − r̃)2

(q̃ − r̃), (2.213)

where now 0 ≤ ṽ < 1 And ũ = 1. For the equation (2.205) in natural units, we arrive to

c2

R0

d2q̃

dt̃2
=

e

mγ
[E + ũ×Bc− ṽ (E + ũ×Bc) · ṽ]

and making use of the expression R0 = ℏ/2mc, we get:

d2q̃

dt̃2
=

A

γ(ṽ)
[E + ũ×Bc− ṽ (E + ũ×Bc) · ṽ], A =

eℏ
2m2c3

= 3.778 · 10−19 CKg−1m−1s2

(2.214)
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where the external �elds E and B, are expressed in the International System of Units, and are
de�ned at avery instant of the laboratory frame at the position of the center of charge r and
the physical parameter A is only for the electron.

The 12 boundary conditions in the natural system of units are:

r̃′0 = r̃0 −
γ

1 + γ
(ṽ · r̃0)ṽ − b̃ṽ + d̃, ũ′

0 =
ũ0 + γṽ + γ2

(1+γ)(ṽ · ũ0)ṽ

γ(1 + ṽ · ũ0)
, (2.215)

q̃′0 = (ṽ · r̃0)ũ0 − (ṽ · ũ0)r̃0 − b̃ṽ + d̃, ṽ′
0 = ṽ, (2.216)

where
b̃ = ω0b, d̃ = d/R0,

being b and d in the International System of Units and γ ≡ γ(ṽ).

Mott Scattering

Mott scattering is the interaction of an electron with a gold nucleus, simmilar to Rutherford
scattering between a charged point particle with another charged point particle at the origin,
but now by considering that the electron has spin. The gold nucleus has a size of order 10−14m,
electric charge Ze, and produces an external Coulomb �eld

E =
Ze

4πϵ0

r

r3
=

Ze

4πϵ0R2
0

r̃

r̃3
.

in natural units. Because in this frame we only have electric �eld, (B = 0), and by substituting
in the dynamical equation this expression of E, instead of the constant A for the electron we
have

A′ =
Ze2ℏ

2m2c3(4πϵ0)R2
0

=
2Ze2

4πϵ0ℏc
= 2Zα,

where α is the �ne structure constant α ≈ 1/137. Finally, under the electrostatic �eld of the
nucleus, this dynamical equation is:

d2q̃

dt̃2
=

2Zα

γ(ṽ)

[
r̃

r̃3
− ṽ

(
r̃ · ṽ
r̃3

)]
.

If the nucleus is located at the origin of the laboratory frame we have to use di�erent values for
the initial position d̃ in natural units and di�erent orientation angles ψ, θ, ϕ.

2.6.6 Invariant properties

If we accept the atomic principle, the intrinsic mechanical properties of the electron are
not a�ected by any interaction. If Hm and Pm represent the mechanical energy (temporal
momentum) and mechanical linear momentum, respectively, (this is the meaning of the subindex
m), they satisfy for the free particle the property

H2
m − c2Pm = m2c4. (2.217)

We also know that Pm = Hmv/c2, where v is the velocity of the center of mass. This implies
that both mechanical properties can always be written as Hm = γ(v)mc2 and Pm = γ(v)mv,
in terms of the center of mass velocity.

For the free particle they also satisfy the equation (2.170) which de�nes Dirac's Hamiltonian,
and which involves the spin with respect to the center of charge:

Hm = u · Pm +
1

c2
S ·
(
du

dt
× u

)
(2.218)
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However, from the interacting particle Lagrangian (2.202) the total temporal momentum and
linear momentum are de�ned as

H = −T − u · dU
dt

= Hm + eϕ(t, r), P = R− dU

dt
= Pm + eA(t, r).

Therefore for the interacting particle, in terms of the external potentials, the following expres-
sions equivalent to (2.214) and (2.215) are satis�ed.

(H − eϕ(t, r))2 − c2(P − eA(t, r))2 = m2c4, (2.219)

H − eϕ(t, r) = u · (P − eA(t, r)) +
1

c2
S ·
(
du

dt
× u

)
(2.220)

where H and P are the total momenta and in terms of the external potencials ϕ and A. In
the quantum case (2.216) and (2.217) they will supply us with the interacting Klein-Gordon
equation and interacting Dirac's equation, respectively, equations which are satis�ed by the
wavefunction of the electron.

If we know the dynamical equation of the momentum Pm as given in (2.203), taking the
time derivative in (2.214) we get

2Hm
dHm

dt
− 2c2Pm ·

dPm

dt
= 0,

dHm

dt
= v · F (t, r),

i.e., dHm = F · dq, the variation of the mechanical energy is the work of the external force
de�ned at the center of charge r, along the trajectory of the center of mass q.

2.7 Particles and antiparticles

The most general Lagrangian of an interacting particle is written as

L̃ = L̃0 + L̃I ,

where L̃0 represents the free Lagrangian and L̃I that part that gives rise to the interaction.
The mechanical invariant properties of the particle, which are not modi�ed by the inter-

action, come from the free Lagrangian L̃0. These properties are related to the temporal mo-
mentum Hm and linear momentum Pm and the spin with respect to the center of charge
S = u × U + W = Z + W . Because the interacting Lagrangian L̃I , cannot modify the def-
inition of the two functions U and W , the spin structure remains unmodi�ed, according to
the atomic principle. In the relativistic context and for the particle whose center of charge is
moving at the speed of light c, these observables satisfy the invariant relation,

Hm − Pm · u =
1

c2
S ·
(
du

dt
× u

)
.

For the mechanical observables Hm and Pm, coming from the part L̃0, we also have the
relation

(Hm/c)
2 − P 2

m = m2c2,

where m is a positive observable which is interpreted as the mass of the particle. Between these
mechanical observables there exist the relation,

Pm = Hmv/c2

where v represents the velocity of the center of mass of the particle. This implies that

Hm = ±γ(v)mc2, Pm = ±γ(v)mv.



2.7. PARTICLES AND ANTIPARTICLES 137

The relativistic formalism predicts the existence of two kinds of material systems of the same
positive mass m, but the magnitude Hm can either be positive or negative. For the mechanical
linear momentum Pm, the two possibilities one in the direction of the center of mass velocity
or in the opposite direction, respectively. The �rst object is called particle, while it is called
antiparticle in the second case. The di�erence is that if the free Lagrangian for the �rst object
is L̃0, the free Lagrangian for the second is −L̃0.

As far as the internal structure of the motion of the kinematical variables, implies that, once
the spin direction is �xed, the center of charge motion for the particle, is antiorbital while it
is orbital for the antiparticle. The unmodi�ed mechanical properties Hm, Pm and S, coming
from the mechanical free Lagrangian L̃0, change their sign when derived from −L̃0, because all
functions T , R, U and W also change their sign.

For the part L̃I takes the general form,

L̃I = −eϕ(t, r)ṫ+ eA(t, r) · ṙ,

where the constant e represents the charge of the particle and its sign is undetermined. For the
antiparticle

L̃∗
I = −e∗ϕ(t, r)ṫ+ e∗A(t, r) · ṙ,

where e∗ is the charge of the antiparticle and ϕ and A the external potentials.
For the particle, from L̃p = L̃0 + L̃I , we get

dPm

dt
= e (E + u×B) , Pm = γ(v)mv,

d(γ(v)mv)

dt
= e (E + u×B) ,

while for the antiparticle, from L̃a = −L̃0 + L̃∗
I , we arrive to

dPm

dt
= e∗ (E + u×B) , Pm = −γ(v)mv,

d(γ(v)mv)

dt
= −e∗ (E + u×B) ,

where E = −∇ϕ − ∂A/∂t and B = ∇×A. If under the same external electromagnetic �eld,
the acceleration of the center of mass of the particle is opposite to the acceleration of the
antiparticle, then −e∗ = −e, and both objects will have the same charge. This last equation
for the antiparticle will be rewritten as,

d

dt
(γ(v)mv) = −e (E + u×B) .

We can de�ne the mechanical linear momentum always in the same direction as the velocity,
which implies that the observable Hm should be de�nite positive, and the two kinds of particles,
of the same positive mass, will be di�erent by the di�erent sign of their charges, and they will
be described by the Lagrangians

L̃p = L̃0 − eϕ(t, r)ṫ+ eA(t, r) · ṙ,

L̃a = L̃0 + eϕ(t, r)ṫ− eA(t, r) · ṙ,

which corresponds simply to a change e by −e, and where the free common part L̃0 is that
Lagrangian which leads to a positive Hm > 0 and Pm = Hmv/c2. In any case the sign of the
particle is unde�ned.

Because the dynamical equations derived from L̃a And from −L̃a are exactly the same,
we can have two possible equivalent interpretations of the di�erences between particle and
antiparticle. One is that both elementary objects have the same mass and charge but their
mechanical properties Hm and Pm are opposite. The usual interpretation is that they have
opposite charges, which brings us to adopt that the sign of the energy must necessarily be
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positive and that the linear momentum has the direction of the velocity of the center of mass.
The requirement of the positive de�nitness of the energy could be related to the arrow of time.
See the ananlysis performed in the section 6.10.3 about active and passive transformations of
the kinematical group.

This method is valid to establish the dynamical equations of the center of mass of the particle
or antiparticle. For the internal motion we have for both kinds of objects the equation

d2r

dt2
=
c2 − v · u
(q − r)2

(q − r),

which is just the de�nition of the center of mass position

q = r +
c2

Hm

(
Hm − Pm · u

(du/dt)2

)
du

dt
.

The expression of the spin S in terms of these variables will be for the particle

Sp =

(
Hm − Pm · u

(du/dt)2

)
du

dt
× u, or Sp = −γ(v)m(r − q)× u

while for the antiparticle

Sa =

(
Hm − Pm · u

(du/dt)2

)
u× du

dt
, or Sa = γ(v)m(r − q)× u,

with Hm = γ(v)mc2 and Pm = γ(v)mv. This makes a distinction between particle and
antiparticle, as far as the internal motion is concerned, because the spin S, has the direction of
the angular velocity for the antiparticle and in the opposite direction for the particle.

Experimentally we know that the pair electron-positron, if its total angular momentum is
zero, anhilates with the emision of two photons, with opposite spins and total energy 2mc2. In
this process it is conserved the energy, linear momentum, angular momentum and the electric
charge. If the initial state is of spin 1, then the desintegration is with the emission of three or
more photons. The usual interpretation that for massive particles that the antiparticle is an
object of opposite charge is consistent with this experimental result.

In the case of photons, because they do not have electric charge we can think that they are
their own antiparticle. This is the usual interpretation. But the same conclusion will be reached
for neutrinos, because they are chargeless and they could be their own antiparticles. However,
the antineutrinos have opposite lepton number and they are di�erent than the neutrinos. The
conservation of the leptonic number requieres they should be di�erent. However, from the
mechanical point of view S and ω have the same direction for the photon and opposite direction
for the antiphoton. This physical di�erence can be determined by the interaction with a crystal
lattice. If the optics of antiphotons is the same than that for photons, they will be no di�erence
between them. But it is possible that the interaction with the lattice, although they do not
have charge, could be related to the di�erent relative orientation af the angular momentum and
angular velocity.

Since photons do not have charge, this interpretation that the linear momentum has the
direction of the velocity and the charge is opposite, implies that photons and antiphotons,
being chargeless, they are the same particle. However, with the �rst interpretation there will
be no ambiguity, because the de�nition of the mechancial properties H and p will be opposite
to each other. Today we know that in electrodynamics and chromodynamics, the interaction
mechanisms between material particles (fermions of spin 1/2), is the interchange of virtual
bosons of spin 1 (photons, gluons, massive bosons W±, Z0). In the electromagnetic case, if
the interchange is mediated exclusively by photons, the phenomenon of atraction will not take
place.
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Figure 2.19: Interaction of an electron and a positron by the interchange of a virtual photon.
Both particles separate from each other.

Let us assume, as is depicted in the �gure 2.19, that an electron and a positron, both of
positive mechanical energy Hm and linear momentum in the direction of the velocity of its
center of mass, interact by the interchange of a virtual photon, whihc is emited by the electron
in 1 and being absorbed by the positron in 2. Due to the interchange of linear momentum and
energy, th electron gets a linear momentum p′

1 = p1 − k, while the positron ends with a linear
momentum p′

2 = p2+k, and the two particles reppel each other. This process will be the same
if the virtual photon is emitted by the positron.

Figure 2.20: Interaction of an electron and a positron by the interchange of a virtual
antiphoton. Both particles atract to each other.

Because we know experimentally that particles of opposite electric charge atract to each
other, the mechanism should be that of the �gure 2.20, with the interchange of an antiphoton,
emited from 1 by the electron, with linear momentum k, in the opposite direction to its velocity,
beind absorbed at 2 by the positron. Now we get again p′

1 = p1 − k, and the result is that the
electron approaches to the positron. The same interpretation will be obtained if the emision of
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the virtual antiphoton is produced by the positron.
In an atom, the existence of bound states of electrons with respect to a positively charged

nucleus, implies a process of electromagnetic atraction. If this process is mediated by the
interchange of virtual bosons between the nucleus and the electrons, these bosons necessarilly
have to be antiphotons.

2.7.1 Detection of cosmic antimatter

One of the projects to detect antimatter in the universe and to verify the existence of anti-
matter galaxies should consist in the detection of antimatter atoms in cosmic rays. Antiprotons
and positrons are already detected, but they could be produced at the Sun or in stars of our
galaxy.

Figure 2.21: Measurement of the positron/electron ratio performed by the detector of the
AMS02. The grey band is the prediction of this ratio by astrophysicists, based on models
of interaction and transport phenomena in our Galaxy. The measured ratio (red data),
increases above 10 GeV.

The simplest antimatter structure should be the nucleus of antihelium, formed by two an-
tiprotons and two antineutrons, i.e., an antialpha particle. This idea lead to the construction
of a spectrometer yo measure these objects. It is called Alpha Magnetic Spectrometer, and
the AMS02 was installed at the ISS (International Space Station) on May 2011, at a mean
altitude of 350 Km. Up to 2013 had detected around 25× 109 counts of electrons and positrons
in the range from 0.5 to 350 GeV, being positrons 4 × 105, while observing an increase in the
positron/electron ratio in the range from 10 to 250 GeV, with no signi�cative di�erence along
time and in the direction of observation. But they found an unexplained excess of high-energy
positrons in Earth-bound cosmic rays, in Samuel Ting's words, director of the project 16. In
Decembre 2016 they inform that a small ratio of antihelium-3 in around 109 Helium nuclei had
been detected in that year.

Recently we have analyzed the behaviour of antiphotons with mirrors and have suggested the
possibility of detecting antimatter galaxies with the design of a telescope to focus antiphotons17.

16S. Coutu, Physics 6, 40 (2013); AMS Collaboration Phys. Rev. Lett. 110, 141102 (2013)
17M.Rivas Considerations about photons and antiphotons, Indian J. Phys. 96 583-591 (2022).
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2.8 Appendix: Rotation group

We are going to describe geometrically a rotation of value α around an arbitrary axis,
described by the unit vector u. We interpret α > 0 when the rotation is clockwise when looking
along the direction given bu the unit vector u. If α < 0, the rotation is in the opposite sense,
i.e., anticlockwise. Then, according to the �gure 2.22, an arbitary point, characterized by the
vector r, will be rotated to the position given by the vector r′,

Figure 2.22: Active rotation of value α of the vector r, around the axis OA

From the vector point of view, r′ = OA + AD + DC, where DC is orthogonal to the
vectors OA and AB.

OA = (r · u)u

AD = AB cosα = (r − (r · u)u) cosα

DC = |AC| sinαn

where n is a unit vector orthogonal to u and r, and therefore

n =
u× r

|u× r|

but |u× r| = |AC| = |AB|, |AD| = |AC| cosα, |DC| = |AC| sinα, and thus

DC = u× r sinα

Finally, the vector r′ is expressed as:

r′ = r cosα+ (r · u)u(1− cosα) + u× r sinα, (2.221)

and its Cartesian components:

x′i = xi cosα+ (xkuk)ui(1− cosα) + εijkujxk sinα =

= (δik cosα+ uiuk(1− cosα) + εijk uj sinα)xk = R(α,u)ikxk.

This linear expression of x′i in terms of xk is expressed in terms of the matrix R(α,u)ik. If we
de�ne the vector α = αu, then every rotation is parameterized by this three vector,

R(α)ik = δik cosα+
αiαk

α2
(1− cosα) + εijk

αj

α
sinα (2.222)
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where the �rst index i represents the row and the second the column k, of the matrix which
characterize this rotation. If we �x the vector u, then any positive rotation of value α produces
tha same rotation as another of value 2π− α in the opposite direction. In order to single out a
unique vector α, for each rotation, we have to restrict ourselves to the set of points of a sphere
of radius π, (see �gure 2.23) but with the constraint that opposite points on the surface of
the sphere, which represent rotations of value π, represent the same rotation and have to be
identi�ed as the same point, from the topological point of view.

Figure 2.23: Doubly connected and compact manifold of the group SO(3)

This feature means that if we try to join two points of this manifold by a curve of points in it,
there are two types of paths. These two types cannot be reduced to each other by deformation.
There are paths passing through the surface and paths which do not cross the surface. This
implies that the rotation group is characterized by a doubly connected, compact manifold.

Because the determinant of R(α) = 1, then the rotation group is isomorphic to the group
SO(3), of 3× 3 orthogonal matrices of unit determinant (Special Orthogonal group).

Other alternative parameterizations are obtained by de�ning a three vector ϕ = sin(α/2)u
and the rotation matrix is given by:

R(ϕ)ik = (1− 2ϕ2) δik + 2ϕiϕk + 2
√
1− ϕ2 εijkϕj . (2.223)

Now the group manifold is a unit sphere with opposite points on its surface, identi�ed.
Another interesting parameterization is given by the vector ρ = tan(α/2)u, where the

matrix is
R(ρ)ik =

1

1 + ρ2
[(1− ρ2) δik + 2ρiρk + 2εijkρj ] (2.224)

where the manifold is the compact space R3, where compacti�cation is done by adding to R3 the
points of in�nity in any direction, when the additional condition that opposite points represent
the same rotation. We shall denote this manifold by R3

c , to enhance its compact character.

Exercise: Given the orthogonal matrix:  0 1 0
0 0 1
−1 0 0


determine what kind of transformation produces.
Solution: Since the determinant is −1 it is a rotation followed by a space inversion. The trace
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is zero, and the value of the rotation is 0 = 1 + 2 cosα, α = 2π/3, around an axis with director
cosines proporcional to u ∼ (1,−1, 1).

Exercise: Calculate, by using two di�erent parameterizations of the rotation group, the rotation
matrix, in the passive sense, of value α = 30◦ around an axis of director cosines proportional to
(−1, 2, 2).

2.8.1 Normal or Canonical parameterization of the group SO(3)

Any rotation matrix satis�es RTR = 1. From this we have nine relations between the nine
components of the matrixR. However only six of these relations are independent. If we consider
that any rotation matrix is formed, by raws or columns, as a set of three orthogonal unit vectors
ei, i = 1, 2, 3 the above relations mean that these three vectors are orthogonal to each other
and of modulus 1. The feature that the determinant is +1, represents that these vectors, taken
in correlative order form a direct triad of unit vectors (anticlockwise). If the determinant is −1,
they form a clockwise triad. Then only three values determine each rotation, and therefore the
rotation group is of dimension 3. The part of the group continuously connected with the unit
element, SO(3), as a Lie group, has a Lie algebra of dimensiion 3. Let R = I+ ϵM an arbitary
rotation close to the unit rotation, with ϵ in�nitesimal andM a matrix to be determined. Since
RT = R−1 = I+ ϵMT = I− ϵM , implies that MT = −M and therefore M is an arbitrary 3× 3
antisymmetric matrix. It is called the generator of the in�nitesimal rotation.

The Lie algebre of SO(3), is the real vector space of real 3 × 3 antisymmetric matrices. A
basis of this vector space can be given by the three linearly independent antisymmetric matrices:

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 ,

which clearly generate a real vector space of dimension 3.
Any Lie algebra, in addition of its structure as a real vector space, it also has another

internal composition law, distributive with respect to the sum of elements, but it is not in
general, neither commutative nor associative. To characterize this structure is su�cient to
know this composition law for the basis vectors Ji. For matrices this law [A,B] is just the
commutator between them. The three Ji satisfy the following commutation rules:

[Ji, Jk] = εiklJl, i, k, l = 1, 2, 3, (2.225)

Let M =
∑
αiJi be an arbitrary linear combination of elements of the base Ji, with three

arbitrary real numbers αi. This sum we are going to write formally as
∑
αiJi = αu · J , where

αi = αui in terms of the three components of a unit vector u and where by means of the dot
product, u · J ≡ U what we want to express is just the sum

∑
uiJi in a compact way. If we

calculate the matrix

exp(M) ≡ lim
n→∞

(
I+

M

n

)n

≡ exp(αU) = exp

α
 0 −u3 u2

u3 0 −u1
−u2 u1 0

 =

 1 0 0
0 1 0
0 0 1

+
α

1!

 0 −u3 u2
u3 0 −u1
−u2 u1 0

+
α2

2!

−(u22 + u23) u1u2 u1u3
u1u2 −(u21 + u23) u2u3
u1u3 u2u3 −(u21 + u22)

+

+
α3

3!

 0 u3 −u2
−u3 0 u1
u2 −u1 0

+ · · ·
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If we call

U = u · J =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , U2 =

−(u22 + u23) u1u2 u1u3
u1u2 −(u21 + u23) u2u3
u1u3 u2u3 −(u21 + u22)

 ,

then U satis�es U3 = −U , U4 = −U2 and the subsequent powers, so that the above expansion
can be expressed in terms of matrices U , U2 and the unit matrix I, in the form

exp(αU) ≡ exp(α · J) = I+ U

(
α

1!
− α3

3!
+ · · ·

)
+ U2

(
α2

2!
− α4

4!
+ · · ·

)
,

i.e., the expression obtained previously in (2.219).
If we consider that two parameters αi are zero and we analyze the one-parameter subgroup

generated by the nonvanishing parameter, for instance α1, then

exp(αJ1) exp(βJ1) = (I+ sinαJ1 + (1− cosα)J2
1 )(I+ sinβJ1 + (1− cosβ)J2

1 ) =

I+ sin(α+ β)J1 + (1− cos(α+ β))J2
1 = exp((α+ β)J1),

and in this parametrization the composition of rotations of any one-parameter subgroup is just
the addition of the corresponding parameters of the two elements. This parameter which de�nes
the exponential mapping, is called the normal or canonical parameter.

The normal parameterization of the rotation group corresponds to that in which the group
manifold is the compact sphere of radius π, and in this parameterization any rotation can also
be represented by:

R(α)ik = (exp(α · J))ik = δik cosα+
αiαk

α2
(1− cosα) + εijk

αj

α
sinα,

which is the expression (2.219).
In an extended form R(α), is: cosα+ u21(1− cosα) −u3 sinα+ u1u2(1− cosα) u2 sinα+ u1u3(1− cosα)
u3 sinα+ u2u1(1− cosα) cosα+ u22(1− cosα) −u1 sinα+ u2u3(1− cosα)
−u2 sinα+ u3u1(1− cosα) u1 sinα+ u3u2(1− cosα) cosα+ u23(1− cosα)


We can see that R(α)−1 = RT (α) = R(−α) and that its trace is 1 + 2 cosα. The director

cosines of the unit vector u, which de�nes the direction of the rotation axis, are proportional to
the terms (R32 −R23,R13 −R31,R21 −R12), with the exception of a rotation of value α = π,
which in that case will be related to the diagonal elements because R is symmetric. These
diagonal elements in this case are −1 + 2u21, −1 + 2u22 and −1 + 2u23, respectively, and the two
possible solutions for each ui have to be compatible with the remaining elements of Rij .

1 + 2 cosα = Rii, ui =
1

2 sinα
ϵijkRkj , α ̸= 0, π.

If α = 0, the components Rkj , k ̸= j vanish and the above relation in undetermined, as it
corresponds to a nul rotation.

The eigenvalues of any rotation matrix are reduce to the real value 1 with eigenvector in
the direction of the rotation axis, and another two eigenvalues, in general complex, of the form
eiα y e−iα, without real eigenvectors, which in the particular case α = π they are −1, and the
corresponding eigenspace is the two-dimensional vector space orthogonal to the rotation axis.
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Exercise: Given the following two rotation matrices determine the angle and axis of rotation.

A =


√
2

2
−
√

10
5

−
√
10

10√
10
5

1+2
√
2

5

√
2−2
5√

10
10

√
2−2
5

8+
√
2

10

 , B =


1
6

− 4+
√
3

6

√
3−1
3√

3−4
6

1
6

√
3+1
3

−
√
3+1
3

1−
√
3

3
−1
3


Solution: αA = π/4, nA ∼ (0,−1, 2). αB = 2π/3, nB ∼ (−2, 2, 1).

The analysis of rotations we have done is called the active representation because we rotate
the points in the space while leaving �xed the Cartesian reference frame. The passive interpre-
tation consists in describing the coordinates of the same point in three-dimensional space with
respect to two di�erent frames which are rotated with respect to each other. But to rotate a
coordinate system by means of the rotation α, the new coordinates of the point correspond
to those of an active rotation in the opposite direction, of parameters −α. It is su�ciente to
replace α by −α to obtain the matrix representation of a change of coordinates when we make
a change of reference frame. In this case the commutation relations of the basic generators, in
the passive representation, are

[Ji, Jk] = −εiklJl, i, k, l = 1, 2, 3

2.8.2 Composition law of rotations

If every rotation is represented by a vector α ∈ SO(3), then it is possible to obtain the
resultant vector of the composition of two arbitrary rotations. Let R(γ) = R(α)R(β) the
composition of two rotations given by the product of the corresponding matrix representation.
If the vectors are α = αu, β = βv and γ = γw, making the matrix product and after a term
by term identi�cation we get

w tan
γ

2
=

u tanα/2 + v tanβ/2 + tanα/2 tanβ/2(u× v)

1− tanα/2 tanβ/2(u · v)
(2.226)

If instead of using the normal parameterization we use the vectors

ρ = tan
α

2
u, µ = tan

β

2
v, ν = tan

γ

2
w

then R(ν) = R(ρ)R(µ) implies:
ν =

ρ+ µ+ ρ× µ

1− ρ · µ
(2.227)

We can see in the above relation that if α = β = π, tan(α/2) = tan(β/2) =∞ and therefore
in this limit:

w tan
γ

2
=

v × u

u · v
so that the compound rotation is around an axis orthogonal to the previous ones in the direction
of the cross product of the second times the �rst. If they are separated by an angle ϕ then
tan(γ/2) = sinϕ/ cosϕ = tanϕ, and the value of the rotation angle is γ = 2ϕ, twice the angle
that u and v subtend. Conversely, every rotation can always be written as the composition of
two rotations of value π, around two axis orthogonal to its rotation axis and separated half the
angle to be performed.

If we have a cylindrical lid and we turn around, i.e., we rotate it a value π around one of its
diameters, and subsequently we make again another rotation of value π around another diameter,
it is �nally face up and its points have rotated an angle twice the angle subtended between the
above diameters, and in the direction from the �rst axis to the second.
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Figure 2.24: Composition of rotations by means of rotations of value π

This allows us to produce a geometrical picture of the composition of rotations 18 by using
the decomposition of each one into two of value π. Let in the �gure 2.24, u and v the two unit
vectors which represent the two rotation axis of values α and β, respectively. If we construct the
orthogonal planes to both vectors, passing through the point O, they intersect along a straight
line characterized by the unit vector n. In the perpendicular plane to vector u, and in the
anticlockwise direction, we locate another unit vector n1, separated from n by an angle α/2.
Similarly, in the plane orthogonal to v, this time in the clockwise direction, we de�ne the unit
vector n2 separated β/2 from n. Therefore:

R(β,v)R(α,u) = R(π,n2)R(π,n)R(π,n)R(π,n1) = R(π,n2)R(π,n1), (2.228)

and thus the composite rotation is around an axis orthogonal to n1 and n2, in the sense n2×n1

of value twice the angle subtended by these two vectors.
The above analysis can also give rise to another geometrical interpretation on a unit sphere.

Let us assume that, as usual each rotation is described by the rotation angle α and the unit
vector u, which de�nes the rotation axis. Let us represent both rotations on the unit sphere in
the following way. Vector u de�nes a point, and this de�nes an equatorial plane orthogonal to
u. Along this maximal circle we depict an oriented circular segment of lentgh α/2. Simmilarly
we also depict the corresponding oriented circular segment of length y β/2 in the maximal circle
orthogonal to the unit vector v.

If we displace both circular segments, along the corresponding maximal circles, as in the
�gure 2.25, such that the segment AC is consecutive to the segment BA, then the points B and
C will correspond with the end points of the unit vectors n2 and n1, respectively. Since the
�nal rotation is orthogonal to both axis, the compound rotation axis is de�ned by the maximal
circle passing through B y C, and the angle of rotation is twice the corresponding segment BC
of value γ/2.

Because the angular separation between the two planes is π−ϕ, where ϕ is the angle between
the unit vectors u and v, by spherical trigonometry applied to the spherical triangle ABC, we
�nd:

cos γ/2 = cosα/2 cosβ/2 + sinα/2 sinβ/2 cos(π − ϕ) =
18J.M. Aguirregabiria, A. Hernández, M. Rivas, Composition law of the rotation group, Eur. J. Phys., 13,

139-141 (1992).
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Figure 2.25: Composition of rotations on the unit sphere

= cosα/2 cosβ/2− sinα/2 sinβ/2 cosϕ

which is a relation that can be obtained form the composition of the corresponding matrices
associated to those rotations.

2.8.3 Kinematics of rotation

The description of a mechanical system with orientation, for instance a rigid body or a
spinning elementary particle, is by means of three unit vectors ei, i = 1, 2, 3, of the three
orthogonal axis associated to a moving point. In the case of the rigid body, these axes can be
the principal axes of inertia around the center of mass of the body. In the case of an elementary
particle, an arbitrary Cartesian frame located at the center of charge.

If these three unit vectors are written as column vectors, consecutively, they form an or-
thogonal 3 × 3 matrix of unit determinant, i.e., a rotation matrix. Then, only three essential
parameters αi, i = 1, 2, 3, characterize the independent degrees of freedom associated to the
change of orientation.

R(α) = ((e1), (e2), (e3))

If at instant t = 0, we select the laboratory axis in coincidence with the body axis, then at
instant t, the matrix R(α(t)) represents the active rotation I have to produce to the laboratory
axis to transform them into the body axis.

If we consider now another inertial observer O′ related to O by means a Galilei transforma-
tion, then the relative spacetime measurement of some spacetime event is given by

t′ = t+ b, r′ = R(µ)r + vt+ a.

This means that the three unit vectors linked to the body transform among inertial observers
in the form

e′i = R(µ)ei,

and if we collect them in the form of a matrix in both members, at any instant t:(
(e′1), (e

′
2), (e

′
3)
)
≡ R(α′(t′)) = (R(µ)(e1), R(µ)(e2), R(µ)(e3)) = R(µ)R(α(t)) (2.229)
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For the observer O, R(α(t)) is the orientation of the body at the instant t and R(α(t + dt))
the orientation at the instant t+ dt. This can be written as a rotation R(α(t)) followed by the
in�nitesimal rotation I+Ωdt, i.e.,

R(α(t+ dt)) = (I+Ωdt)R(α(t)) = R(α(t)) + ΩR(α(t))dt = R(α(t)) + Ṙ(α(t))dt,

and the matrix Ω, is

Ω(t)R(α(t)) = Ṙ(α(t)), → Ω(t) = Ṙ(α(t))R−1(α(t)) = Ṙ(α(t))RT (α(t))

and Ω is an antisymmetric matrix with three essential components wich de�ne the components
of the instantaneous angular velocity ω(t), ωi =

1
2ϵijkΩjk.

In fact, for any rotation matrix RRT = I, and also at any instant t, R(t)RT (t) = I, and thus
taking the time derivative

ṘRT +RṘT = 0, Ω+ ΩT = 0.

The relation Ṙ(α(t)) = Ω(t)R(α(t)), if we analyze by columns is equivalent to

dei
dt

= Ωei ≡ ω × ei.

The kinematics corresponds to an instantaneous rotation around an axis in the direction of ω.
If we express the rotations in terms of the vector α = αu, the angular velocity is given by

ω = u
dα

dt
+ sinα

du

dt
+ (1− cosα)u× du

dt
. (2.230)

Exercise. Show that if we use the parameterization of the orientation by the three-vector
ρ = tan(α/2)n, where n is the unit vector along the rotation axis and α the rotated angle, the
angular velocity can be written as

ω =
2

1 + ρ2
(ρ̇+ ρ× ρ̇), w = RT (ρ)ω =

2

1 + ρ2
(ρ̇− ρ× ρ̇).

where w is the angular velocity vector with respect to the body frame.

If in (2.226) we take the derivative of both sides with respect to t′, taking into account that
∂t/∂t′ = 1, gives

Ṙ(α′(t′)) = R(µ)Ṙ(α(t))

and taking the transpose of (2.226)

RT (α′(t′)) = RT (α(t))RT (µ)

and thus the matrices Ω transform between inertial observers

Ω′(t′) = Ṙ(α′(t′))RT (α′(t′)) = R(µ)Ṙ(α(t))RT (α(t))RT (µ) = R(µ) Ω(t)RT (µ)

which corresponds to the transformation equations of a second rank antisymmetric tensor, such
that for its essential components, gives

ω′(t′) = R(µ)ω(t).

From expression (2.221) we get that the unit vectors associated to the body axis ek, in the
ρ representation of rotations, admit the following representation

(ek)i =
1

1 + ρ2
[(1− ρ2) δik + 2ρiρk + 2εijkρj ]. (2.231)
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2.8.4 Dynamics of rotation

If we want to make the Lagrangian description of a body with orientation α, because
the rotation group has no central extensions, and the dynamical equations must be rotation
invariant, then the Lagrangian has to be an invariant function L(α, α̇), of the variables we
use to describe the orientation α, and its time derivatives α̇. It must be a function of them
through its dependence of the angular velocity ωi, L(ωi). In this way, Euler-Lagrange dynamical
equations are

∂L

∂αi
− d

dt

(
∂L

∂α̇i

)
=

∂L

∂ωj

∂ωj

∂αi
− d

dt

(
∂L

∂ωj

∂ωj

∂α̇i

)
= 0,

If we call Wj = ∂L/∂ωj , we propose to the reader (is relatively simpler in the ρ parameteriza-
tion) to show that the above equations lead to

dW

dt
= ω ×W , Wi =

∂L

∂ωi
.

The angular momentum components with respect to the body axis, are constants of the
motion. Let us call Ti = W · ei. Its time derivative gives

dTi
dt

=
dW

dt
· ei +W · dei

dt
= (ω ×W ) · ei +W · (ω × ei) = 0.

In the case of a nonrelativistic elementary particle, if it is a rigid body and its spin is a
constant of the motion, then W ∼ ω and the Lagrangian has to be an arbitrary function of ω2.
A simple case corresponds to

L =
1

2
Iω2

an object with spherical symmetry, i.e., with the three principal moments of inertia of the same
value, and the angular momentum S = W = Iω. We have to remark that an object with the
three principal inertia momenta of the same value does not mean that its shape is that of a
sphere. The same thing happens to a cube.

If the three principal momenta are di�erent

L =
1

2
(I1ω

2
1 + I2ω

2
2 + I3ω

2
3),

and Euler-Lagrange equations are, with Si = Iiωi, (no addition on indes i)

I1
dω1

dt
= (I3 − I2)ω2ω3, I2

dω2

dt
= (I1 − I3)ω3ω1, I3

dω3

dt
= (I2 − I1)ω1ω2.

The ω1 component will be a constant of the motion if I3 = I2, and the same criteria for the
others.
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2.9 Appendix: Galilei group

The Galilei group is a group of space-time transformations characterized by ten parameters
g ≡ (b,a,v,α). The action of g on a space-time point x ≡ (t, r) is given by x′ = gx, and is
considered in the form

x′ = exp(bH) exp(a · P ) exp(v ·K) exp(α · J)x

as the action of a rotation of value α, followed by a pure Galilei transformation of velocity v and
�nally a space and time translation of values a and b, respectively. In this way all parameters
that de�ne each one-parameter subgroup are normal, because the exponential mapping works.
Explicitly

t′ = t+ b, (2.232)

r′ = R(α)r + vt+ a, (2.233)

and the composition law of the group g′′ = g′g is:

b′′ = b′ + b, (2.234)

a′′ = R(α′)a+ v′b+ a′, (2.235)

v′′ = R(α′)v + v′, (2.236)

R(α′′) = R(α′)R(α). (2.237)

For rotations we shall alternatively use two di�erent parameterizations. One is the normal
or canonical parameterization in terms of a three vector α = αn, where n is a unit vector along
the rotation axis, and α ∈ [0, π] is the clockwise rotation angle in radians, when looking along
n. Another, in terms of a three vector µ = n tan(α/2), which is more suitable to represent
algebraically the composition of rotations.

The rotation matrix R(α) = exp(α·J) is expressed in terms of the normal parameters αi and
in terms of the antisymmetric matrix generators Ji which have the usual matrix representation

J1 =

 0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

 0 −1 0
1 0 0
0 0 0

 ,

and satisfy the commutation relations [Ji, Jk] = ϵiklJl, such that if we write the normal param-
eters α = αn in terms of the rotation angle α and the unit vector n along the rotation axis, it
is written as

R(α)ij = δij cosα+ ninj(1− cosα)− ϵijknk sinα, i, j, k = 1, 2, 3. (2.238)

In the parametrization µ = n tan(α/2), the rotation matrix is

R(µ)ij =
1

1 + µ2
(
(1− µ2)δij + 2µiµj − 2ϵijkµk

)
, i, j, k = 1, 2, 3. (2.239)

In terms of these variables, R(µ′′) = R(µ′)R(µ) is equivalent to

µ′′ =
µ′ + µ+ µ′ × µ

1− µ′ · µ
. (active) (2.240)

This can be seen in a simple manner by using the homomorphism between the rotation group
and the group SU(2), of 2 × 2 unitary matrices of unit determinant. The matrix generators
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of SU(2) are J = −iσ/2 in terms of σ Pauli matrices. In the normal parameterization the
rotation matrix exp(α · J) = exp(−iα · σ/2) is written in the form

R(α) = cos(α/2)I− i(n · σ) sin(α/2).

By de�ning µ = n tan(α/2), this rotation matrix is expressed as

R(µ) =
1√

1 + µ2
(I− iµ · σ) , (2.241)

where I is the 2× 2 unit matrix and in this form we can get the composition law (2.237). 19

If the rotation is of value π, then eqs. (2.235) or (2.236) lead to

R(n, π)ij = −δij + 2ninj .

Even if the two rotations R(µ) and R(µ′) involved in (2.237) are of value π, although tan(π/2) = ∞,
this expression is de�ned and gives:

n′′ tan(α′′/2) =
n× n′

n · n′ .

The absolute value of this relation leads to tan(α′′/2) = tan θ, i.e., α′′ = 2θ, where θ is the angle
between the two unit vectors n and n′. We obtain the known result that every rotation of value α
around an axis n can be obtained as the composition of two rotations of value π around two axes
orthogonal to n and separated by an angle α/2.

Because every transformation of the Galilei group corresponds to a change of reference frame,
it is necessary to consider the rotations from the passive point of view. This amounts, when
compared with the active point of view a simple change of sign in the group parameter. In this
way, the composition of rotations in the passive representation is:

µ′′ =
µ′ + µ− µ′ × µ

1− µ′ · µ
. (passive) (2.242)

For the orientation variables we shall use throughout the book the early Greek variables
α,β, . . . whenever we consider the normal parametrization, while for the tan(α/2) parameter-
ization we will express rotations in terms of the intermediate Greek variables µ,ν,ρ, . . . . In
this last notation, transformation equations (2.231-2.234) should be replaced by

b′′ = b′ + b, (2.243)

a′′ = R(µ′)a+ v′b+ a′, (2.244)

v′′ = R(µ′)v + v′, (2.245)

µ′′ =
µ′ + µ− µ′ × µ

1− µ′ · µ
. (2.246)

The neutral element of the Galilei group is (0,0,0,0) and the inverse of every element is

(b,a,v,α)−1 = (−b,−R(−α)(a− bv),−R(−α)v,−α).

The generators of the group in the realization (2.229, 2.230) are the di�erential operators

H = ∂/∂t, Pi = ∂/∂ri, Ki = t∂/∂ri, Jk = εklirl∂/∂ri (2.247)

and the commutation rules of the Galilei Lie algebra are

[J ,J ] = −J , [J ,P ] = −P , [J ,K] = −K, [J , H] = 0, (2.248)

19 D. Hestenes, Space-time algebra, Gordon and Breach, NY (1966).
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[H,P ] = 0, [H,K] = P , [P ,P ] = 0, [K,K] = 0, [K,P ] = 0. (2.249)

All throughout this book, except when explicitly stated, we shall use the following shorthand
notation for commutators of scalar and 3-vector operators, that as usual, are represented by
bold face characters:

[A,B] = C, =⇒ [Ai, Bj ] = ϵijkCk,

[A,B] = C, =⇒ [Ai, Bj ] = δijC,

[A, B] = C, =⇒ [Ai, B] = Ci,

[B,A] = C, =⇒ [B,Ai] = Ci,

where δij = δji is Kronecker's delta and ϵijk is the completely antisymmetric symbol, so that
Latin indexes match on both sides of commutators.

The group action (2.229)-(2.230) represents the relationship between the coordinates (t, r)
of a space-time event as measured by the inertial observer O and the corresponding coordinates
(t′, r′) of the same space-time event as measured by another inertial observer O′. The ten group
parameters have the following meaning. If we consider the event (0,0) measured by O, for
instance the �ashing of a light beam from its origin at time t = 0, it takes the values (b,a)
in O′, where b is the time parameter that represents the time translation and a is the space
translation. The parameter v of dimensions of velocity represents the velocity of the origin of
the Cartesian frame of O as measured by O′, and �nally the parameters α, or R(α), represent
the orientation of the Cartesian frame of O as measured by O′. In a certain sense the ten
parameters (b,a,v,α) with dimensions respectively of time, position, velocity and orientation
describe the relative motion of the Cartesian frame of O by O′.

The Galilei group has non-trivial exponents given by 20

ξ(g, g′) = m

(
1

2
v2b′ + v ·R(α)a′

)
. (2.250)

They are characterized by the non-vanishing parameter m.
The central extension of the Galilei group 21 is an 11-parameter group with an additional

generator I which commutes with the other ten,

[I,H] = [I,P ] = [I,K] = [I,J ] = 0, (2.251)

and the remaining commutation relations are the same as above (2.245, 2.246), except the last
one which appears as

[Ki, Pj ] = −mδijI, or [K,P ] = −mI, (2.252)

using our shorthand notation, in terms of a non-vanishing parameter m. If we de�ne the
following polynomial operators on the group algebra

W = IJ − 1

m
K × P , U = IH − 1

2m
P 2, (2.253)

U commutes with all generators of the extended Galilei group and W satis�es the commutation
relations:

[W ,W ] = −IW , [J ,W ] = −W , [W ,P ] = [W ,K] = [W , H] = 0,

so that W 2 also commutes with all generators. It turns out that the extended Galilei group has
three functionally independent Casimir operators which, in those representations in which the

20 V. Bargmann, On unitary ray representations of continuous groups, Ann. Math. 5, 1 (1954).
21 J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory and its applica-

tions, Acad. Press, NY (1971), vol. 2, p. 221.
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operator I becomes the unit operator, for instance in irreducible representations, are interpreted
as the mass, M = mI, the internal energy H0 = H−P 2/2m, and the absolute value of the spin
with respect to the center of mass

S2 =

(
J − 1

m
K × P

)2

. (2.254)

The spin operator S in those representations in which I = I, satisfy the commutation relations:

[S,S] = −S, [J ,S] = −S, [S,P ] = [S, H] = [S,K] = 0,

i.e., it is an angular momentum operator, transforms like a vector under rotations and is invariant
under space and time translations and under Galilei boosts, respectively.
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2.10 Appendix: Poincaré group

The Poincaré group is the group of transformations of Minkowski's space-time that leave
invariant the separation between any two close space-time events ds2 = ηµνdx

µdxν = c2dt2−dr2.
We shall consider the contravariant components xµ ≡ (ct, r), and x′ = gx is expressed as
x′µ = Λµ

ν x
ν + aµ, in terms of a constant 4 × 4 matrix Λ and a constant translation four-

vector aµ ≡ (cb,a). We take for the covariant components of Minkowski's metric tensor ηµν ≡
diag(1,−1,−1,−1). Then dx′µ = Λµ

νdx
ν and ds2 = ηµνdx

′µdx′ν = ησρdx
σdxρ implies for the

matrix Λ
ηµνΛ

µ
σΛ

ν
ρ = ησρ. (2.255)

Relations (2.252) represent ten conditions among the 16 components of the matrix Λ, so that
each matrix depends on six essential parameters, which can be chosen in many ways. Through-
out this book we shall take three of them as the components of the relative velocity v between
inertial observers and the remaining three as the orientation α of their Cartesian frames, ex-
pressed in a suitable parametrization of the rotation group.

Therefore, every element of the Poincaré group P will be represented, as in the previous case
of the Galilei group, by the ten parameters g ≡ (b,a,v,α) and the group action on a space-time
point x ≡ (t, r) will be interpreted in the same way, i.e., x′ = gx:

x′ = exp(bH) exp(a · P ) exp(β ·K) exp(α · J)x, (2.256)

as the action of a rotation of value α, followed by a boost or pure Lorentz transformation of
normal parameter β and �nally a space and time translation of values a and b, respectively. It
is explicitly given on the space-time variables by

t′ = γt+ γ(v ·R(µ)r)/c2 + b, (2.257)

r′ = R(µ)r + γvt+ γ2(v ·R(µ)r)v/(1 + γ)c2 + a. (2.258)

Parameter β in (2.253) is the normal parameter for the pure Lorentz transformations, that in
terms of the relative velocity among observers v is expressed as β/β tanhβ = v/c as we shall see
below. The dimensions and domains of the parameters b, a and µ are the same as those of the
Galilei group, and the parameter v ∈ R3, with the upper bound v < c, has also dimensions of
velocity. The physical meaning of these ten parameters, that relate any two inertial observers,
is the same as in the Galilei case. The parameter v is the velocity of the origin of the observer
O, as measured by O′, and R(µ) represents the orientation of the Cartesian frame O relative
to O′, once O′ is boosted with velocity v. The factor γ(v) = (1− v2/c2)−1/2.

The composition law of the group is obtained from x′′ = Λ′x′+ a′ = Λ′(Λx+ a)+ a′ that by
identi�cation with x′′ = Λ′′x+ a′′ reduces to Λ′′ = Λ′Λ and a′′ = Λ′a+ a′, i.e., the composition
law of the Lorentz transformations, that we will �nd in the next Section 2.10.1, and a Poincaré
transformation (Λ′, a′) of the four-vector aµ. In this parameterization g′′ = g′g, is: 22

b
′′

= γ′b+ γ′(v′ ·R(µ′)a)/c2 + b′, (2.259)

a
′′

= R(µ′)a+ γ′v′b+
γ

′2

(1 + γ′)c2
(v′ ·R(µ′)a)v′ + a′, (2.260)

v
′′

=

R(µ′)v + γ′v′ +
γ

′2

(1 + γ′)c2
(v′ ·R(µ′)v)v′

γ′(1 + v′ ·R(µ′)v/c2)
, (2.261)

µ
′′

=
µ′ + µ− µ′ × µ+ F (v′,µ′,v,µ)

1− µ′ · µ+G(v′,µ′,v,µ)
, (2.262)

22 M.Rivas, M.Valle and J.M.Aguirregabiria, Composition law and contractions of the Poincaré group, Eur.
J. Phys. 6, 128 (1986).
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where F (v′,µ′,v,µ) and G(v′,µ′,v,µ) are the real functions:

F (v′,µ′,v,µ) =
γγ′

(1 + γ)(1 + γ′)c2
[
v × v′ + v(v′ · µ′) + v′(v · µ)

+ v × (v′ × µ′) + (v × µ)× v′ + (v · µ)(v′ × µ′)

+ (v × µ)(v′ · µ′) + (v × µ)× (v′ × µ′)
]
, (2.263)

G(v′,µ′,v,µ) =
γγ′

(1 + γ)(1 + γ′)c2
[
v · v′ + v · (v′ × µ′) + v′ · (v × µ)

− (v · µ)(v′ · µ′) + (v × µ) · (v′ × µ′)
]
. (2.264)

The unit element of the group is (0,0,0,0) and the inverse of any arbitrary element
(b,a,v,µ) is

(b,a,v,µ)−1 = (−γb+ γv · a/c2,−R(−µ)(a− γvb+ γ2

(1 + γ)c2
(v · a)v),−R(−µ)v,−µ).

The group generators in the realization (2.254, 2.255), and in terms of the normal parameters
(b,a,β,α), are

H = ∂/∂t, Pi = ∂/∂ri, Ki = ct∂/∂ri + (ri/c)∂/∂t, Jk = εklirl∂/∂ri.

Thus, K and J are dimensionless and the commutation relations become

[J ,J ] = −J , [J ,P ] = −P , [J ,K] = −K, [J , H] = 0, [H,P ] = 0, (2.265)

[H,K] = cP , [P ,P ] = 0, [K,K] = J , [K,P ] = −H/c. (2.266)

If, as usual, we call x0 = ct, p0 = H/c, pi = Pi and Ki = J0i = −Ji0 and Jk = 1
2ϵklrJlr,

xµ = ηµνx
ν , µ = 0, 1, 2, 3 and ∂ν ≡ ∂/∂xν , then,

pµ = ∂µ, Jµν = −Jνµ = xµ∂ν − xν∂µ.

In covariant notation the commutation relations appear:

[pµ, pν ] = 0,
[Jµν , pσ] = −ηµσpν + ηνσpµ,
[Jµν , Jρσ] = −ηµρJνσ − ηνσJµρ + ηνρJµσ + ηµσJνρ.

The Poincaré group has two functionally independent Casimir invariants. One is interpreted
as the squared mass of the system,

pµpµ = (H/c)2 − P 2 = m2c2, (2.267)

and the other is the square of the Pauli-Lubanski four-vector wµ. The Pauli-Lubanski four-
vector is de�ned as

wµ =
1

2
εµνσλ pνJσλ ≡ (P · J , HJ/c−K × P ) ≡ (P · S, HS/c), (2.268)

which is by construction orthogonal to pµ, i.e., wµpµ = 0.
It is related to the spin with respect to the center of mass SCM , de�ned through the relation

SCM = J − q × P , HSCM/c = HJ/c−K × P , (2.269)
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after writing K = Hq/c2 − P t, so that its time component w0 = P · S = P · J = P · SCM is
the helicity of the particle, and the spatial part is the vector (2.266).

The other Casimir operator is thus

wµwµ = (P · J)2 − (HJ/c−K × P )2 = −m2c2S2, (2.270)

where it depends on S2, the absolute value squared of the spin with respect to the CM. We see
in the relativistic case that the two parameters m and S characterize the two Casimir invariants
and therefore they are the intrinsic properties of the elementary particle the formalism provides.
In the quantum case, since the representation must be irreducible S2 = s(s + 1)ℏ2, for any
s = 0, 1/2, 1, . . ., depending on the value of the quantized spin of the particle, but in the
classical case S2 can take any continuous value.

These wµ operators satisfy the commutation relations:

[wµ, wν ] = ϵµνσρwσpρ, (2.271)

where we take ϵ0123 = +1, and

[pµ, wν ] = 0, [Jµν , wσ] = −ηµσwν + ηνσwµ. (2.272)

The Poincaré group has no non-trivial exponents, so that gauge functions when restricted to
homogeneous spaces of P vanish.

2.10.1 Lorentz group

The Lorentz group L is the subgroup of the Poincaré group P of transformations of the
form (0,0,v,µ), and every Lorentz transformation Λ(v,µ) will be interpreted as Λ(v,µ) =
L(v)R(µ), as mentioned before where L(v) is a boost or pure Lorentz transformation and
R(µ) a spatial rotation. Expressions (2.258, 2.259) come from Λ(v′′,µ′′) = Λ(v′,µ′)Λ(v,µ).
Expression (2.258) is the relativistic composition of velocities since

L(v′′)R(µ′′) = L(v′)R(µ′)L(v)R(µ)

= L(v′)R(µ′)L(v)R(−µ′)R(µ′)R(µ),

but the conjugate of the boost R(µ′)L(v)R(−µ′) = L(R(µ′)v) is another boost and thus

L(v′′)R(µ′′) = L(v′)L(R(µ′)v)R(µ′)R(µ).

The product L(v′)L(R(µ′)v) = L(v′′)R(w) where v′′ is the relativistic composition of the
velocities v′ and R(µ′)v, and R(w) is the Thomas-Wigner rotation associated to the boosts
L(v′) and L(R(µ′)v).

Therefore, expression (2.258) is equivalent to

L(v′′) = L(v′)L(R(µ′)v)R(−w), (2.273)

and (2.259) is
R(µ′′) = R(w)R(µ′)R(µ) ≡ R(ϕ)R(µ). (2.274)

The Thomas-Wigner rotation matrix R(w) is:

R(w)ij = δij +
1

1 + γ′′

(
γ′2

c2

(
1− γ
1 + γ′

)
v′iv

′
j +

γ2

c2

(
1− γ′

1 + γ

)
R′

ikvkR
′
jlvl

+
γ′γ

c2
(v′iR

′
jkvk − v′jR′

ikvk) +
2γ′2γ2(v′kR

′
klvl)

(1 + γ′)(1 + γ)c2
v′iR

′
jkvk

)
,
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and the factor

γ′′ = γ′γ

(
1 +

v′ ·R(µ)v
c2

)
.

Matrix R(w) is written in terms of the vector parameter w, which is a function of v′, µ′ and
v, given by

w =
F (v′,0, R(µ′)v,0)

1 +G(v′,0, R(µ′)v,0)
, (2.275)

and the parameter ϕ, such that R(ϕ) = R(w)R(µ′) is

ϕ =
µ′ + F (v′,µ′,v,0)

1 +G(v′,µ′,v,0)
. (2.276)

If any one of the two velocities v or v′ vanishes, R(w)ij = δij .
The composition law is obtained by the homomorphism between the Lorentz group L and

the group SL(2,C) of 2× 2 complex matrices of determinant +1. The Lie algebra of this group
has as generators J = −iσ/2 and K = σ/2, where σi are Pauli spin matrices. A rotation of
angle α around a rotation axis given by the unit vector n is given by the 2× 2 unitary matrix
exp(α · J),

R(α) = cos(α/2)σ0 − in · σ sin(α/2). (2.277)

In terms of the vector µ = tan(α/2)n,

R(µ) =
1√

1 + µ2
(σ0 − iµ · σ), (2.278)

where σ0 is the 2 × 2 unit matrix. A pure Lorentz transformation of normal parameters βi is
represented by the hermitian matrix exp(β ·K). This matrix is:

L(β) = cosh(β/2)σ0 +
σ · β
β

sinh(β/2). (2.279)

In terms of the relative velocity parameters, taking into account the functions coshβ = γ(v),
sinhβ = γv/c and the trigonometric relations cosh(β/2) =

√
(coshβ + 1)/2 and tanh(β/2) =

sinhβ/(1 + coshβ), the matrix can be written as

L(v) =

√
1 + γ

2

(
σ0 +

γ

1 + γ

σ · v
c

)
. (2.280)

Then, every element of SL(2,C) is parametrized by the six real numbers (v,µ), and inter-
preted as

A(v,µ) = L(v)R(µ). (2.281)

We thus see that every 2 × 2 matrix A ∈ SL(2,C) can be written in terms of a complex
four-vector aµ and the four Pauli matrices σµ. As A = aµσµ, and detA = 1 leads to aµaµ = 1
or (a0)2 − a2 = 1. The general form of (2.278) is

A(v,µ) =

√
1 + γ

2(1 + µ2)

[
σ0

(
1− iµ · u

1 + γ

)
+ σ ·

(
u+ u× µ

1 + γ
− iµ

)]
, (2.282)

here the dimensionless vector u = γ(v)v/c.
Conversely, since Tr (σµσν) = 2δµν , we obtain aµ = (1/2)Tr (Aσµ). If we express (2.279) in

the form A(v,µ) = aµσµ we can determine µ and v, and thus u, from the components of the
complex four-vector aµ as:

µ = − Im (a)

Re (a0)
, (2.283)

u = 2
[
Re (a0)Re (a) + Im (a0)Im (a) + Re (a)× Im (a)

]
, (2.284)
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where Re (aµ) and Im (aµ) are the real and imaginary parts of the corresponding components
of the four-vector aµ. When Re (a0) = 0 expression (2.280) is de�ned and represents a rotation
of value π along the axis in the direction of vector Im (a).

If we represent every Lorentz transformation in terms of a rotation and a boost, i.e., in the
reverse order, Λ(v,µ) = R(µ)L(v), then the general expression of A is the same as (2.279) with
a change of sign in the cross product term u×µ. Therefore, the decomposition is also unique,
the rotation R(µ) is the same as before but the Lorentz boost is given in terms of the variables
aµ by

u = 2
[
Re (a0)Re (a) + Im (a0)Im (a) + Im (a)× Re (a)

]
.

Note the di�erence in the third term which is reversed when compared with (2.281).
In the four-dimensional representation of the Lorentz group on Minkowski space-time, a

boost is expressed as L(β) = exp(β ·K) in terms of the dimensionless normal parameters βi
and the 4× 4 boost generators Ki given by

K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 .

If we call B = β ·K ≡
∑

i βiKi, we have

B =


0 β1 β2 β3
β1 0 0 0
β2 0 0 0
β3 0 0 0

 , B2 =


β2 0 0 0
0 β1β1 β1β2 β1β3
0 β2β1 β2β2 β2β3
0 β3β1 β3β2 β3β3

 ,

with β2 = β21 + β22 + β23 and B3 = β2B, and so on for the remaining powers of B, so that the
�nal expression for L(β) = exp(β ·K) is

exp(β ·K) = exp(B) = I+
1

1!
B+

1

2!
B2+

1

3!
B3+ · · · = I+

1

1!
B+

1

2!
B2+

1

3!
β2B+

1

4!
β2B2+ · · ·

and the addition term by term converges to

C (β1/β)S (β2/β)S (β3/β)S

(β1/β)S 1 +
β1β1
β2

(C − 1)
β1β2
β2

(C − 1)
β1β3
β2

(C − 1)

(β2/β)S
β2β1
β2

(C − 1) 1 +
β2β2
β2

(C − 1)
β2β3
β2

(C − 1)

(β3/β)S
β3β1
β2

(C − 1)
β3β2
β2

(C − 1) 1 +
β3β3
β2

(C − 1)


where S = sinhβ and C = coshβ.

What is the physical interpretation of the normal parameters βi? Let us assume that
observers O and O′ relate their space-time measurements x and x′ by x′µ = L(β)µνx

ν . Observer
O sends at time t and at a later time t+ dt two light signals from a source placed at the origin
of its Cartesian frame. These two signals when measured by O′ take place at points r′ and
r′ + dr′ and at instants t′ and t′ + dt′, respectively. They are related by

cdt′ = L0
0cdt, dx′

i
= Li

0cdt

because dxi = 0. The quotient dx′i/dt′ is just the velocity of the light source vi, i.e., of the origin
of the O frame as measured by observer O′, and then this velocity vi = cLi

0/L
0
0 = c(βi/β)S/C,
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such that the relation between the normal parameters and the relative velocity between observers
is

v

c
=

β

β
tanhβ

and therefore tanhβ = v/c. Function coshβ ≡ γ(v) = (1 − v2/c2)−1/2 and when the transfor-
mation is expressed in terms of the relative velocity it takes the form of the symmetric matrix:

L(v) =



γ γvx/c γvy/c γvz/c

γvx/c 1 +
v2x
c2

γ2

γ + 1
vxvy
c2

γ2

γ + 1
vxvz
c2

γ2

γ + 1

γvy/c
vyvx
c2

γ2

γ + 1 1 +
v2y
c2

γ2

γ + 1
vyvz
c2

γ2

γ + 1

γvz/c
vzvx
c2

γ2

γ + 1
vzvy
c2

γ2

γ + 1 1 +
v2z
c2

γ2

γ + 1


. (2.285)

The inverse transformation L−1(v) = L(−v). The orthogonal 4 × 4 rotation matrix takes the
block form

R(µ) =

(
1 0
0 R̃(µ)

)
, (2.286)

where R̃(µ) is the 3 × 3 orthogonal matrix (2.235). We can also give a matrix representation
to the Lorentz boosts (2.282) in the form

L(v) =

(
γ γvT /c

γv/c I3 + γ2

(1+γ)c2
vvT

)
, (2.287)

where vT is the row vector transposed of the three-dimensional column vector v, and I3 the
3 × 3 unit matrix. In this way the component of the 3 × 3 matrix, (vvT )ij = vivj . Is easy to
see that in this representation the conjugate transformation

R(µ)L(v)R(µ)−1 = L(R(µ)v).

In fact

R(µ)L(v) =

(
γ γvT /c

γR(µ)v/c R(µ) + γ2

(1+γ)c2
(R(µ)v)vT

)
,

and when acting on the right with R(µ)−1 = R(µ)T , we arrive to(
γ (R(µ)v)T /c

γR(µ)v/c I3 + γ2

(1+γ)c2
(R(µ)v)(R(µ)v)T

)
= L(R(µ)v).

When a Lorentz transformation is expressed in the form Λ(v,µ) = L(v)R(µ), then by
construction the �rst column of Λ(v,µ) is just the �rst column of (2.282) where the velocity
parameters v are de�ned. Therefore, given the general Lorentz transformation Λ(v,µ), from
its �rst column we determine the parameters v and thus the complete L(v) can be worked
out. The rotation involved can be easily calculated as L(−v)Λ(v,µ) = R(µ). If expressed
in the reverse order Λ(v,µ) = R(µ)L(v), then it is the �rst row of Λ that coincides with the
�rst row of (2.282). It turns out that, given any general Lorentz transformation Λ(v,µ), then
Λ(v,µ) = L(v)R(µ) = R(µ)L(v′) with the same rotation in both sides as derived in (2.280)
and L(v′) = R(−µ)L(v)R(µ) = L(R(−µ)v), i.e, the velocity v′ = R(−µ)v. In any case, the
decomposition of a general Lorentz transformation as a product of a rotation and a boost is a
unique one, in terms of the same rotation R(µ) and a boost to be determined, depending on
the order in which we take these two operations.

Matrix Λ can be considered as a tetrad (i.e., a set of four orthonormal four-vectors, one
time-like and the other three space-like) attached by observer O′ to the origin of observer O.
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In fact, if the matrix is considered in the form Λ(v,µ) = L(v)R(µ), then the �rst column of
Λ is the four-velocity of the origin of the O Cartesian frame and the other three columns are
just the three unit vectors of the O reference frame, rotated with rotation R(µ) and afterwards
boosted with L(v).



Chapter 3

Quantization of the models

Quantization of generalized Lagrangian systems will suggest that wave functions for elemen-
tary particles must be squared integrable functions de�ned on the kinematical space.

We shall use Feynman's quantization method to show the structure of the wave function and
the way it transforms under the kinematical or symmetry group of the theory. Once the Hilbert
space structure of the state space is determined, this leads to a speci�c representation of the
generators of the group as self-adjoint operators and the remaining analysis is done within the
usual quantum mechanical context, i.e., by choosing the complete commuting set of operators
to properly determine a set of orthogonal basis vectors of the Hilbert space. Special emphasis
is devoted to the analysis of the di�erent angular momentum operators the formalism supplies.
They have a similar structure to the classical ones, and this will help us to properly obtain the
identi�cation of the spin observables.

The structure of the spin operator depends on the kind of translation invariant kinematical
variables we use to describe the particle, and the way these variables transform under the
rotation group. Since in the Galilei and Poincaré case, as we have seen previously, these variables
are the velocity u and orientation α and they transform in the same way under rotations in both
approaches, then the mathematical structure of the spin as a di�erential operator is exactly the
same in both relativistic and nonrelativistic formalisms.

In fact the spin operators are related to the compact part of the velocity variable u, i.e.,
its direction given by the two angles, the polar angle θ and the azimuthal angle ϕ, and to the
three variables which characterize the orientation of the cartesian frame linked to the particle,
and therefore they will be di�erential operators with respect to these �ve compact, angular
variables.

Half integer spins depend on the kind of the di�erential operators and on the manifold they
act. If the angular momentum operators act on a two-dimensional manifold, like the surface of
the unit sphere, we do not obtain all representations of the rotation group but only those related
to integer spin. It is necessary that the operators act on the three dimensional manifold of the
whole rotation group, to obtain both integer and half integer representations. This implies that
the classical spin has to depend on the angular variables which describe the classical orientation
of the particle.

As we have seen in the classical description the position of the charge of the particle and
its center of mass are di�erent points, and the spin is related to the rotation and internal
motion (zitterbewegung) of the charge around the center of mass of the particle. The magnetic
properties of the particle are connected only with the motion of the charge and therefore to
the zitterbewegung part of spin. It is this double spin structure that gives rise to the concept
of gyromagnetic ratio when expressing the magnetic moment in terms of the total spin. If the
Lagrangian shows no dependence on the acceleration, the spin is only of rotational nature, and
the position and center of mass position de�ne the same point. Spin 1/2 particles arise if the
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corresponding classical model rotates but no half integer spins are obtained for systems with
spin of orbital nature related only to the zitterbewegung. On the manifold spanned by non-
compact variables u no half-integer spins can be found, because the spin operator has the form
of an orbital angular momentum and eigenvectors are but spherical harmonics.

Dirac's equation will be obtained when quantizing the classical relativistic spinning particles
whose center of charge is circling around its center of mass at the speed c. In that case, the
internal orientation of the electron completely characterizes its Dirac algebra.

3.1 Feynman's quantization of Lagrangian systems

Let us consider a generalized Lagrangian system as described in previous chapters and whose
evolution is considered on the kinematical space between points x1 and x2.

The variational formulation requieres to know the boundary states, and the particular so-
lution of the Euler-Lagrange equations passing through them, singles out the evolution of the
particle. However, from the experimental point of view it is impossible to get a precise determi-
nation of these boundary states, because any measurement means to interact with the particle,
and when we measure some property other properties become distorted, and their uncertainty
increases. This means that we do not know accurately the values of the point x1, but some
average values around x1, with a certain probability. The same happens with respect to x2,
so that �nding the path described by the particle is equivalent to determine among all paths
coming from a region R1 around x1 to the region R2 around x2. What we have is a kind of thick
tube of paths, linking both regions, so that to determine a unique trajectory like in the classical
description, is mathematically impossible. We have to replace the variational formulation by
a theory which predicts the probability that a mechanical system starting from a region R1 in
kinematical space, reaches the region R2.

For quantizing these generalized Lagrangian systems we shall follow Feynman's path integral
method 1. The Quantization Principle is introduced in Feynman's approach by the condition
that if no measurement is performed to determine the trajectory followed by the system from
x1 to x2, then all paths x(τ) are allowed with the same probability. Therefore a probability
de�nition P [x(τ)], must be given for every path. The variational formalism does not longer
works and it is substituted by a quantization principle which considers that all paths have the
same probability.

The probability associated to each possible path P [x(τ)], is calculated in terms of a complex
number ϕ[x(τ)], associated to every path, and called the probability amplitude, such that

P [x(τ)] = |ϕ[x(τ)]|2, ∀x(τ), 0 ≤ P [x(τ)] ≤ 1.

Since all paths have the same probability all probability amplitudes are complex numbers of the
same absolute value and they only have a di�erent phase. Thus, to every possible trajectory
followed by the system, x(τ) in X space, Feynman associates a complex number ϕ[x(τ)] called
the probability amplitude of this alternative, given by

ϕ[x(τ)] = N exp

{
i

ℏ

∫ τ2

τ1

L(x(τ), ẋ(τ))dτ

}
= N exp

{
i

ℏ
A[x](x1, x2)

}
, (3.1)

where N is a normalization factor, the same for all paths, and where the phase of this complex
number in units of ℏ is the classical action of the system A[x](x1, x2) along the corresponding
path x(τ). Once we perform the integration along the path, this probability amplitude becomes
clearly a complex function of the initial and �nal points in X space, x1 and x2, respectively.

1 R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, MacGraw Hill, NY (1965), p. 36.
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In this Feynman statistical procedure, the probability amplitude of the occurrence of any
alternative of a set of independent alternatives is the sum of the corresponding probability
amplitudes of the di�erent independent events. The probability of the whole process is the
square of the absolute value of the total probability amplitude. This produces the e�ect that
the probability of the whole process can be less than the probability of any single alternative of
the set. This is what Feynman calls interfering statistics.

The idea that underlies in Feynman's quantization method is the two slit interfering process. We
have a monochromatic light beam impinging on a two slit pannel. It difracts and arrives to a screen.
At every point of the screen arrive photons coming from both slits. However there are points on
the screen where no photons arrive. In those points some interference has been produced.
As an electromagnetic wave we can think that along the light ray there is a transversal orthogonal
plane which contains the electric and magnetic �eld of the wave. Let us assume that the light
corresponds to circularly polarized light. The electric �eld is rotating with constant angular velocity
ω. When the wave travels the phase of this �eld is changing, but not its intensity. We can also
imagine that this transversal plane represents a complex plane and that the electric �eld corresponds
to the complex number ϕ[x(τ)], of constant absolute value and whose phase is changing along the
trajectory. If at a point on the screen two photons arrive, each one coming from a di�erent slit, the
electric �eld at that point will be the sum of the corresponing electric �elds, but the energy willl
be the squared of the intensity of this �eld. The probability of arrival of the light at that point is
the squared of the sum of the amplitudes E1 + E2, i.e., |ϕ[x1(τ)] + ϕ[x2(τ)]|2. There are points
on the screen where photons arrive coming from one of the slits, but when consider the e�ect of
both slits the resultant electric �eld is zero. We do not add the probablities of arrival but rather
the probability amplitudes.

If we extend this idea to an arbitrary system we can imagine that at every point of the
evolution of the mechanical system on the kinematical space we associate a complex plane
where we depict the amplitude ϕ[x(τ)], like in the �gure 3.1,

Figure 3.1: Trajectory of the mechanical system on its kinematical space where we have
depicted a transversal complex plane at the point x(τ), where we represent the probability
amplitude ϕ[x(τ)]. The phase α of this complex number is the action of the mechanical
system, in units of ℏ, along that trajectory from x1 up to this point.

Then, the total probability amplitude that the system arrives at point x2 coming from x1,
i.e., Feynman's kernel K(x1, x2), is obtained as the sum or integration over all paths, of terms
of the form of Eq. (3.1). Feynman writes this probability amplitude as

K(x1, x2) =

∫ x2

x1

ϕ[x(τ)]D(x(τ)),
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where D(x(τ)) represents a measure over the kind of paths x(τ) going from x1 to x2.
Feynman's kernel K(x1, x2), will be in general a function, or more precisely a distribution,

on the X ×X manifold. If information concerning the initial point is lost, and the �nal point
is left arbitrary, say x, the kernel reduces to the probability amplitude for �nding the system at
point x, i.e., the usual interpretation of the quantum mechanical wave function Φ(x). By the
above discussion we see that the wave functions must be complex functions of the kinematical
variables but not of other kind of variables. The Hilbert space of pure states is the vector space
L2(X) of squared integrable complex functions on the kinematical space.

We thus see that Feynman's quantization method enhances the role of the kinematical
variables to describe the quantum state of an arbitrary system, in spite of the independent
degrees of freedom. We consider that this is one of the reasons why the kinematical variables
have to play a leading role also in the classical approach.

We are used to consider in quantum mechanics, instead of a single function Φ(x), multicom-
ponent wave functions, i.e, a set of linearly independent functions ψi(t, r) de�ned on space-time
and labeled with a discrete subindex that runs over a �nite range, such that it can be consid-
ered as a vector valued function in a �nite dimensional complex vector space. In general this
�nite space carries some irreducible representation of the rotation group and each component
ψi represents a de�nite spin state of the system. Nevertheless, our wave function Φ(x) depends
on more variables than space-time variables. Once we de�ne later the complete commuting set
of observables to obtain, in terms of their simultaneous eigenvectors, an orthonormal basis for
the Hilbert space of states, we shall �nd that Φ(x) can be separated in two parts. One part
ϕ(t, r) depending on space-time variables and another part χ that depends on the remaining
compact translation invariant kinematical variables, that in our case will reduce to the velocity
u and orientation α. It is this possible separation of our wave function that will produce the
emergence of the di�erent components of the usual formalism.

3.1.1 Transformation of the wave function

To see how the wave function transforms between inertial observers, and therefore to obtain
its transformation under the kinematical groups, let us consider that O and O′ are two inertial
observers related by means of a transformation g ∈ G, such that the kinematical variables
transform as:

x′
i
= f i(x, g). (3.2)

If observer O considers that the system follows the path x̄(τ), then it follows for O′ the
path x̄′(τ) = f(x̄(τ), g) and because the action along classical paths transforms according to
Eq. (1.13), the probability amplitude for observer O′ is just

ϕ′[x̄′(τ)] = N exp

{
i

ℏ

∫ τ2

τ1

L(x̄′(τ), ˙̄x′(τ))dτ

}

= N exp

{
i

ℏ

∫ τ2

τ1

L(x̄(τ), ˙̄x(τ))dτ

}
exp

{
i

ℏ

∫ τ2

τ1

dα(g; x̄(τ))

dτ
dτ

}
,

i.e.,

ϕ′[x̄′(τ)] = ϕ[x̄(τ)] exp

{
i

ℏ
(α(g;x2)− α(g;x1))

}
,

where the last phase factor is independent of the integration path. If we add all probability
amplitudes of this form, it turns out that Feynman's kernel transforms as:

K ′(x′1, x
′
2) = K(x1, x2) exp

{
i

ℏ
(α(g;x2)− α(g;x1))

}
. (3.3)
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If information concerning the initial point x1 is lost, the wave function transforms as the part
related to the variables x2, up to an arbitrary function on G,

Φ′(x′(x)) = Φ′(gx) = Φ(x) exp

{
i

ℏ
(α(g;x) + θ(g))

}
, (3.4)

or in terms of unprimed x variables

Φ′(x) = Φ(g−1x) exp

{
i

ℏ
(
α(g; g−1x) + θ(g)

)}
, (3.5)

where θ(g) is some function de�ned on G but independent of x.
Since our system is somewhere in X space, the probability of �nding the system anywhere is

1. Then we have to de�ne the way of adding probabilities at di�erent points x ∈ X. If we de�ne
a measure on X, µ(x), such that dµ(x) is the volume element in X space and |Φ(x)|2dµ(x) is
interpreted as the probability of �nding the system inside the volume element dµ(x) around
point x, the probability of �nding it anywhere in X must be unity, so that∫

X
|Φ(x)|2dµ(x) = 1. (3.6)

Since from (3.5)
|Φ′(x′)|2 = |Φ(x)|2, (3.7)

it is su�cient for the conservation of probability to assume that the measure to be de�ned µ(x) is
group invariant. In that case, equation (3.7) implies also that inertial observers measure locally
the same probability. This will have strong consequences about the possibility of invariance of
the formalism under arbitrary changes of phase of the wave function. But the phase can be
changed in a di�erent manner at di�erent points x. We can use this fact to further impose the
local gauge invariance of the theory. It must be remarked that this arbitrary change of phase
β(x) is not only a phase on space-time, but rather on the whole kinematical space of the system
and this enlarges the possibilities of analyzing di�erent transformation groups that can be more
general than the original kinematical groups, because they act on a larger manifold.

3.1.2 Hilbert space structure of the probability amplitudes

The complex function Φ(x), if interpreted as the probability amplitude for �nding the system
around the point x ∈ X, coming from anywhere, satis�es (3.6). It means that Φ(x) is a complex,
squared integrable function de�ned on the kinematical space. Because probability amplitudes
add to form new probability amplitudes when properly normalized, the set of possible functions
Φ(x) forms a complex vector space, because we can add and multiply them by arbitray complex
numbers to produce new complex functions which will describe new probability amplitudes.

Consequently, the Hilbert space H whose unit rays represent the pure states of the system
is the space of squared-integrable functions L2(X,µ) de�ned on the kinematical space X, µ(x)
being an invariant measure such that the scalar product on H is de�ned as

< Φ|Ψ >=

∫
X
Φ∗(x)Ψ(x)dµ(x), (3.8)

Φ∗(x) being the complex conjugate function of Φ(x). There is an arbitrariness in the election
of the invariant measure µ(x) but this will be guided by physical arguments. Nevertheless, the
invariance condition will restrict the possible measures to be used.

The absolute value of the above (3.8) | < Φ|Ψ > | represents the probability that preparing
the system in the state given by Ψ(x) we �nd the system in the state Φ(x), and conversely,
because | < Φ|Ψ > | = | < Ψ|Φ > |.
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3.1.3 Representation of Observables

Wigner's theorem 2,3, implies that to every symmetry g ∈ G of a continuous group, there
exists a one to one mapping of unit rays into unit rays that is induced on H by a unitary
operator U(g) de�ned up to a phase that maps a wave function de�ned on x into an arbitrary
wave function of the image unit ray in x′. The Relativity Principle is a strong symmetry of
physical systems that de�nes the equivalence between the set of inertial observers whose space-
time measurements are related by means of a transformation of a kinematical group G. Now, if
we interpret Φ(x) as the wave function that describes the state of the system for the observer
O and Φ′(x) for O′, then we have

U(g)Φ(x) = Φ′(x) = Φ(g−1x) exp

{
i

ℏ
α(g; g−1x) + θ(g)

}
. (3.9)

Since the θ(g) function gives rise to a constant phase we can neglect it and take as the
de�nition of the unitary representation of the group G on the Hilbert space H, the following

Φ′(x) = U(g)Φ(x) = Φ(g−1x) exp

{
i

ℏ
α(g; g−1x)

}
. (3.10)

Gauge functions satisfy (1.15), and therefore the phase term can be replaced by

α(g; g−1x) = −α(g−1;x) + α(0;x) + ξ(g, g−1) = −α(g−1;x) + ζ(g), (3.11)

because gauge functions can always be chosen such that α(0;x) = 0 and the group function
ζ(g) = ξ(g, g−1) giving rise also to a constant phase, can be suppressed. We thus de�ne the
transformation of the wave function by

Φ′(x) = U(g)Φ(x) = Φ(g−1x) exp

{
− i
ℏ
α(g−1;x)

}
. (3.12)

If the unitary operator is represented in terms of the corresponding self-adjoint generators of
the Lie algebra in the form

U(g) = exp

{
− i
ℏ
gσXσ

}
, (3.13)

then, for an in�nitesimal transformation of parameters δgσ its inverse transformation has in-
�nitesimal parameters −δgσ, we obtain at �rst order in δgσ

U(δg)Φ(x) =

(
I− i

ℏ
δgσXσ

)
Φ(x) = Φ(x)− i

ℏ
δgσXσ Φ(x),

while

Φ(δg−1x) ≡ Φ(f(x, δg−1)) = Φ(x)− δgσuiσ(x)
∂Φ(x)

∂xi
,

and

exp

{
− i
ℏ
α(δg−1;x)

}
= 1− i

ℏ
α(δg−1;x).

But because α(0;x) = 0,

α(δg−1;x) =
∂α(g;x)

∂gσ

∣∣∣∣
g=0

(−δgσ),

2 E.P. Wigner, Group theory and its application to the quantum mechanics of atomic spectra, Acad. Press,
NY (1959).

3 V. Bargmann, J. Math. Phys. 5, 862 (1964).
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and the substitution of the above terms in (3.12) and further identi�cation of the �rst order
terms in δgσ imply that the self-adjoint operators Xσ when acting on the wave functions have
the di�erential representation

Xσ =
ℏ
i
ujσ(x)

∂

∂xj
− λσ(x), (3.14)

where

ujσ(x) =
∂f j(x, g)

∂gσ

∣∣∣∣
g=0

, λσ(x) =
∂α(g;x)

∂gσ

∣∣∣∣
g=0

. (3.15)

If we restrict ourselves to transformations of the enlarged con�guration space (t, qi) that
can be extended to the whole kinematical space x ≡ (t, qi, . . . , q

(k−1)
i ), then, using the same

notation as in (1.18)-(1.21), if the in�nitesimal transformation is of the form

t′ = t+M0σδg
σ, q′i = qi +Miσδg

σ, . . . , q′
(k−1)
i = q

(k−1)
i +M

(k−1)
iσ δgσ,

these generators take the form

Xσ =
ℏ
i

(
M0σ

∂

∂t
+Miσ

∂

∂qi
+ . . .+M

(k−1)
iσ

∂

∂q
(k−1)
i

)
− λσ(x). (3.16)

When compared with the Noether constants of the motion (1.36) written in the form

−Nσ = −HM0σ + pi(s+1)M
(s)
iσ − λσ(x), (3.17)

we see a certain kind of `correspondence recipe'. When restricted to kinematical groups,
the functions λσ(x) of (1.36), are obtained from the Lagrangian gauge functions α(g;x), by
(1.14), which is exactly the same derivation as the functions λσ(x) above in (3.15). Now, by
identifying the di�erent classical observables and generalized momenta that appear in (3.17)
with the corresponding di�erential operators of (3.16) that multiply the corresponding M (s)

iσ

function, we get: the generalized Hamiltonian H = pi(s)q
(s)
i − L, is multiplied in (3.17) by the

function M0σ, is identi�ed with the operator iℏ∂/∂t which is also in front of the function Mσ in
(3.16), and similarly, the generalized momentum pi(s+1), the factor that multiplies the function

M
(s)
iσ , with the di�erential operator −iℏ∂/∂q(s)i , for s = 0, . . . , k − 1.

Recipe: Remember that pi(s+1) and q
(s)
i are canonical conjugate variables. Then, each gen-

eralized momentum pi(s+1) is replaced by (ℏ/i) times the di�erential operator that di�erentiates

with respect to its conjugate generalized coordinate q(s)i and the generalized Hamiltonian H by
the di�erential operator iℏ∂/∂t.

pi(s+1) −→
ℏ
i

∂

∂q
(s)
i

, H −→ iℏ
∂

∂t
.

In the case of elementary particles, the kinematical variables are t, r,u,ρ, the generalized vari-
ables we have r,u and ρ and the corresponding conjugate momenta are pr = P , pu = U and
pρ = V , and H the Hamiltonian, these will be given by the di�erential operators

P =
ℏ
i

∂

∂r
, U =

ℏ
i

∂

∂u
, V =

ℏ
i

∂

∂ρ
, H = iℏ

∂

∂t
. (3.18)

Instead of the momentum V = ∂L̃/∂ρ̇, we have used the functionW = ∂L̃/∂ω, which produces
the part of the spin related to the rotation of the particle, which will be described as a di�erential
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operator with respect to the orientation variables ρ, in the form which is described in the
appendix about general spinors 3.5, at the end of this chapter. This takes the form

W =
ℏ
2i
{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} , (3.19)

where ∇ρ ≡ ∂/∂ρ. This representation of the momenta (3.18) is valid even when the particle
is under any interaction, because its mathematical structure depends only on the kinematical
variables.

We know that Vi = ∂L̃/∂ρ̇i and Wj = ∂L̃/∂ωj = ∂L̃/∂ρ̇i ∂ρ̇i/∂ωj = Vi∂ρ̇i/∂ωj . Since in the
passive representation of rotations

ωi =
2

1 + ρ2
(ρ̇i + ϵijkρj ρ̇k), ρ̇i =

1

2
(ωi − ϵikjρkωj + ρi(ρ · ω)) ,

∂ρ̇i
∂ωj

=
1

2
(δij − ϵikjρk + ρiρj) , Wj = Vi

∂ρ̇i
∂ωj

=
ℏ
2i

(
∂

∂ρj
+ ϵjikρi

∂

∂ρk
+ ρjρi

∂

∂ρi

)
,

i.e.,(3.19).

The Heisenberg representation is that representation in which the time dependence has been
withdrawn from the wave function by means of a time dependent unitary transformation. Then
the wave function in this representation depends on the kinematical variables with the time
excluded, i.e., it depends only on the generalized coordinates q(r)i . Therefore, when acting on

the wave function in the Heisenberg representation ψ(qi, q
(1)
i , . . . , q

(k−1)
i ), the observables q(r)i

and pj(s) satisfy the canonical commutation relations

[q
(r)
i , pj(s+1)] = iℏδji δ

r
s .

If the functions λσ(x) in (3.14) vanish, theXσ generators satisfy the commutation relations of
the group G. But if some λσ(x) ̸= 0 theXσ generators do not satisfy in general the commutation
relations of the initial group G, but rather the commutation relations of a central extension of
G. The group representation on the Hilbert space is not a true representation but a projective
representation of G as shown by Bargmann 4.

In fact, from (3.10) we get

U(g1)Φ(x) = Φ(g−1
1 x) exp{ i

ℏ
α(g1; g

−1
1 x)},

acting now on the left with U(g2),

U(g2)U(g1)Φ(x) = U(g2)Φ(g
−1
1 x) exp{ i

ℏ
α(g1; g

−1
1 x)}

= Φ((g2g1)
−1x) exp{ i

ℏ
α(g2; g

−1
2 x)} exp{ i

ℏ
α(g1; (g2g1)

−1x)}, (3.20)

while acting on Φ(x) with U(g2g1),

U(g2g1)Φ(x) = Φ((g2g1)
−1x) exp{ i

ℏ
α(g2g1; (g2g1)

−1x)}. (3.21)

If we de�ne (g2g1)−1x = g−1
1 g−1

2 x = z, then g1z = g−1
2 x and because gauge functions satisfy

(1.15), we write
α(g2; g1z) + α(g1; z) = α(g2g1; z) + ξ(g2, g1), (3.22)

4 V. Bargmann, Ann. Math. 59, 1 (1954).
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and by comparing (3.20) with (3.21), taking into account (3.22), we obtain

U(g2)U(g1)Φ(x) = U(g2g1)Φ(x) exp{
i

ℏ
ξ(g2; g1)}. (3.23)

Since Φ(x) is arbitrary, we have a projective unitary representation of the group G characterized
by the non-trivial exponent ξ(g, g′).

For both Galilei and Poincaré particles the kinematical space is the ten-dimensional manifold
spanned by the variables (t, r,u,α), t being the time, r the charge position, u the velocity and
α the orientation of the particle. Thus in the quantum formalism the wave function of the most
general elementary particle is a squared-integrable function Φ(t, r,u,α) of these kinematical
variables. For point particles, the kinematical space is just the four-dimensional space-time, so
that wave functions are only functions of time and position, but spinning particles will have to
depend on the additional variables like velocity and orientation. The spin structure will thus
be related to these additional compact variables.

3.2 Nonrelativistic spinning particles

3.2.1 Nonrelativistic spinning particles. Bosons

Now let us apply the formalism to the most interesting case of spinning particles. Let us
consider next Galilei particles with (anti)orbital spin. This corresponds for example to particles
whose kinematical variables are time, position and velocity. A particular classical example is
given in Chapter 2, Section 2.2 by the free Lagrangian

L =
m

2

(
dr

dt

)2

− m

2ω2

(
du

dt

)2

, (3.24)

with u = dr/dt. For the free particle, the center of mass q = r−k has a straight motion while
the relative position vector k follows an elliptic trajectory with frequency ω around its center
of mass. The spin with respect to the center of mass is expressed as SCM = −mk × dk/dt.

The kinematical variables transform under G in the form

t′(τ) = t(τ) + b, (3.25)

r′(τ) = R(α)r(τ) + vt(τ) + a, (3.26)

u′(τ) = R(α)u(τ) + v. (3.27)

The wave functions are complex functions on X and thus functions of the variables (t, r,u). On
this kinematical space the gauge function is the same as in (2.41), where m de�nes the mass of
the particle. Taking into account the correspondence recipe for the Hamiltonian H → iℏ∂/∂t,
the �rst generalized momentum pr ≡ P → −iℏ∇ and the other generalized momentum pu ≡
U → −iℏ∇u, the generators of the projective representation are given by

H = iℏ
∂

∂t
, P =

ℏ
i
∇, K = mr − t ℏ

i
∇− ℏ

i
∇u, (3.28)

J = r × ℏ
i
∇+ u× ℏ

i
∇u = L+Z, (3.29)

where ∇ is the gradient operator with respect to the r variables and ∇u the gradient operator
with respect to the u variables. It is important to stress that this representation of the generators
is independent of the particular Lagrangian that describes the particle. It depends only on
the kinematical variables (t, r,u) and the usual Galilei gauge function. We write the symbol
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Z = u × U for the angular momentum with respect to the center of charge, related to the
Zitterbewegung motion of the particle and we shall see that quantizes with integer values.

If we de�ne q = r − k = (K + P t)/m, it satis�es the commutation relations with P ,

[qi, Pj ] = iℏ δij ,

which are the canonical commutation relations between the linear momentum and position for
a point particle and therefore these canonical commutation relations between the total linear
momentum and the center of mass position for a spinning particle are already contained in
the commutation relations of the extended Lie algebra of the kinematical group. Therefore the
quantum mechanical operator

q = r − ℏ
im
∇u, (3.30)

can be interpreted as the center of mass position operator. Discussion of other possibilities for
the center of mass position operator can be found in the book by the author.

In this representation, one Casimir operator is the internal energy H−P 2/2m. We see that
the spin operator with respect to the center of mass is de�ned as usual

SCM = J − 1

m
K × P = u×U + k × P = u× ℏ

i
∇u +

ℏ
im
∇u ×

ℏ
i
∇,

which is written in terms of two non-commuting terms. It satis�es

[SCM ,SCM ] = iℏSCM , [J ,SCM ] = iℏSCM , [SCM ,P ] = [SCM , H] = [SCM ,K] = 0,

i.e., it is an angular momentum operator, transforms like a vector under rotations and is invariant
under space and time translations and under Galilei boosts, respectively. The second part of
the spin operator is of order ℏ2 so that it produces a very small correction to the �rst Z part.

The angular momentum operators Z, or spin with respect to the center of charge, satisfy
the commutation relations

[Z,Z] = iℏZ, [J ,Z] = iℏZ, [Z,P ] = [Z, H] = 0,

[Z,K] = −iℏU = −ℏ2∇u,

i.e., Z is an angular momentum operator, transforms like a vector under rotations and is
invariant under space and time translations but not under Galilei boosts. It is usually considered
as the quantum mechanical spin operator, because commutes with H and P .

We see however, that the angular momentum operator J is split into two commuting terms
r × P and Z. They both commute with H, but the �rst one is not invariant under space
translations. The Z operators are angular momentum operators that only di�erentiate the
wave function with respect to the velocity variables, and consequently commute with H and
P , and although it is not the true Galilei invariant spin operator, we can �nd simultaneous
eigenstates of the three commuting operators H−P 2/2m, Z2 and Z3. Because the Z operators
only a�ect the wave function in its dependence on u variables, we can choose functions with
the variables separated in the form Φ(t, r,u) =

∑
i ψi(t, r)χi(u) so that

(H − P 2/2m)ψi(t, r) = Eψi(t, r), (3.31)

Z2χi(u) = z(z + 1)ℏ2χi(u), (3.32)

Z3χi(u) = mzℏχi(u). (3.33)

The space-time dependent wave function ψi(t, r), satis�es Schroedinger's equation and is un-
coupled with the spin part χ(u).
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Due to the structure of Z2 in terms of the u variables, which is that of an orbital angular
momentum, the spin part of the wave function is of the form

χ(u) = f(u)Y mz
z (θ, ϕ), (3.34)

f(u) being an arbitrary function of the modulus of u and Y mz
z (θ, ϕ) the spherical harmonics on

the direction of u.
For the center of mass observer, S = Z and both angular momentum operators are the same.

But for an arbitrary observer, Z operators do not commute with the boosts generators so that
its absolute value is not Galilei invariant, while S is. But the splitting of the wave function into
a multiple-component function that re�ects its spin structure is an intrinsic property that can
be done in any frame.

It turns out that if for a free particle Z is not conserved, r×P is not the conserved orbital
angular momentum, because r does not represent the position of the center of mass of the
particle.

When there is an interaction with an external electromagnetic �eld, equation (3.31) is sat-
is�ed for the mechanical parts Hm = H − eϕ and Pm = P − eA and we thus obtain the usual
equation (

H − eϕ− (P − eA)2

2m

)
ψi(t, r) = Eψi(t, r). (3.35)

This formalism, when the classical spin is of orbital nature, does not lead to half integer
spin values, and therefore, from the quantum mechanical point of view these particles can be
used only as models for representing bosons.

3.2.2 Nonrelativistic spinning particles. Fermions

Other examples of nonrelativistic spinning particles are those which have orientation and
thus angular velocity. For instance, if X = G/R3

v, R3
v being the subgroup {R3,+} of pure

Galilei transformations, then the kinematical space is spanned by the variables (t, r,α). This
corresponds for instance to the Lagrangian system described by

L =
m

2

(
dr

dt

)2

+
I

2
ω2. (3.36)

The particle travels freely at constant velocity while it rotates with constant angular velocity
ω. The classical spin is just S = Iω, and the center of charge and center of mass represent the
same point.

To describe orientation we can think of the three orthogonal unit vectors ei, i = 1, 2, 3
linked to the body, similarly as in a rigid rotator. If initially they are taken parallel to the
spatial Cartesian axis of the laboratory inertial frame, then their nine components considered
by columns de�ne an orthogonal rotation matrix Rij(α) that describes the triad evolution with
the initial condition Rij(t = 0) = δij .

Now, kinematical variables t, r and ρ transform under G in the form

t′(τ) = t(τ) + b, (3.37)

r′(τ) = R(α)r(τ) + vt(τ) + a, (3.38)

ρ′(τ) =
µ+ ρ(τ) + µ× ρ(τ)

1− µ · ρ(τ)
. (3.39)

On the corresponding Hilbert space, the Galilei generators are given by:

H = iℏ
∂

∂t
, P =

ℏ
i
∇, K = mr − t ℏ

i
∇, (3.40)
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J =
ℏ
i
r ×∇+

ℏ
2i
{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} = L+W , (3.41)

∇ρ being the gradient operator with respect to the ρ variables and in the ρ parameterization
of the rotation group.

TheW part comes from the general group analysis. The group generators in this parametriza-
tion Xi will be obtained from (3.39) and according to (1.48) and (1.50). They are obtained
as

Xi =

(
∂ρ′k

∂µi

)∣∣∣∣∣
µ=0

∂

∂ρk
,

that can be written in vector notation as

X = ∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)

They satisfy the commutation relations

[Xi, Xk] = −2ϵiklXl

and therefore the operators Wk = ℏ
2iXk, or in vector notation

W =
ℏ
2i
{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} , (3.42)

will satisfy the angular momentum commutation relations

[W ,W ] = iℏW . (3.43)

In this way since L and W commute among each other, we also get [J ,J ] = iℏJ .
In this example the center of mass and center of charge are the same point, L = r × P is

the orbital angular momentum associated to the center of mass motion and W ≡ S is the spin
operator with respect to the CM. The spin operator commutes with H, P and K and the wave
function can be separated as Φ(t, r,ρ) =

∑
i ψi(t, r)χi(ρ) leading to the equations

(H − P 2/2m)ψi(t, r) = Eψi(t, r), (3.44)

S2χi(ρ) = s(s+ 1)ℏ2χi(ρ), (3.45)

S3χi(ρ) = msℏχi(ρ). (3.46)

Bopp and Haag 5 succeeded in �nding s = 1/2 solutions for the system of equations (3.45)
and (3.46). They are called Wigner's functions 6. Solutions of (3.45) for arbitrary spin s are
but a linear combination of the matrix elements of a (2s + 1) × (2s + 1) irreducible matrix
representation of the rotation group as can be derived from the Peter-Weyl theorem on �nite
representations of compact groups 7,8,9. We shall deal with the s = 1/2 functions in the
Appendix Section 3.5, where explicit expressions and a short introduction to the Peter-Weyl
theorem, will be given.

To describe fermions, the classical particles must necessarily have compact orientation vari-
ables as kinematical variables, otherwise no spin 1/2 values can be obtained when the classical
spin is related only to the zitterbewegung.

5 F. Bopp and R. Haag, Z. Naturforschg. 5a, 644 (1950).
6 L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics. Theory and Application,

Cambridge U. P., Cambridge, England (1989).
7 A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton U. P., Princeton NJ (1957).
8 N. Ja. Vilenkin, Fonctions spéciales et Théorie de la représentation des groups, Dunod, Paris (1969).
9 A.O. Barut and R. Raczka, Theory of group representations and applications, PWN, Warszawa (1980).
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3.3 Photon quantization

If we take axis OZ as the trajectory of the photon, the kinematical variables reduce to
(t, z, α), where α is the orientation of a Cartesian frame with one of the axis along OZ and α
represents the rotated angle of this local frame while moving along OZ. The Lagrangian which
describes a classical photon of spin S and helicity ϵ = ±1, is described in section 2.5.1,

L̃ = ϵS
żα̇

cṫ
.

The Noether cosntants of the motions are

H = −∂L̃
∂ṫ

= ϵSω, Pz =
∂L̃

∂ż
= ϵSω/c = ϵSk, Sz =

∂L̃

∂α̇
= ϵS,

with ω = dα/dt is the angular velocity of the local frame, and k = ω/c the wave number. For
the photon ϵω > 0 and ϵω < 0 for the antiphoton. In this way H > 0 and Pz > 0 for the photon
and negative for the antiphoton. According to Planck this particle represents a quantum of
electromagnetic energy of value hν, where ν is the frequency of the radiation. If we identify
with the angular frequency of the particle, this implies that H = S2πν = hν, and therefore the
value S = ℏ. From the quantum point of view the spin Sz can only take the integer values ±ℏ,
and the particle represents a boson. If the spin were di�erent than that value, the energy of the
photon will not be ℏω = hν. To single out a unique solution between the extremal values of the
kinematical variables is not su�cient to �x t1, z1, α1 with 0 ≤ α1 ≤ 2π and the same kind of
values at 2. We also need to give the complete number of turns n rotated by the particle, such
that the �nal phase will be expressed as 2πn+ α2, con 0 ≤ α2 ≤ 2π. In this way

ω =
2πn+ α2 − α1

t2 − t1
, z2 − z1 = c(t2 − t1).

In the quantum case, the selfadjoint generators of translations and rotations are

H = iℏ
∂

∂t
, Pz = −iℏ

∂

∂z
, Sz = −iℏ

∂

∂α
.

The wave function which describes the states of the photon will be a squared integrable function
ψ(t, z, α), which is an eigenvector of these three commuting generators. We can take the solution
in separate variables

ψ(t, z, α) = e−iϵωteiϵkzeiϵα = exp(−iϵ(ωt− kz − α)),

which is an eigenvector with the corresponding eigenvalues. This corresponds with the descrip-
tion given in (3.48) once the two spin sates have been replaced by the two component column
vector. The identi�cation of these two polarization states corresponds to

eiα −→
(
1
0

)
, e−iα −→

(
0
1

)
.

In this basis the representation of the spin operator is reduced to

Sz = ℏ
(
1 0
0 −1

)
.

These two basic states correspond to photons of circularly polarized light, left and right, re-
spectively. If we include the eigenstates of the antiphoton then the vector state will be a four
column vector.
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In this way any polarized photon will be a linear combination

ψ(t, z) = ei(kz−ωt)

(
a
b

)
, |a|2 + |b|2 = 1

and it looks like a plane wave, travelling along the positive direction of the axis OZ. The action
funtion between the initial and �nal states, takes the form

A(x1, x2) = ϵℏ
(z2 − z1)(2πn+ α2 − α1)

c(t2 − t1)
= ϵℏ(2πn+ α2 − α1) = ϵℏω(t2 − t1),

if we consider that (z2 − z1)/(t2 − t1) = c. In units of ℏ this function is the phase of the wave
function, or state of the photon, according to Feynman.

Since the values of the observables H, Pz and Sz are de�ned accurately because they are
eigenfunctions of all of them, the corresponding conjugate variables have a great uncertainty.
In fact, since the commutators are [t,H] = −iℏ, [z, Pz] = iℏ, [α, Sz] = iℏ, this implies that

∆t∆H ≥ |[t,H]| = ℏ, ∆z∆Pz ≥ |[z, Pz]| = ℏ, ∆α∆Sz ≥ |[α, Sz]| = ℏ,

which means that we cannot locate exactly the photon and its phase is unobservable.
The measure to de�ne the scalar product at constant t can be

< ψ|ϕ >= 1

(z2 − z1)(2πn+ α2 − α1)

∫ z2

z1

∫ 2πn+α2

α1

ψ∗ϕ dzdα,

extended to the whole range of the kinematical variables during this evolution. Therefore, the
expected value of the position operator in any one of these states is

< z >=< ψ|z|ψ >= 1

(z2 − z1)(2πn+ α2 − α1)

∫ z2

z1

∫ 2πn+α2

α1

z dzdα =
1

2
(z1 + z2),

i.e., the middle point z̄ of the trajectory, and its uncertainty

(∆z)2 =< (z− < z >)2 >=
1

3
(z21 + z1z2 + z22)−

1

4
(z1 + z2)

2 =
1

12
(z2 − z1)2.

The uncertainty ∆z = (z2− z1)/3.46, and therefore the probability of �nding the photon in the
range z̄ ±∆z, is of 68%.
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3.4 Appendix: Light polarization states

The internal part of the wave function which describes the spin states of the photon is a two-
dimensional complex Hilbert space C2. Therefore any pure state is described by a vector |Φ >∈
C2 of unit norm, < Φ|Φ >= 1. Non pure states, or statistical mixtures, will be characterized by
density operators ρ, i.e., selfadjoint operators of unit trace. They will be represented as 2 × 2
hermitian matrices of unit trace.

The set of hermitian matrices 2 × 2 is a real four-dimensional vector space, and a basis of
this vector space can be given by the four linearly independent hermitian matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3.47)

and every hermitian matrix can be expressed in the form ρ = aµσµ with aµ ∈ R, four real
numbers. The condition that ρ represents some state is that its trace is 1, which leads to
a0 = 1/2. If ρ is a pure state, also called a vector state, then ρ = |Φ >< Φ| in terms of the
vector |Φ >, and it results a projection operator. Pure states are characterized by the condition
ρ2 = ρ, and thus Trρ2 = Trρ = 1, while for any arbitrary state Trρ2 ≤ Trρ = 1.

This condition, taking into account that Trσµσν = 2δµν , leads to 2(a0)
2
+ 2a2 ≤ 1, and

since a0 = 1/2, a2 ≤ 1/4, and we can characterize any state by a real three-dimensional vector
a, of absolute value |a| ≤ 1/2, being 1/2 in the case of a pure state. The set of states of light
will be given by the points of a sphere in R3 of radius 1/2, sometimes called the Poincaré
sphere, where the points on its surface represent the pure or vector states, while the points
of the interior represent the mixture states. The set of all states is a convex set such that any
state can be described as a convex linear combination of pure states.

This kind of description is completely general for quantum systems with two basic internal
states. In this case it describes polarized photons whose Hilbert space of states can be realized
as L2(R3) ⊗ C2, where the two possible states of polarization are described by the part C2 of
this Hilbert space. Let us assume that at time t we have the vector |Ψ >:

|Ψ > =

(
α
β

)
exp(i(kz − ωt)) (3.48)

where α and β are two complex numbers such that |α|2 + |β|2 = 1. It is an eigenvector of
the operator H = iℏ∂/∂t with eigenvalue ℏω, and of the operator P = −iℏ∇ with eigenvalue
(0, 0, ℏk). If we write α = a exp(iδa) and β = b exp(iδb) and represent the state with the phase
of the �rst component real, then

|Ψ > =

(
α
β

)
exp(i(kz − ωt)) =

(
a
beiδ

)
exp(i(kz − ωt+ δa)) (3.49)

where δ = δb − δa .
The projection operator on this state is |Ψ >< Ψ| given by:

|Ψ >< Ψ| =
(

a2 abe−iδ

abeiδ b2

)
=

(
a0 + a3 a1 − ia2
a1 + ia2 a0 − a3

)
(3.50)

and the four-vector related to it is:

[(a2 + b2)/2, ab cos δ, ab sin δ, (a2 − b2)/2], 2a0 ≡ a2 + b2 = 1. (3.51)

In terms of the three-dimensional vector a, the di�erent pure states are the points of the surface
of the sphere of radius 1/2 of the �gure, while mixed states are points of the interior.



176 CHAPTER 3. QUANTIZATION OF THE MODELS

Figure 3.2: The Poincaré sphere represents the di�erent states of polarization of light. The
surface of the sphere represents the pure states or vector states, while the inner points
represent mixture states characterized by density operators ρ. The sphere is a convex set.

In particular the orthogonal states
(
1
0

)
and

(
0
1

)
give rise to the projection operators(

1 0
0 0

)
and

(
0 0
0 1

)
described respectively by the vectors a And −a. The vector a ≡

(0, 0, 1/2), is the North pole and the vector −a ≡ (0, 0,−1/2) is the South pole of the sphere.
If Ea and Eb are two projection operators characterized by the vectors a and b, respectively

and they represent orthogonal states, then EaEb = 0. In terms of Pauli matrices EaEb =
aµbνσµσν = 0, and taking the trace of this, taking into account that a0 = b0 = 1/2, we get
(1/4 + a · b) = 0, and since a and b are of modulus 1/2, the solution is a = −b. Orthogonal
pure states are represented by opposite points on the surface of the sphere. Taking by pairs
they characterize every possible ortonormal basis of C2. This means that every pure state is
expressed as a coherent superposition of any of these two orthogonal states and any other state
as a linear convex combination of pure states.

3.4.1 Stokes' parameters

The above description of the polarization states in terms of the four-vector aµ is equivalent
to the description made by Stokes (1852). If we have an elliptic polarized wave where the electric
�elds are

Ex = a cos(kz − ωt), Ey = b cos(kz − ωt+ δ),

the �eld describes on the plane XOY an ellipse contained in the rectangle of sides 2a and
2b. 10 The points of contact of the ellipse with the rectangle are A,A′ ≡ (±a,±b cos δ) and
B,B′ ≡ (±a cos δ,±b). The Stokes' parameters are

s0 = a2 + b2, s1 = a2 − b2, s2 = 2ab cos δ, s3 = 2ab sin δ,

which are not independent since s20 = s21 + s22 + s23 and where s0 represents the intensity of the
electromagnetic wave. If we compare them with the previous description s0 = 2a0, s1 = 2a3,
s2 = 2a1 and s3 = 2a2. The radius of the Poincaré sphere in this case is not 1/2 but it is s0. The
poles N and S represent circularly polarized light right and left, respectively. We can interpret

10M. Born and E. Wolf, Principles of Optics, Cambridge Univ. Press, (1993), ch.1
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Figure 3.3: Electric �eld of an elliptic polarized wave.

the quantum decription of the photon in such a way that the real part of a non-normalized wave
function would represent the transversal part of the electric �eld associated to the photon. The
normalization of the wave function would be interpreted as the density of energy of the photon.
The di�erent elliptic polarized states are in correspondence with the pure states of the quantum
description.

3.4.2 Coherent Superposition

If we have two pure states |Φ > and |Ψ >, the vector α|Φ > +β|Ψ > once normalized will
represent another pure state and we say that it is the coherent superposition of both states. In
this case the relative phase of both vectors is important.

Lat us assume that we take the two states
(
1
0

)
exp(i(kz − ωt)) and

(
0
1

)
exp(i(kz − ωt)),

and that α ans β are taken real with the condition α2 + β2 = 1. Then the vector state of this

superposition is
(
α
β

)
exp(i(kz−ωt)) and because the projector is

(
α2 αβ
αβ β2

)
it is represented

on the surface of the sphere by [αβ, 0, (α2 − β2)/2] and therefore on the meridian of the plane
XOZ at the point P represented in the �gure 3.4 where NP = β and PS = α.

In fact, a3 = (α2 − β2)/2 = 1/2 − β2 = α2 − 1/2, and the distances of the point P to
the tangent planes through the poles are β2 and α2, respectively. If α = β, the representative
point will be on the Equator. These values α2 and β2 are the probabilities that our state will
be either N or S, respectively, or the proportion of the states N and S which are used in the
construction of the new state.

If α and β are in general complex, once the phase of α has been neglected, the state is reduced
to (3.50) and (3.51), and the coherent superposition with the same a And b and di�erent δ,
will produce all points of the same parallel. The angle δ is the azimuth in the clockwise sense
around an axis from the second state to the �rst.

The situation is completely symmetric if we make it from any two arbitrary orthogonal
states. We have on the sphere two opposite points. We determine �rst the superposition with
α = β = 1/

√
2, which gives rise the position of the corresponding meridian. From now on we

rotate clockwise an angle δ, and the parallel will correspond of the relative values a and b.
The coherent superposition is performed on the surface of the sphere, such that to every
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Figure 3.4: The point P represents the coherent superposition of the two states N and S
with real coe�cients α and β.

Figure 3.5: The point P is the coherent superposition of N And S with coe�cients a and
beiδ.
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pair of opposite points given the numbers a and beiδ, there corresponds another point of the
surface obtained by the above method.

3.4.3 Incoherent superposition

Let |Φ1 > and |Φ2 > two orthogonal pure states characterized by the projection operators E1

and E2, respectively and for the real vectors a and−a. If we de�ne the state ρ = αE1+(1−α)E2,
with 0 < α < 1, it represents an incoherent superposition of both states proportionally to α
and 1 − α. In this representation, the resultant vector is αa − (1 − α)a = (2α − 1)a. The
characteristic point in the �gure 3.6, is in the line joining the two pure states, in such a way
that PA = (1− α) and PB = α. It is the center of mass of two masses α and (1− α) located
at A and B, respectively.

Figure 3.6: The point P is the incoherent superposition of the pure states A and B propor-
tionally to α and 1− α, respectively.

We can interpret the incoherent superposition as the center of mass of all possible coherent
superpositions with the same proportions A and B, where the relative phase is left free. In this
case we shall obtain all possible states of the parallel separated of the Poles by (1− α) and α,
respectively.

If ρ1, ρ2, . . . , ρk are k pure states, and therefore represented by points on the surface of
the sphere and α1, α2, . . . , αk, 0 ≤ αi ≤ 1 such that

∑
αi = 1, then ρ =

∑
αiρi is said the

incoherent mixture, with weights αi of the k pure states ρi. The representative point will be
given by the center of mass of the corresponding points ρi with weights of value αi. The pure
states are the only states which can never be obtained as a convex linear combination of other
pure states.

The incoherent superposition becomes the convex linear combination of vectors of R3, on
the surface of the sphere of radius 1/2.

3.4.4 Filters

Filters are observables such that acting on any state of the quantum system it is projected
into a possible pure state. They are represented by the projection operator on the state onto
they project. If the initial state of the photon is ρ, then the measurement of the �lter E
in the state ρ is given by < E >= TrρE, while the photon goes after measurement into a
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new state ρ′ = EρE/Tr(ρE). For exemple, let us assume that ρ1 =

(
1 0
0 0

)
and E is the

projection operator onto the state given by the vector a of components [0,
√
3/4, 1/4], i.e.,

E =

(
3/4 −

√
3i/4√

3i/4 1/4

)
. The expected value of E in the state ρ1 is 3/4, which precisely the

proportion in which the state E is produce by the superposition of ρ1 and its orthogonal state.
After the measurement, the state of the photon is:

ρ′ = Eρ1E/Tr(ρ1E) = (4/3)Eρ1E =

(
3/4 −

√
3i/4√

3i/4 1/4

)
= E

i.e, the state E.

From the vector point of view, because the state is a vector state |ρ1 >≡
(
1
0

)
and therefore

the expected value < E; ρ1 >=< ρ1|Eρ1 >= 3/4 and the �nal state will be |ρ′1 >= E|ρ1 >

/||E|ρ1 > || =
(√

3/2
i/2

)
which is precisely the state E, because |ρ′1 >< ρ′1| = E.

If the initial state is not a pure state, for example ρ2 =
(
3/4 0
0 1/4

)
, which corresponds to

an incoherent superposition of 3/4 of the previous state ρ1 and 1/4 of its orthogonal state, then
< E; ρ2 >= Trρ2E = 5/8, i.e., that part of ρ2 which is projected into E, and the �nal state ρ′2
is anew the state E.

If the initial state is the completely incoherent state, like the one given by the density

operator ρ3 =

(
1/2 0
0 1/2

)
, represented by the point O, Then < E; ρ3 >= 1/2, because that

incoherent state can also be made from E and the 50% of its orthogonal state.
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3.5 Appendix: Spinors

In this section of mathematical content we shall review the main properties of spinors, in
particular those connected with the possible representation of the wave function to describe spin
1/2 particles. We shall describe the representations in terms of eigenfunctions of the di�erent
commuting spin operators. But it must be remarked that in addition to the spin operators in
the laboratory frame we also have spin operators projected on the body frame, because our
general spinning particle has orientation, and therefore, a local Cartesian frame linked to its
motion. This produces the result that for a spin 1/2 particle the wave function necessarily is a
four-component object.

All calculations in this Appendix can be obtained in the Mathematica11 notebook �le by
the author http://tp.lc.ehu.es/documents/SpinorsNotesBilbao.nb.

The general wave function is a function of the ten kinematical variables, Φ(t, r,u,ρ), and
the spin with respect to the center of charge is related to the kinematical variables u and ρ, as

S = u×U +W = Z +W , (3.52)

where Z and W are given by

Z = u× ℏ
i
∇u, W =

ℏ
2i
{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} , (3.53)

in the tan(α/2) representation of the rotation group, as has been deduced in previous sections.
∇u and ∇ρ are respectively the gradient operators with respect to u and ρ variables. These
operators always commute with the H = iℏ∂/∂t and P = −iℏ∇ operators, and therefore
they are translation invariant. This feature allows the separation of the general wave function
in terms of space-time variables and velocity-orientation variables to describe the translation
invariant properties of the system.

The above spin operators satisfy the commutation relations

[Z,Z] = iℏZ, [W ,W ] = iℏW , [Z,W ] = 0, (3.54)

and thus
[S,S] = iℏS.

3.5.1 Unit vectors

Because we are describing the orientation of the particle by attaching to it a system of three
unit vectors ei, whose orientation in space is described by variables ρ or α, then, if at initial
instant τ = 0 we choose the body axes coincident with the laboratory axes, the components of
the unit vectors ei at any time are

(ei)j = Rji(α) = δji cosα+ njni(1− cosα)− ϵjiknk sinα, (3.55)

in the normal parameterization and also in the ρ parameterization by

(ei)j = Rji(ρ) =
1

1 + ρ2
((1− ρ2)δji + 2ρjρi − 2ϵjikρk), (3.56)

where the Cartesian components of the rotation axis unit vector n are:

n1 = sin θ cosϕ, n2 = sin θ sinϕ, n3 = cos θ, (3.57)

11Mathematica is the registered computer program edited by Wolfram
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where θ is the polar angle and ϕ the usual azimuth angle. Explicitly:

e11 = cosα+ sin2 θ cos2 ϕ(1− cosα),

e12 = cos θ sinα+ sin2 θ sinϕ cosϕ(1− cosα),

e13 = − sin θ sinϕ sinα+ sin θ cos θ cosϕ(1− cosα),

e21 = − cos θ sinα+ sin2 θ sinϕ cosϕ(1− cosα),

e22 = cosα+ sin2 θ sin2 ϕ(1− cosα),

e23 = sin θ cosϕ sinα+ sin θ cos θ sinϕ(1− cosα),

e31 = sin θ sinϕ sinα+ sin θ cos θ cosϕ(1− cosα),

e32 = − sin θ cosϕ sinα+ sin θ cos θ sinϕ(1− cosα),

e33 = cosα+ cos2 θ(1− cosα),

in the α = αn, or normal parametrization of the rotation group. In the ρ = tan(α/2)n
parametrization the body frame is

e11 = (1 + ρ21 − ρ22 − ρ23)/(1 + ρ2),

e12 = (2ρ1ρ2 + 2ρ3)/(1 + ρ2),

e13 = (2ρ1ρ3 − 2ρ2)/(1 + ρ2),

e21 = (2ρ2ρ1 − 2ρ3)/(1 + ρ2),

e22 = (1− ρ21 + ρ22 − ρ23)/(1 + ρ2),

e23 = (2ρ2ρ3 + 2ρ1)/(1 + ρ2),

e31 = (2ρ1ρ3 + 2ρ2)/(1 + ρ2),

e32 = (2ρ3ρ2 − 2ρ1)/(1 + ρ2),

e33 = (1− ρ21 − ρ22 + ρ23)/(1 + ρ2),

where ρ2 ≡ ρ21 + ρ22 + ρ23 = tan2(α/2).

3.5.2 Spin projection on the unit vectors

In addition to the di�erent components of the spin operators Si, Zi andWi in the laboratory
frame, we also have another set of spin operators. They are the spin projections on the body
axes ei, i.e., the operators Ri = ei ·S, Mi = ei ·Z and Ti = ei ·W , respectively. In particular,
spin operators Ti, collecting terms from (3.56) and (3.53), take the expression

Ti =
k=3∑
k=1

(ei)kWk =
ℏ

2i(1 + ρ2)

k=3∑
k=1

(
(1− ρ2)δik + 2ρiρk − 2ϵkijρj

)
×
(

∂

∂ρk
+ ϵklrρl

∂

∂ρr
+ ρk(ρ · ∇ρ)

)
,

and after some tedious manipulations we reach the �nal result, written in vector notation as

T =
ℏ
2i
{∇ρ − ρ×∇ρ + ρ(ρ · ∇ρ)} . (3.58)



3.5. APPENDIX: SPINORS 183

We see, by inspection, that this result can also be obtained from the expression of W in (3.53),
just by replacing ρ by −ρ, followed by a global change of sign. This is because we describe the
orientation of the particle by vector ρ in the laboratory frame from the active viewpoint, i.e.,
with the laboratory reference frame �xed. However, its orientation with respect to the body
frame is described by the motion of the laboratory frame, whose orientation for the body is
−ρ, and the global change of sign comes from the change from the active point of view to the
passive one. This is the di�erence in the spin description in one frame or another.

It satis�es the following commutation relations

[T ,T ] = −iℏT , [T ,W ] = 0.

and in general all spin projections on the body frame Ri, Mi and Ti, commute with all the spin
projections on the laboratory frame Si, Zi and Wi. This is in agreement with the quantum
mechanical uncertainty principle, because spin components with respect to di�erent frames are
compatible observables.

3.5.3 Spinor wave functions

To �nd eigenstates of the spin operator we have to solve equations of the form:

S2χ(u,ρ) = s(s+ 1)ℏ2χ(u,ρ), S3χ(u,ρ) = mℏχ(u,ρ).

But we also have the orientation of the particle, and therefore the spin projections on the
body axes. These projections commute with S2 and S3, and it is possible to choose another
commuting spin operator, like the T3 operator, and therefore our wave function can be taken
also as an eigenvector of T3,

T3χ(u,ρ) = nℏχ(u,ρ),

so that the complete commuting set of operators that describe the spin structure must also
include spin projections on the body axes.

The spin squared operator is

S2 = Z2 +W 2 + 2Z ·W , (3.59)

and we see from (3.54) is expressed as the sum of three commuting terms and its eigenvectors
can be obtained as the simultaneous eigenvectors of the three commuting operators on the
right-hand side of (3.59). Operators Z and W produce derivatives of the wave function with
respect to u and ρ variables, separately. Thus, each χ(u,ρ) can again be separated as

χ(u,ρ) =
∑
j

Uj(u)Vj(ρ), (3.60)

where the sum runs over a �nite range, and where Uj(u) will be eigenfunctions of Z2 and Vj(ρ)
of W 2, respectively.

Functions Uj(u) are multiples of spherical harmonics de�ned on the orientation of the ve-
locity vector u, because the Z operator has the structure of an orbital angular momentum in
terms of the u variables, and thus its eigenvalues are integer numbers. The global factor left
out is an arbitrary function depending on the absolute value of the velocity u.

In fact, if the velocity is expressed in polar spherical coordinates, u ≡ (u, β, λ), where β is
the polar angle and λ the azimuthal angle

ux = u sinβ cosλ, uy = u sinβ sinλ, uz = u cosβ,
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the components of the angular momentum Zi are:

Z1 = iℏ
(
sinλ

∂

∂β
+

cosβ

sinβ
cosλ

∂

∂λ

)
, Z2 = −iℏ

(
cosλ

∂

∂β
− cosβ

sinβ
sinλ

∂

∂λ

)
, Z3 = −iℏ

∂

∂λ
,

Z± = Z1 ± iZ2 = ℏe±iλ

{
± ∂

∂β
+ i

cosβ

sinβ

∂

∂λ

}
. (3.61)

We see that they are independent of the variable u, because the rotation group is not acting on
the whole R3 space but only on the surface of the unit sphere, parameterized by β and λ.

The operator Z2 commutes with th three Zi, and takes the form

Z2 = −ℏ2
[
∂2

∂β2
+

cosβ

sinβ

∂

∂β
+

1

sin2 β

∂2

∂λ2

]
. (3.62)

We have to search for eigenfucntions of Z2 and Z3 in separate variables in the form f(u)G(β, λ),
with f(u) arbitrary and as far as the angular part is concerned

Z2 Y m
l (β, λ) = l(l + 1)ℏ2Y m

l (β, λ), Z3 Y
m
l (β, λ) = mℏY m

l (β, λ).

Only solutions for integer eigenvalues of l andm = −l,−l+1, . . . , l, can be found for this system
of di�erential equations.

The functions |l,m >≡ Y m
l (β, λ), de�ned on the unit sphere, are called spherical har-

monics. The normalized rotational invariant measure on the unit sphere is∫ π

0
dβ

∫ 2π

0

1

4π
sinβdλ = 1 (3.63)

The spherical harmonics are orthogonal with respect to the hermitian scalar product de�ned by

< l,m|s, n >= 1

4π

∫ 2π

0
dλ

∫ π

0
sinβdβ Y m∗

l (β, λ)Y n
s (β, λ) = δmnδls,

i.e., with respect to the normalized invariant measure on the unit sphere (1/4π) sinβdβdλ.
The solution of this system is to �nd functions Y l

l (β, λ) of the separate variables Y l
l (β, λ) =

Al(β)Bl(λ), which satisfy

Z+Al(β)Bl(λ) = 0, Z3Al(β)Bl(λ) = lℏAl(β)Bl(λ),

i.e.,
A′

l − l(cosβ/ sinβ)Al = 0, −iB′
l = lBl.

They have to be proportional to the functions Al(β) ≃ sinl β and Bl(λ) ≃ exp(ilλ). Because
on the unit sphere the point (β, λ) is the same than the point (β, λ + 2π), it implies that
exp(ilλ) = exp(il(λ+ 2π)), and therefore necessarily l must be an integer number.

These functions, normalized with respect to the measure (3.63) can be written as

Y l
l (β, λ) = (−1)l

√
(2l + 1)(2l)!

22l(l!)2
sinl β eilλ, (3.64)

and the remaining eigenvectors are obtained by the action on them of the operator Z−. There
are no half integer eigenvectors, because the surface of the unit sphere is not the most general
homogeneous space of the rotation group. We can see that Y m∗

l = (−1)mY −m
l , and the �rst

normalized spherical harmonics are:
|0, 0 >= 1,
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|1, 1 >= −
√

3

2
sinβ eiλ, |1, 0 >=

√
3 cosβ, |1,−1 >=

√
3

2
sinβ e−iλ, (3.65)

|2, 2 >=
√

15

8
sin2 β e2iλ, |2, 1 >= −

√
15

2
sinβ cosβ eiλ, |2, 0 >=

√
5

4
(3 cos2 β − 1).

It turns out that to �nd the most general spinor is necessary to seek also solutions of the Vj(ρ)
part, depending on the orientation variables. This goal will be achieved in the next section,
where we consider the action of the rotation group on itself as a transformation group.

3.5.4 Spinor representation on SU(2)

We shall describe now in detail the orientation part of the general wave function, Vi(ρ).
If there is no contribution to spin from the zitterbewegung part Z, the spin operator (3.52)
reduces to the W operator given in (3.53). To solve the corresponding eigenvalue equations we
shall �rst represent the spin operators in spherical coordinates.

If we represent vector ρ = tan(α/2)n = rn in spherical coordinates (r, θ, ϕ), with r = |ρ| =
tan(α/2) and θ and ϕ the usual polar and azimuth angles, respectively, then unit vector n has
the Cartesian components given in (3.57). If from now on we take ℏ = 1, the spin operators
(3.53) are represented by the di�erential operators

W1 =
1

2i

[
(1 + r2) sin θ cosϕ

∂

∂r
+

(
1

r
cos θ cosϕ− sinϕ

)
∂

∂θ
−
(

sinϕ

r sin θ
+

cos θ cosϕ

sin θ

)
∂

∂ϕ

]
,

W2 =
1

2i

[
(1 + r2) sin θ sinϕ

∂

∂r
+

(
1

r
cos θ sinϕ+ cosϕ

)
∂

∂θ
−
(
cos θ sinϕ

sin θ
− cosϕ

r sin θ

)
∂

∂ϕ

]
,

W3 =
1

2i

[
(1 + r2) cos θ

∂

∂r
− sin θ

r

∂

∂θ
+

∂

∂ϕ

]
.

The Casimir operator of the rotation group W 2 is:

W 2 = −1 + r2

4

[
(1 + r2)

∂2

∂r2
+

2(1 + r2)

r

∂

∂r
+

1

r2

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

}]
.

The up and down spin operators de�ned as usual by W± =W1 ± iW2 are

W+ =
eiϕ

2i

[
(1 + r2) sin θ

∂

∂r
+

(
cos θ + ir

r

)
∂

∂θ
−
(
r cos θ − i
r sin θ

)
∂

∂ϕ

]
,

W− =
e−iϕ

2i

[
(1 + r2) sin θ

∂

∂r
+

(
cos θ − ir

r

)
∂

∂θ
−
(
r cos θ + i

r sin θ

)
∂

∂ϕ

]
.

They satisfy the commutation relations

[W3,W+] =W+, [W3,W−] = −W−, [W+,W−] = 2W3.

We can check that (Wi)
∗ = −Wi and W+ = −(W−)

∗, where ∗ means to take the complex
conjugate of the corresponding operator.

If Fm
s (r, θ, ϕ) is an eigenfunction of W 2 and W3, it satis�es the di�erential equations:

W 2Fm
s (r, θ, ϕ) = s(s+ 1)Fm

s (r, θ, ϕ), W3F
m
s (r, θ, ϕ) = mFm

s (r, θ, ϕ).

To �nd solutions of the above system we know that we can proceed in the following way. Let
us compute �rst the eigenfunctions of the form F s

s . Then operator W+ annihilates this state
W+F

s
s = 0 and by acting on this function with operator W− we can obtain the remaining
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eigenstates Fm
s of the same irreducible representation characterized by parameter s and for

−s ≤ m ≤ s. Then our task will be to obtain �rst the F s
s functions.

Now, let us consider eigenfunctions F s
s that can be written in separate variables as F

s
s (r, θ, ϕ) =

A(r)B(θ)C(ϕ). Then
W3A(r)B(θ)C(ϕ) = sA(r)B(θ)C(ϕ)

gives rise to

(1 + r2) cos θA′BC − sin θ

r
AB′C +ABC ′ = 2isABC

where A′ is the derivative of A and so on, and by dividing both sides by ABC we have

(1 + r2) cos θ
A′(r)

A(r)
− sin θ

r

B′(θ)

B(θ)
+
C ′(ϕ)

C(ϕ)
= 2is.

Now, the third term on the left-hand side must be a constant, because the remaining terms
are functions independent of ϕ. Therefore, this term is written as C ′(ϕ)/C(ϕ) = ik and thus
C(ϕ) = eikϕ up to an arbitrary constant factor. Since C(ϕ + 2π) = C(ϕ) this implies that the
constant k must be an integer. The other two functions satisfy

r(1 + r2) cos θA′B − sin θAB′ + ir(k − 2s)AB = 0. (3.66)

If there exist solutions with real functions A and B, then necessarily k = 2s so that the
eigenvalue s can be any integer or half integer, and equation (3.66) can be separated in the
form:

r(1 + r2)
A′(r)

A(r)
=

sin θ

cos θ

B′(θ)

B(θ)
= p = constant, (3.67)

where, up to constant factors, the general solution is

A(r) =

(
r2

1 + r2

)p/2

, B(θ) = (sin θ)p.

By acting on this solution F s
s ≡ A(r)B(θ)C(ϕ), with W+, since W+F

s
s = 0, it gives:

r(1 + r2) sin2 θA′B + (sin θ cos θ + ir sin θ)AB′ − 2s(ir cos θ + 1)AB = 0.

By dividing all terms by AB, taking into account (3.67), we get the condition (p − 2s)(1 +
ir cos θ) = 0. Then there exist real solutions in separate variables whenever p = 2s = k. They
are given, up to a constant factor, by

F s
s (r, θ, ϕ) =

(
r2

1 + r2

)s

(sin θ)2sei2sϕ. (3.68)

For s = 1/2 and after the action of W− we obtain the two orthogonal spinors

Ψ
1/2
1/2 =

r√
1 + r2

sin θ eiϕ, W−Ψ
1/2
1/2 = Ψ

−1/2
1/2 =

r cos θ + i√
1 + r2

,

that produce a two-dimensional representation of the rotation group. We can similarly check
that W−Ψ

−1/2
1/2 = 0.

By inspection of the structure of W± operators, if we take the complex conjugate of expres-
sion W+F

s
s = 0 we get −W−(F

s
s )

∗ = 0 and therefore (F s
s )

∗ ∼ G−s
s so that taking the complex

conjugate spinors of the above representation we obtain another pair of orthogonal s = 1/2
spinors,

Ψ̃
1/2
1/2 =

r cos θ − i√
1 + r2

, Ψ̃
−1/2
1/2 =

r√
1 + r2

sin θ e−iϕ.
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The remaining representations for higher spins can thus be obtained by the same method,
or by taking tensor products of the above two-dimensional representations. For instance, for
s = 1 we can obtain the following three orthogonal representations. From (3.68) with s = 1
and acting with the W− operator we get

Ψ1
1 = (Ψ

1/2
1/2)

2 =
r2

1 + r2
sin2 θ ei2ϕ,

Ψ0
1 = (Ψ

1/2
1/2)(Ψ

−1/2
1/2 ) =

r

1 + r2
sin θ (i+ r cos θ) eiϕ,

Ψ−1
1 = (Ψ

−1/2
1/2 )2 =

(i+ r cos θ)2

1 + r2
,

that can also be obtained as the tensor product Ψ⊗Ψ.
If we work in the normal or canonical representation of the rotation group, where the

parameters are α = αn, this amounts to replacing the variable r = tan(α/2) in terms of
parameter α and expressing the di�erential operator ∂/∂r in terms of ∂/∂α, and then the spin
operators are given by

W1 =
1

2i

[
2 sin θ cosϕ

∂

∂α
+

(
cos θ cosϕ

tan(α/2)
− sinϕ

)
∂

∂θ
−
(

sinϕ

tan(α/2) sin θ
+

cos θ cosϕ

sin θ

)
∂

∂ϕ

]
,

W2 =
1

2i

[
2 sin θ sinϕ

∂

∂α
+

(
cos θ sinϕ

tan(α/2)
+ cosϕ

)
∂

∂θ
−
(
cos θ sinϕ

sin θ
− cosϕ

tan(α/2) sin θ

)
∂

∂ϕ

]
,

W3 =
1

2i

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
+

∂

∂ϕ

]
,

W 2 = −
[
∂2

∂α2
+

1

tan(α/2)

∂

∂α
+

1

4 sin2(α/2)

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

}]
,

W+ =
eiϕ

2i

[
2 sin θ

∂

∂α
+

(
cos θ

tan(α/2)
+ i

)
∂

∂θ
−
(
cos θ tan(α/2)− i
tan(α/2) sin θ

)
∂

∂ϕ

]
,

W− =
e−iϕ

2i

[
2 sin θ

∂

∂α
+

(
cos θ

tan(α/2)
− i
)
∂

∂θ
−
(
cos θ tan(α/2) + i

tan(α/2) sin θ

)
∂

∂ϕ

]
and the orthogonal spinors of the two two-dimensional representations can be written as

Ψ
1/2
1/2 = i sin

α

2
sin θ eiϕ, Ψ

−1/2
1/2 = cos

α

2
− i sin α

2
cos θ (3.69)

and
Ψ̃

1/2
1/2 = cos

α

2
+ i sin

α

2
cos θ, Ψ̃

−1/2
1/2 = −i sin α

2
sin θ e−iϕ. (3.70)

We have mentioned that the di�erent spinors are orthogonal. To endow the group manifold
with a Hilbert space structure it is necessary to de�ne a hermitian, de�nite positive, scalar
product. The Jacobian matrix of variables ρ′ in terms of variables ρ given in (3.39), has the
determinant

det

(
∂ρ′i

∂ρj

)
=

(1 + µ2)2

(1− µ · ρ)4
,

and thus the transformation of the volume element

d3ρ′ =
(1 + µ2)2

(1− µ · ρ)4
d3ρ.
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We also get from (3.39) that

1 + ρ′
2
=

(1 + µ2)

(1− µ · ρ)2
(1 + ρ2)

and then the measure

d3ρ′

(1 + ρ′2)2
=

(
(1− µ · ρ)2

(1 + µ2)(1 + ρ2)

)2
(1 + µ2)2

(1− µ · ρ)4
d3ρ =

d3ρ

(1 + ρ2)2

is in fact an invariant measure.
In spherical coordinates it is written as

r2 sin θ

(1 + r2)2
drdθdϕ

and in the normal representation is

sin2(α/2) sin θdαdθdϕ.

Since the rotation group is a double-connected group, the above measure must be de�ned
on a simply connected manifold, i.e., on the universal covering group of SO(3), which is SU(2).
The SU(2) group manifold in the normal representation is given by the three-dimensional sphere
of radius 2π and where points on the surface of this sphere represent a unique SU(2) element,
namely the 2× 2 unitary matrix −I. The normalized invariant measure becomes

dµN (α, θ, ϕ) ≡ 1

4π2
sin2(α/2) sin θ dα dθ dϕ. (3.71)

Therefore, the hermitian scalar product will be de�ned as

< f |g >= 1

4π2

∫ 2π

0
dα

∫ π

0
dθ

∫ 2π

0
dϕ f∗(α, θ, ϕ)g(α, θ, ϕ) sin2(α/2) sin θ, (3.72)

where f∗ is the complex conjugate function of f .
All the previous computed spinors are orthogonal vectors with respect to the group invariant

measure (3.71). In particular, the normalized s = 1/2 spinors are those given in (3.69)-(3.70),
multiplied by

√
2.

The spin projection operators on the body axis ei linked to the particle, are given in (3.58)
in the ρ parametrization, and we have seen that they di�er from the spin operators W only
in the change of ρ → −ρ, and a global change of sign. In the normal parametrization this
corresponds to the change α→ −α, followed by a global change of sign.

It can be checked as mentioned before, that

[Ti, Tk] = −iϵikl Tl, (3.73)

[Wi, Tk] = 0. (3.74)

Since W 2 = T 2 we can �nd simultaneous eigenvectors of the operators W 2, W3 and T3,
which will be denoted by D(s)

mn(α) in such a way that

W 2D(s)
mn(α) = s(s+ 1)D(s)

mn(α),

W3D
(s)
mn(α) = mD(s)

mn(α),

T3D
(s)
mn(α) = nD(s)

mn(α).
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SinceW3(α)D
(s)
mn(α) = mD

(s)
mn(α), by producing the change α→ −α we getW3(−α)D(s)

mn(−α) =
mD

(s)
mn(−α) and the subsequent global change of sign it reduces to

−W3(−α)D(s)
mn(−α) = T3(α)D

(s)
mn(−α) = −mD(s)

mn(−α),

so that the above spinors (3.69)-(3.70) are also eigenvectors of T3.
With this notation, the four normalized spinors, denoted by the corresponding eigenvalues

|s,m, n >, are

Φ1 = |1/2, 1/2, 1/2 > =
√
2(cos(α/2) + i cos θ sin(α/2)), (3.75)

Φ2 = |1/2,−1/2, 1/2 > = i
√
2 sin(α/2) sin θe−iϕ, (3.76)

Φ3 = |1/2, 1/2,−1/2 > = i
√
2 sin(α/2) sin θeiϕ. (3.77)

Φ4 = |1/2,−1/2,−1/2 > =
√
2(cos(α/2)− i cos θ sin(α/2)), (3.78)

They form an orthonormal set with respect to the normalized invariant measure (3.71) and with
the scalar product de�ned in (3.72). We can check that the lowering operators W−Φ1 = Φ2,
W−Φ2 = 0, W−Φ3 = Φ4, W−Φ4 = 0, and similarly T−Φ1 = 0, T−Φ3 = Φ1, T−Φ2 = 0, and
T−Φ4 = Φ2, and the corresponding up relations when acting with the rising operators W+ and
T+, respectively. Remark that because the opposite sign in the commutation relations of the Ti
operators, here the T± operate in the reverse direction.

The important feature is that if the system has spin 1/2, although the s = 1/2 irreducible
representations of the rotation group are two-dimensional, to describe the spin part of the
wave function we need a function de�ned in the above four-dimensional complex Hilbert space,
because to describe orientation we attach some local frame to the particle, and therefore in
addition to the spin values in the laboratory frame we also have as additional observables the
spin projections on the body axes, which can be included within the set of commuting operators.

3.5.5 Matrix representation of internal observables

The matrix representation of any observable A that acts on the orientation variables or in
this internal four-dimensional space spanned by these spin 1/2 wave functions Φi, is obtained
as Aij =< Φi|AΦj >, i, j = 1, 2, 3, 4. Once these four normalized basis vectors are �xed, when
acting on the subspace they span, the di�erential operators Wi and Ti have the 4 × 4 block
matrix representation

S ≡W =
ℏ
2

(
σ 0
0 σ

)
, (3.79)

T1 =
ℏ
2

(
0 I
I 0

)
, T2 =

ℏ
2

(
0 iI
−iI 0

)
, T3 =

ℏ
2

(
I 0
0 −I

)
, (3.80)

where σ are the three Pauli matrices and I represents the 2× 2 unit matrix. We have included
Planck's constant into the angular momentum operators.

If we similarly compute the matrix elements of the nine components of the unit vectors
(ei)j , i, j = 1, 2, 3 we obtain the nine traceless hermitian matrices

e1 =
1

3

(
0 σ
σ 0

)
, e2 =

1

3

(
0 iσ
−iσ 0

)
, e3 =

1

3

(
σ 0
0 −σ

)
. (3.81)

We can check that the Ti = S · ei = ei · S. We see that the di�erent components of the unit
vectors ei, in general do not commute. The eigenvalues of every component eij , in this matrix
representation of de�nite spin, are ±1/3. However, the matrix representation of the square of
any component is (eij)2 = I/3, so that the magnitude squared of each vector e2i =

∑
j(eij)

2 = I
when acting on these wave functions. The eigenvalues of the squared operator (eij)

2 are not
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the squared eigenvalues of eij . This is because the function eijΦk does not belong in general
to the same space spanned by the Φk, k = 1, . . . , 4 although this space is invariant space for
operators Wi and Tj . In fact, each function eijΦk is a linear combination of a spin 1/2 and a
spin 3/2 wave function.

We do not understand why any component of a classical unit vector eij of a Cartesian frame,
can have as eigenvalues ±1/3 in the quantum case and its square (ejj)

2 = I/3 instead of I/9.

3.5.6 Peter-Weyl theorem for compact groups

The above spinors can also be obtained by making use of an important theorem for rep-
resentations of compact groups, known as the Peter-Weyl theorem, 12 which is stated without
proof that can be read in any of the mentioned references.

Theorem.- LetD(s)(g) be a complete system of non-equivalent, unitary, irreducible
representations of a compact group G, labeled by the parameter s. Let ds be the
dimension of each representation andD(s)

ij (g), 1 ≤ i, j ≤ ds the corresponding matrix
elements. Then, the functions√

dsD
(s)
ij (g), 1 ≤ i, j ≤ ds

form a complete orthonormal system on G, with respect to some normalized invari-
ant measure µN (g) de�ned on this group, i.e.,∫

G

√
dsD

(s)∗
ij (g)

√
drD

(r)
kl (g) dµN (g) = δsrδikδjl. (3.82)

That the set is complete means that every square integrable function de�ned on G, f(g), admits
a series expansion, convergent in norm, in terms of the above orthogonal functions D(s)

ij (g), in
the form

f(g) =
∑
s,i,j

a
(s)
ij

√
dsD

(s)
ij (g),

where the coe�cients, in general complex numbers a(s)ij , are obtained by

a
(s)
ij =

∫
G

√
dsD

(s)∗
ij (g) f(g)dµN (g).

In our case SU(2), as a group manifold, is the simply connected three-dimensional sphere of
radius 2π, with the normalized measure as seen before (3.71),

dµN (α, θ, ϕ) =
1

4π2
sin θ sin(α/2)2 dαdθdϕ.

In the normal parametrization, the two-dimensional representation of SU(2) corresponds to
the eigenvalue s = 1/2 of S2 and the matrix representation is given by

D(1/2)(α) = cos(α/2)I− i sin(α/2)(u · σ),
12 N. Ja. Vilenkin, Fonctions spéciales et Théorie de la représentation des groupes, Dunod, Paris (1969), p.

39.
A.O. Barut and R. Raczka, Theory of group representations and applications, PWN-Polish Scienti�c Publishers,
Warszawa (1980), p. 174.
F. Peter and H. Weyl, Math. Ann. 7, 735 (1927).
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i.e.,

D(1/2)(α) =

(
cos(α/2)− i cos θ sin(α/2) −i sin θ sin(α/2) e−iϕ

−i sin θ sin(α/2) eiϕ cos(α/2) + i cos θ sin(α/2)

)
.

If we compare these four matrix components with the four orthogonal spinors given in
(3.75)-(3.78) we see that

D(1/2)(α) =
1√
2

(
Φ4 −Φ2

−Φ3 Φ1

)
(3.83)

In the three-dimensional representation of SO(3), considered as a representation of SU(2)

D
(1)
ij (α) = δij cosα+ uiuj(1− cosα) + ϵikjuk sinα ≡ ej i

we get another set of nine orthogonal functions. Multiplied by
√
3 they form another orthonor-

mal set orthogonal to the previous four spinors. It is a good exercise to check this orthogonality
among these functions.

3.5.7 General spinors

In the case that the zitterbewegung content of the spin is not vanishing we can also obtain
spin 1/2 wave-functions as the irreducible representations contained in the tensor product of
integer and half-integer spin states coming from the U(u) and V (ρ) part of the general wave
function (3.60).

The total spin operator of the system is of the form

S = u×U +W = Z +W ,

where Z = −iℏ∇u and W is given in (3.53). Spin projections on the body axes, i.e., operators
Ti = ei ·W , are described in (3.58). They satisfy the commutation relations

[Z,Z] = iZ, [W ,W ] = iW , [T ,T ] = iT ,

[Z,W ] = 0, [Z,T ] = 0, [W ,T ] = 0.

These commutation relations are invariant under the change ρ by −ρ in the de�nition of the
operators W and T , because they are changed into each other. The expression of the body
frame unit vectors ei is given in (3.55) and (3.56).

We can see that these unit vector components and spin operators Wi and Tj satisfy the
following properties:

1) eij(−α, θ, ϕ) = −ej i(α, θ, ϕ).
2) ei ·W ≡

∑
j eijWj = Ti.

3)
∑

j ejTj = W .
4) For all i, j, the action Wiej i = 0, with no addition on index i.
5) For all i, j, the action Tieij = 0, with no addition on index i.
6) For all i, j, k, with i ̸= j, we have that Wiekj +Wjeki = 0, and in the case that i = j, it

leads to property 4.
7) For all i, j, k, with i ̸= j, we have that Tiejk + Tjeik = 0, and similarly as before in the

case i = j it leads to property 4.
This implies that ei ·W = W · ei = Ti, because of property 4, since when acting on an

arbitray function f ,

(W · ei)f ≡
∑
j

Wj(eijf) = f
∑
j

Wj(eij) +
∑
j

eijWj(f) = Ti(f),

because
∑

j Wjeij = 0.
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In the same way
∑

j ejTj ≡
∑

j Tjej = W .
Now we �x the value of spin. Particles of di�erent values of spin can be described. Let us

consider systems that take the lowest admissible spin values. For spin 1/2 particles, if we take
�rst for simplicity eigenfunctions V (ρ) of W 2 with eigenvalue 1/2, and then since the total spin
has to be 1/2, the orbital Z part can only contribute with spherical harmonics of value z = 0
and z = 1.

If there is no zitterbewegung spin, z = 0, and Wigner's functions can be taken as simulta-
neous eigenfunctions of the three commuting W 2, W3, and T3 operators, and the normalized
eigenvectors |w,w3, t3 > are explicitly given by the functions (3.75-3.78).

If we have a zitterbewegung spin of value z = 1, then the U(u) part contributes with the
spherical harmonics described in (3.65)

Y 1
1 (β, λ) ≡ |1, 1 >= − sin(β)eiλ

√
3

8π
, (3.84)

Y 0
1 (β, λ) ≡ |1, 0 >= cos(β)

√
3

4π
, (3.85)

Y −1
1 (β, λ) ≡ |1,−1 >= sin(β)e−iλ

√
3

8π
, (3.86)

normalized with respect to the measure∫ π

0

∫ 2π

0
sin(β)dβdλ,

which are the indicated eigenfunctions |z, z3 > of Z2 and Z3, and where the variables β and λ
determine the orientation of the velocity u.

The tensor product representation of the rotation group constructed from the two irreducible
representations 1 associated to the spherical harmonics (3.84)-(3.86) and 1/2 given in (3.75)-
(3.78) is split into the direct sum 1⊗ 1/2 = 3/2⊕ 1/2.

The following functions of �ve variables β, λ, α, θ and ϕ, where variables β and λ correspond
to the ones of the spherical harmonics Y m

l , and the remaining α, θ and ϕ, to the previous spinors
Φi, are normalized spin 1/2 functions |s, s3, t3 > that are eigenvectors of total spin S2, and S3
and T3 operators

Ψ1 ≡ |1/2, 1/2, 1/2 > =
1√
3

(
Y 0
1 Φ1 −

√
2Y 1

1 Φ2

)
, (3.87)

Ψ2 ≡ |1/2,−1/2, 1/2 > =
1√
3

(
−Y 0

1 Φ2 +
√
2Y −1

1 Φ1

)
, (3.88)

Ψ3 ≡ |1/2, 1/2,−1/2 > =
1√
3

(
Y 0
1 Φ3 −

√
2Y 1

1 Φ4

)
, (3.89)

Ψ4 ≡ |1/2,−1/2,−1/2 > =
1√
3

(
−Y 0

1 Φ4 +
√
2Y −1

1 Φ3

)
, (3.90)

such that Ψ2 = S−Ψ1 and similarly Ψ4 = S−Ψ3, and also that Ψ3 = T−Ψ1, and Ψ4 = T−Ψ2.
They are no longer eigenfunctions of the W3 operator, although they span an invariant vector
space for S2, S3 and T3 operators. In the above basis (3.87)-(3.90) formed by orthonormal
vectors Ψi, the normalized invariant measure is

1

16π3

∫ π

0
sinβdβ

∫ 2π

0
dλ

∫ 2π

0
sin2(α/2)dα

∫ π

0
sin θdθ

∫ 2π

0
dϕ = 1,

and the matrix representation of the spin is

S = Z +W =
ℏ
2

(
σ 0
0 σ

)
, (3.91)
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while the matrix representation of the Z and W part is

Z =
2ℏ
3

(
σ 0
0 σ

)
, W =

−ℏ
6

(
σ 0
0 σ

)
, (3.92)

which do not satisfy commutation relations of angular momentum operators because the vector
space spanned by the above basis Ψj , is not an invariant space for these operators Z and W .

It must be remarked that Z has the same orientation than the spin S, because it is a positive
multiple of it, while W has the opposite orientation, as suggested by the picture of the front
page of these Notes.

S2 =
3

4
I, S =

√
3

2
I, Z2 =

4

3
I, Z =

2√
3
I, W 2 =

1

12
I, W =

1

2
√
3
I.

The absolute value of S, S is
√
3/2, while that ofZ is just 2/

√
3, only 4/3 of the other, meanwhile

for W its absolute value is 1/2
√
3, just 1/3 of the absolute value of S but in the opposite

direction. Therefore, because Z is opposite to W , the modulus of S is S = Z −W =
√
3/2.

This justi�es, from the quantum point of view, the geometrical representation of those operators
in the front page, with Z in the same direction than S, and W in the opposite direction.

If we pay attention to the spinors Ψi, they are eigenvectors of Z2 with eigenvalue 1(1+1) = 2,
and of W 2 with eigenvalue 1/2(1/2 + 1) = 3/4, but they are not eigenvectors of Z3 and W3.
In fact, the action of these operators on these vectors, take them out of this four-dimensional
Hilbert space. It is not a representation space of an irreducible representation of the algebra
generated by the operators Zi and Wi, but it is a vector space of a closed representation of the
operators Si. It is a direct sum of two irreducible representations of spin s = 1/2.

The spin projection of the W part on the body axis, i.e., the T operator, takes the same
form as before (3.80)

T1 =
ℏ
2

(
0 I
I 0

)
, T2 =

ℏ
2

(
0 iI
−iI 0

)
, T3 =

ℏ
2

(
I 0
0 −I

)
, (3.93)

because Ψ1 and Ψ2 functions are eigenfunctions of T3 with eigenvalue 1/2, while Ψ3 and Ψ4 are
of eigenvalue −1/2, and thus the spinors Ψi span an invariant space for Si and Tj operators.
In fact the basis is formed by simultaneous eigenfunctions of total spin S2, S3 and T3, and the
ket representation is the same as in the case of the Φi given in (3.75)-(3.78).

The expression in this basis of the components of the unit vectors ei are represented by

e1 = −
1

9

(
0 σ
σ 0

)
, e2 = −

1

9

(
0 iσ
−iσ 0

)
, e3 = −

1

9

(
σ 0
0 −σ

)
. (3.94)
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3.6 Summary of Classical and Quantum Mechanics

We shall summarize very general aspects of classical and quantum mechanical elementary
particles.

Classical Mechanics

States: Each point x ∈ X of the kinematical space X.

Elementary particle: X is a homogeneous space of the kinematical group G.

Observables: Every function of the kinematical variables and their time deriva-
tives.

Transformation of the state: x′ = gx ≡ f(x, g), g ∈ G.

Elementary particle: L̃0 = T ṫ+R · ṙ +U · u̇+W · ω.

Transformation of the Lagrangian: L̃′(x′, ẋ′) = L̃(x, ẋ) + dα(g, x)/dτ

Interaction: L̃I = −eA0(t, r)ṫ+ eA(t, r) · ṙ.

Noether Constants (non-rel.) G ⊗ SO(3)L:

H = −T−u· dU
dt
, P = mu− dU

dt
, K = mr−P t−U , J = r×P+u×U+W ,

Ti = W · ei, i = 1, 2, 3.

Noether Constants (relat.) P ⊗ SO(3)L:

H = −T−u·dU
dt
, P = R−dU

dt
, K = Hr/c2−P t−S×u/c2, J = r×P+u×U+W ,

Ti = W · ei, i = 1, 2, 3.

Invariants (no relat.)

m, H − P 2

2m
= 0, S2

CM =

(
J − 1

m
K × P

)2

, T 2

Invariants (relat.)

pµp
µ = (H/c)2−P 2 = m2c2, wµw

µ = (P · SCM )2−(HSCM/c)
2 = −m2c2S2, T 2.

SCM = J − q × P , HSCM/c = HJ/c2 −K × P , K = Hq/c2 − P t.
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Quantum Mechanics

States: Each normalized vector |ϕ >, ϕ(x) ∈ L2(X) of the Hilbert space L2(X).

Elementary Particle: L2(X) is the representation space of a projective unitary
irreducible representation of the kinematical group G.

Observables: Every selfadjoint operator acting on the Hilbert space.

Transformation of the state:

|ϕ′ >= U(g)|ϕ >, ϕ′(x) = U(g)ϕ(x) = ϕ(g−1x) exp

{
−i
ℏ
α(g−1;x)

}
,

and the unitary operators and their in�nitesimal generators are

U(g) = exp

{
−i
ℏ
gσXσ

}
, Xσ =

ℏ
i
uiσ(x)

∂

∂xi
− λσ(x), λσ(x) =

∂α(g, x)

∂gσ

∣∣∣∣
g=0

.

Generators (non-relat.) G ⊗ SO(3)L:

H = iℏ
∂

∂t
, P =

ℏ
i
∇, K = mr − P t−U , J = r × P + u×U +W .

U =
ℏ
i
∇u, W =

ℏ
2i

(∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)) , S = u×U +W ,

Ti = W · ei, i = 1, 2, 3. T =
ℏ
2i

(∇ρ − ρ×∇ρ + ρ(ρ · ∇ρ)) ,

Generators (relat.) P ⊗ SO(3)L:

H = iℏ
∂

∂t
, P =

ℏ
i
∇, K = Hr/c2−P t−S×u/c2, J = r×P +u×U+W .

U =
ℏ
i
∇u, W =

ℏ
2i

(∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)) , S = u×U +W .

Ti = W · ei, i = 1, 2, 3. T =
ℏ
2i

(∇ρ − ρ×∇ρ + ρ(ρ · ∇ρ)) ,

Invariants-Casimir Operators (non-relat.)

m, H − P 2

2m
= 0, S2

CM =

(
J − 1

m
K × P

)2

, T 2 = W 2

Invariants-Casimir Operators (relat.)

pµp
µ = (H/c)2−P 2 = m2c2, wµw

µ = (P · SCM )2−(HSCM/c)
2 = −m2c2s(s+1)ℏ2, T 2 = W 2.

Dirac equation

H − P · u− 1

c2
S ·
(
du

dt
× u

)
= 0.
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3.6.1 The so called classical limit of quantum mechanics

The classical and quantummechanical formalisms are two di�erent mathematical formalisms.
They are based upon di�erent fundamental principles, some of them are the same but others
contain di�erent mathematical statements. They have in common, in addition to the Restricted
Relativity Principle, that the kinematical space X, represents the space state of the classical
formulation while in the quantum case it represents the support space of the complex functions
which de�ne the di�erent quantum mechanical states.

In classical mechanics there is a total compatibility in the simultaneous measurement of
any two arbitrary observables. Everything can be measured, in principle, with total accuracy.
In quantum mechanics this does not happen. The very fact of any measurement modi�es the
state of the mechanical system, and, therefore, when measuring some observable we modify the
expected measured values of others. In quantum mechanics we obtain a relationship between
the standard deviations of the measurements of any two observables. These deviations are
proportional to the universal constant ℏ for non-compatible observables. It is usually called this
as the Uncertainty or Indeterminacy Principle. This property that any measurement represents
some interaction of the observer with the mechanical system is what distinguishes quantum
mechanics from classical mechanics. In classical mechanics any measurement is an objective
fact which does not modify the state of the mechanical system.

In many quantum mechanics books it is called the classical limit of quantum mechanics, the
mathematical limit ℏ→ 0, of the di�erent expressions and quantum results, and we thus arrive
to expressions independent of Planck's constant. It is stated that we have reached the classical
context.

In this limit, it is true that the relationship between the standard deviations of incompat-
ible observables vanishes, and therefore, one of the mathematical formulations of Heisenberg's
Uncertainty Principle that two observables non-compatible from the point of view of quantum
mechanics become compatible from the classical point of view. But this limit also cancels out
the spin of all elementary particles, and thus, we arrive to a formalism which describes compat-
ible observables of mechanical systems of nonexistent spinless particles. Ve have arrived to the
classical mechanical description of the nonexistent point particle.



Chapter 4

Dirac particle

4.1 Quantization of the u = c model

For Luxons we have the nine-dimensional homogeneous space of the Poincaré group, spanned
by the ten variables (t, r,u,α), but now u is restricted to u = c. For this particle, since u·u̇ = 0
and u̇ ̸= 0, we are describing particles with a circular internal orbital motion at the constant
speed c.

In the center of mass frame, (see Fig.4.1) the center of charge describes a circle of radius
R0 = S/mc at the constant speed c, the spin being orthogonal to the charge trajectory plane
and a constant of the motion in this frame. Let us consider the quantization of this u = c model
whose dynamical equation is given by (2.167).

Figure 4.1: Motion of the center of charge of the particle (H > 0), in the C.M. frame.

If we analyse this particle in the centre of mass frame it becomes a system of three degrees
of freedom. These are the x and y coordinates of the point charge on the plane and the phase
α of the rotation of the body axis with angular velocity ω. But this phase is the same as the
phase of the orbital motion, as we shall see later, and because this motion is a circle of constant
radius only one degree of freedom is left, for instance the x coordinate. In the centre of mass
frame the particle is equivalent to a one-dimensional harmonic oscillator of angular frequency
ω = mc2/S in its ground state.

Identi�cation of the ground energy of the one-dimensional harmonic oscillator ℏω/2 with the
rest energy of the system in the center of mass frame +mc2, for H > 0 particles, implies that

197
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the classical constant parameter S = ℏ/2. All Lagrangian systems de�ned with this kinematical
space, irrespective of the particular Lagrangian we choose, have this behaviour and represent
spin 1/2 particles when quantized.

4.2 Dirac equation

The kinematical variables of this system transform under P according to

t′(τ) = γt(τ) + γ(v ·R(µ)r(τ))/c2 + b, (4.1)

r′(τ) = R(µ)r(τ) + γvt(τ) +
γ2

(1 + γ)c2
(v ·R(µ)r(τ))v + a, (4.2)

u′(τ) =
R(µ)u(τ) + γv + (v ·R(µ)u(τ))vγ2/(1 + γ)c2

γ(1 + v ·R(µ)u(τ)/c2)
, (4.3)

ρ′(τ) =
µ+ ρ(τ) + µ× ρ(τ) + F c(v,µ;u(τ),ρ(τ))

1− µ · ρ(τ) +Gc(v,µ;u(τ),ρ(τ))
, (4.4)

where the functions F c and Gc are given in (2.132) and (2.133), respectively. When quantized,
the wave function of the system is a function Φ(t, r,u,ρ) of these kinematical variables. For the
Poincaré group all exponents and thus all gauge functions on homogeneous spaces are equivalent
to zero, and the Lagrangians for free particles can thus be taken strictly invariant. Projective
representations reduce to true representations so that the ten generators on the Hilbert space,
taking into account (4.1)-(4.4) and (3.15) are given by:

H = iℏ
∂

∂t
, P =

ℏ
i
∇, K = r

iℏ
c2

∂

∂t
− t ℏ

i
∇− 1

c2
S × u, (4.5)

J = r × ℏ
i
∇+ S, (4.6)

where as we shall see, the angular momentum operator S with respect to the center of charge,
represents Dirac's spin operator and is given by the di�erential operator

S = u× ℏ
i
∇u +

ℏ
2i
{∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)} = u×U +W , (4.7)

and where the di�erential operators ∇u and ∇ρ are the corresponding gradient operators with
respect to the u and ρ variables as in the Galilei case. The operator S, satis�es dS/dt = P ×u,
and is not a constant of the motion even for the free particle.

To obtain the complete commuting set of observables we start with the Casimir invariant
operator, or Klein-Gordon operator

H2 − c2P 2 = m2c4. (4.8)

In the above representation, H and P only di�erentiate the wave function with respect to time
t and position r, respectively. Since the spin operator S operates only on the velocity and
orientation variables, it commutes with the Klein-Gordon operator (4.8). Thus, we can �nd
simultaneous eigenfunctions of the three operators (4.8), S2 and S3. This allows us to try
solutions in separate variables so that the wave function can be written as

Φ(t, r,u,ρ) =
∑
i

ψi(t, r)χi(u,ρ), (4.9)

where ψi(t, r) are the space-time components and the χi(u,ρ) represent the internal spin struc-
ture. Consequently

(H2 − c2P 2 −m2c4)ψi(t, r) = 0, (4.10)
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i.e., space-time components satisfy the Klein-Gordon equation, while the internal structure part
satis�es

S2χi(u,ρ) = s(s+ 1)ℏ2χi(u,ρ), (4.11)

S3χi(u,ρ) = msℏχi(u,ρ). (4.12)

Eigenfunctions of the above type have been found in Section 3.5. In particular we are interested
in solutions that give rise to spin 1/2 particles. These solutions, which are also eigenvectors of
the spin projection on the body axis T3, become a four-component wave function.

For spin 1/2 particles, if we take �rst for simplicity eigenfunctions χ(ρ) of S2 with eigenvalue
1/2, then since the total spin has to be 1/2, the orbital zitterbewegung part Z = u × U can
only contribute with spherical harmonics of value z = 0 and z = 1. This means that we can
�nd at least two di�erent kinds of elementary particles of spin 1/2, one characterized by the
singlet z = 0 (lepton?) and another by z = 1 (quark?) in three possible states according to the
component z3. If we call to the spin part Z the colour, we can have colourless and coloured
systems of spin 1/2. The three di�erent colours z3 are unobservable because the Ψi states (3.87-
3.90) are eigenstates of S3 and T3 but not eigenstates of Z3. Nevertheless this interpretation of
this spin part Z as representing the colour, as in the standard model, is still unclear and will
be discussed elsewhere.

For z = 0, the spin 1/2 functions χi(ρ) are linear combinations of the four Φi functions
(3.75)-(3.78) and in the case z = 1 they are linear combinations of the four Ψi of (3.87)-(3.90),
such that the factor function in front of the spherical harmonics is 1 because for this model
u = c is a constant. It turns out that the Hilbert space that describes the internal structure of
a Dirac1, particle is isomorphic to the four-dimensional Hilbert space C4.

If we have two arbitrary directions in space characterized by the unit vectors u and v
respectively, and Su and Sv are the corresponding angular momentum projections Su = u ·S
and Sv = v · S, then S−u = −Su, and [Su, Sv] = iℏSu×v. In the case of the opposite sign
commutation relations of operators Ti, we have for instance for the spin projections [T1, T2] =
−iℏT3, thus suggesting that e1×e2 = −e3, and any cyclic permutation 1→ 2→ 3, and thus ei
vectors linked to the body, not only have as eigenvalues ±1/3, but also behave in the quantum
case as a left-handed system. In this case ei vectors are not arbitrary vectors in space, but
rather vectors linked to the rotating body and thus they are not compatible observables, so
that any measurement to determine, say the components of ei, will produce some interaction
with the body that will mask the measurement of the others. We shall use this interpretation
of a left-handed system for particles later, when we analyse the chirality in section 4.2.8. For
antiparticles it will behave as a right handed one.

Operators Si and Ti have the matrix representation obtained before in the two possible basic
states, either (3.75)-(3.78) or in (3.87)-(3.90), which is just

S ≡W =
ℏ
2

(
σ 0
0 σ

)
, (4.13)

T1 =
ℏ
2

(
0 I
I 0

)
, T2 =

ℏ
2

(
0 iI
−iI 0

)
, T3 =

ℏ
2

(
I 0
0 −I

)
, (4.14)

where we represent by σ the three Pauli matrices and I is the 2× 2 unit matrix.

1 Paul Adrien Maurice Dirac Born the 8-th August 1902 in Bristol, Gloucestershire, England
and dies the 20-th October 1984 in Tallahassee, Florida, USA. He graduates as an electric engenering
in Bristol and afterwards derives into mathematics at the St John's College of Cambridge. His
articles of 1925 and the two of 1928 about the structure of the electron, and the equation which
bears his name and the subsequent publication of the book The principles of Quantum Mechanics

in 1930 awarded him the Nobel Prize in 1933. He is considered as one of the founders of the quantum formalism.
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Similarly, the matrix elements of the nine components of the unit vectors (ei)j , i, j = 1, 2, 3
give rise to the two alternative sets of representations depending on whether the zitterbewegung
contribution is z = 0 or z = 1. In the �rst case we get

e1 =
1

3

(
0 σ
σ 0

)
, e2 =

1

3

(
0 iσ
−iσ 0

)
, e3 =

1

3

(
σ 0
0 −σ

)
, (4.15)

while in the z = 1 case the representation is

e1 = −
1

9

(
0 σ
σ 0

)
, e2 = −

1

9

(
0 iσ
−iσ 0

)
, e3 = −

1

9

(
σ 0
0 −σ

)
. (4.16)

It must be remarked that the di�erent components of the observables ei are not compatible in
general, because they are represented by non-commuting operators.

We �nally write the wave function for spin 1/2 particles in the following form for z = 0

Φ(0)(t, r,u,α) =
i=4∑
i=1

ψi(t, r)Φi(α, θ, ϕ), (4.17)

independent of the u variables, and in the case z = 1 by

Φ(1)(t, r,u,α) =

i=4∑
i=1

ψi(t, r)Ψi(β, λ;α, θ, ϕ). (4.18)

where β and λ represent the direction of vector u. Then, once the Φi or Ψj functions that de-
scribe the internal structure (given in the appendix in (4.93-4.96) or ((4.97-4.100)), respectively)
are identi�ed with the four orthogonal unit vectors of the internal Hilbert space C4, the wave
function becomes a four-component space-time wave function, and the six spin components Si
and Tj and the nine vector components (ei)j , together the 4 × 4 unit matrix, completely ex-
haust this 16 linearly independent 4×4 hermitian matrices. They form a vector basis of Dirac's
algebra, such that any other translation invariant internal observable that describes internal
structure, for instance internal velocity and acceleration, angular velocity, etc., must necessarily
be expressed as a real linear combination of the mentioned 16 hermitian matrices. We shall see
in Sec. 4.3 that the internal orientation completely characterizes its internal structure.

The velocity operator in the basis Ψi will be calculated in terms of its components in polar
spherical coordinates

u1 = c sinβ cosλ, u2 = c sinβ sinλ, u3 = c cosβ.

Its matrix representation in this basis vanishes because these vectors are eigenvectors of the
operators S2, S3 and T3 and in these states the expectation value of the velocity operator is
zero with a great uncertainty.

The spin operator with respect to the center of charge S = u × U +W which, as seen in
(3.91) and (4.13), coincides with the usual matrix representation of Dirac's spin operator.

4.2.1 Dirac operator

If we consider the expression of the kinematical momentum for free u = c particles (2.158)

K =
H

c2
r − tP − 1

c2
S × u.

Taking the time derivative of this expression followed by the scalar product with u, it leads to
the Poincaré invariant operator (Dirac operator):

H − P · u− 1

c2

(
du

dt
× u

)
· S = 0. (4.19)
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When Dirac operator acts on a general wave function Φ(0) or Φ(1), we know that H and P
have the di�erential representation given by (4.5) and the spin by the di�erential representation
(4.7), or the equivalent matrix representation (4.13), but we do not know how to represent the
action of the velocity u and the (du/dt)×u observable. However, we know that for this particle
u and du/dt are orthogonal vectors and together with vector u×du/dt they form an orthogonal
right-handed system, and in the center of mass frame the particle describes a circle of radius
R0 = ℏ/2mc in the plane spanned by u and du/dt.

Figure 4.2: Representation of the local body frame and the di�erent observables for the
(a) H > 0 solution and (b) H < 0 solution. This orientation produces Dirac equation in the
Pauli-Dirac representation

4.2.2 Pauli-Dirac representation

Let us consider �rst the case z = 0. Since u and du/dt are translation invariant observables
they will be elements of Dirac's algebra, and it turns out that we can relate these three vectors
with the left-handed orthogonal system formed by vectors e1, e2 and e3 with representation
(4.15). Then, as shown in part (a) of Figure 4.2 for the H > 0 system, we have u = ae1 and
du/dt × u = be3, where a and b are constant positive real numbers. Then the third term in
Dirac operator is (b/c2)e3 · S = (b/c2)T3, and (4.19) operator becomes

H − aP · e1 −
b

c2
T3 = 0. (4.20)

If we make the identi�cation with the H < 0 solution of part (b) of Figure 4.2, the relation of
the above observables is opposite to the previous one but now with the coe�cients −a and −b,
respectively, i.e., we get

H + aP · e1 +
b

c2
T3 = 0, (4.21)

which clearly corresponds to the change H → −H in equation (4.20). Explicitely eq.(4.20)
looks like:

H − a

3

(
0 P · σ

P · σ 0

)
− bℏ

2c2

(
I 0
0 −I

)
= 0, P · σ =

(
P3 P1 − iP2

P1 + iP2 −P3

)
.

Multiplying (4.21) by (4.20) we obtain an expression which is satis�ed by both particle and
antiparticle

H2 − a2

9
P 2I− b2ℏ2

4c4
I = 0, (4.22)
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and which is an algebraic relation between H2 and P 2. By identi�cation of this expression with
the Klein-Gordon operator (4.8), which also contains both H > 0 and H < 0 solutions, leads
to a = 3c and b = 2mc4/ℏ = c3/R0 and by substitution in (4.20) we obtain Dirac operator:

H − cP ·α− βmc2 = 0, (4.23)

where Dirac's hermitian matrices α and β are represented by

α =

(
0 σ
σ 0

)
, β =

(
I 0
0 −I

)
. (4.24)

Sometimes Dirac equation is written in another form. If in(4.23) we multiply both sides from
the left by the matrix β, since β2 = I, we arrive to

βH − cP · βα−mc2 = 0, γ0P0 − γiP i −mc = 0, γµPµ −mc = 0,

and the gamma matrices γµ are

γ0 ≡ β =

(
I 0
0 −I

)
, γ ≡ γ0α =

(
0 σ
−σ 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
. (4.25)

This is called the Pauli-Dirac representation where 3e1 plays the role of a unit vector in the
direction of the velocity. The matrix γ0 is hermitian and the γi antihermitian.

If these coe�cients a and b should be substituted in the equation corresponding to the
antiparticle (4.21) this produces an equivalent representation which corresponds to the change
β → −β and α → −α. As we sall see in the section 4.2.8 when analyzing the chirality, we
should have arrived to the same expression of Dirac equation than in (4.23) with the same
matrices (4.24) if the considered model of the antiparticle (b) but with the opposite axis ei to
those of the �gure 4.2, i.e., a right handed local system.

Dirac equation (4.23) represents the relationship between the mechanical temporal momen-
tum or energy H, as the sum of two terms. One related to the motion of the center of mass
cP ·α, or energy of translation, and the term related to the spin, or rotation energy. This ex-
pression is valid for the free electron, but if the electron is under the interaction with an external
electromagnetic �eld, this relationship has to be hold for the mechanical properties, according
to the Atomic Principle. According to this principle the internal structure is not modi�ed and
therefore the total energy and linear momentum are H = Hm + eϕ y P = Pm + eA, where
Hm and Pm are the mechanical observables which still satisfy (4.23), and thus for the total
observables we get

H = eϕ+ c (P − eA) ·α+ βmc2, (4.26)

where ϕ and A are the external scalar and vector potential, respectively.
When acting with Dirac operator on some arbitrary spinor, this equation looks in the free

case as
(iℏ[γµ]ij∂µ −mc δij)ψj(t, r) = 0,

and when interacting with some external electromagnetic �eld

((iℏ∂µ − eAµ(t, r))[γ
µ]ij −mc δij)ψj(t, r) = 0.

For the center of mass observer (P = 0), and in (4.23) the operator H is reduced to

H = βmc2 = mc2
(
I 0
0 −I

)
.
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Therefore, those spinors ψ with nonvanishing upper components ψ1 and ψ2 are eigenvectors of
H with eigenvalue +mc2 while those with nonvanishing components ψ3 and ψ4 are eigenvectors
of H with eigenvalue −mc2.

We can also obtain Dirac equation when the zitterbewegung part of the spin is z = 1, by
using the set of matrices (4.16) instead of the set (4.15), because they are multiples of each
other and the only di�erence are some constant intermediate factors. Explicitely, the equation
equivalent to (4.20) is now

H +
a

9

(
0 P · σ

P · σ 0

)
+

bℏ
6c2

(
I 0
0 −I

)
= 0, P · σ =

(
P3 P1 − iP2

P1 + iP2 −P3

)
.

By multiplication by itself with H replaced by −H, we obtain, like in the previous case, after
identi�cation with the Klein-Gordon equation

H2 − a2

81
P 2I− b2ℏ2

36c4
I = 0, a = 9c, b = 6

mc4

ℏ
,

i.e., like in (4.23) with the same matrices α and β:

H − cP ·α− βmc2 = 0.

The four basic states Φi, (4.93)-(4.96) or (4.97)-(4.100) in the Pauli-Dirac representation, are

Figure 4.3: Orientation of the body axis in Pauli-Dirac representation, corresponding to
the four basic states Φi of (4.93)-(4.96), respectively, with the vector e2 along the direction
of the acceleration and e1 and −e1 along the direction of the velocity. The local system of
axis in the cases (1) and (2) is left-handed, while it is right-handed in (3) and (4), which
correspond to the antiparticle.

related to the four states represented in the �gure 4.3, where the f i are the unit vectors in
the laboratory reference frame. The vectors ei are the unit vectors linked to the point r, with
the vector e2 in the direction of the acceleration. In the states (1) and (2) the projection of
the spin along the axis e3, T3 is +1/2, while in the two lower states (3) and (4) correspond to
T3 = −1/2, and both with the two possibilities of S3 = ±1/2 in the laboratory axis. It must
be remarked that the two lower states are states of the antiparticle.



204 CHAPTER 4. DIRAC PARTICLE

Weyl Representation

The possible identi�cation of the internal observables with the di�erent linear combinations
of the hermitian matrices ei leads to di�erent equivalent representations of Dirac matrices, and
therfore to di�erent, but equivalent, expressions of Dirac equation.

Figure 4.4: Orientation of the local axis in the Weyl representation.

For example, if we make the identi�cation suggested in the Figure 4.4 for the particle, the
velocity u = −ae3 and the observable acceleration du/dt×u = be1 in terms of the real positive
constants a and b, we get by the same method the hermitian matrices

βW =

(
0 I
I 0

)
∼ T1, αW =

(
−σ 0
0 σ

)
∼ −e3, (4.27)

and thus the corresponding gamma matrices are

γ0W ≡ β =

(
0 I
I 0

)
, γW ≡ γ0α =

(
0 σ
−σ 0

)
, γ5W =

(
−I 0
0 I

)
. (4.28)

This is called the Weyl representation of Dirac equation. The interest of this representation
lies in the description of weak interactions, where fermions violate the parity conservation. Weak
interaction distinguishes the chyral part (Left) from the part (Right) de�ned by

ψL =
1

2
(1− γ5)ψ =

(
I 0
0 0

)
ψ, ψR =

1

2
(1 + γ5)ψ =

(
0 0
0 I

)
ψ, ψ =

(
ψL

ψR

)
,

and now the upper components of the spinor are Left while the lower are Right. In this
representation, the generators of the Lorentz group are

J =
i

2

(
σ 0
0 σ

)
, K =

1

2

(
−σ 0
0 σ

)
.

and the Lorentz group representation acting on the spinors is

D(Λ) =

(
D(1/2,0)(Λ) 0

0 D(0,1/2)(Λ)

)
and therefore upper and lower components transform independently of each other with the two,
non-equivalent, 2× 2 irreducible representations of SL(2,C).



4.2. DIRAC EQUATION 205

When we compare with the previous representation we see that Weyl representation is
obtained from Pauli-Dirac representation if we rotate the local axis by means of a rotation of
value π/2 around the axis e2. In this way the velocity operator cα has the opposite direction
to the vector e3. Therfore, the rotation operator is

R(π/2, e2) = exp(
i

ℏ
π

2
e2 ·W ) = exp(

i

ℏ
π

2
T2) =

1√
2

(
I −I
I I

)
.

We can check that RγµPD R
† = γµW , where γµPD and γµW are, respectively, the gamma matrices

in the Pauli-Dirac and Weyl representations.

Supersymmetric Representation

It is that representation where Dirac matrices are

βS =

(
0 −iI
iI 0

)
∼ −T2, αS =

(
0 σ
σ 0

)
∼ e1. (4.29)

and the gamma matrices γµ are

γ0S =

(
0 −iI
iI 0

)
, γS =

(
−iσ 0
0 iσ

)
, γ5S =

(
0 I
−I 0

)
. (4.30)

It is related to the Pauli-Dirac representation by means of the unitary transformation TSγ
µ
PDT

†
S =

γµS . This transformation corresponds to a rotation of angle π/2 around the axis e1, in the Pauli-
Dirac representation

TS = R(π/2, e1) = exp(
i

ℏ
π

2
e1 ·W ) = exp(

i

ℏ
π

2
T1) =

1√
2

(
I iI
iI I

)
.

Figure 4.5: Orientation of the local axis in the Supersymmetric representation.

Majorana Representation

If we write Dirac equation as a system of partial di�erential equations we get

(iℏγµ∂µ −mc)ψi(t, r) = 0.
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It is a linear di�erential operator with constant coe�cients γµ which are complex 4×4 matrices,
acting on a four component vector, with components which are complex functions of t and r.
If we look for a representation where the γµ matrices have all its components pure imaginary
complex numbers, then the above system of partial di�erential equations all coe�cients are real
constants and therefore we can try to �nd solutions where the four unknown functions ψi can be
chosen as real functions. This is called the Majorana representation. In this representation,
the hermitian matrices are

βM =

(
0 iI
−iI 0

)
∼ T2, α1 =

(
σ1 0
0 −σ1

)
, α2 =

(
0 I
I 0

)
, α3 =

(
σ3 0
0 −σ3

)
, (4.31)

and therefore the gamma matrices are pure imaginary

γ0M ≡ β =

(
0 iI
−iI 0

)
, γ1M =

(
0 −iσ1
−iσ1 0

)
, γ2M =

(
iI 0
0 −iI

)
, γ3M =

(
0 −iσ3
−iσ3 0

)
.

(4.32)
We can transform Pauli-Dirac representation to Majorana representation by means of the uni-
tary transformation

TM =
1

2

(
I+ iσ2 I− iσ2
−iI+ σ2 iI+ σ2

)
≡ 1

2


1 1 1 −1
−1 1 1 1
−i −i i −i
i −i i i


in the form TMγ

µ
PDT

†
M = γµM .

For the center of mass observer where H = βmc2, the spinors of the form

Ψ1 =


iψ
0
ψ
0

 , Ψ2 =


0
iψ
0
ψ

 , HΨi = mc2Ψi, i = 1, 2

are states of H > 0, while the following linearly independent spinors

Ψ3 =


−iψ
0
ψ
0

 , Ψ4 =


0
−iψ
0
ψ

 , HΨi = −mc2Ψi, i = 3, 4

are states of H < 0.
In the literature we can �nd another Majorana representation where gamma matrices, which

are also pure imaginary, are:

γ0M ≡ β =

(
0 σ2
σ2 0

)
, γ1M =

(
iσ3 0
0 iσ3

)
, γ2M =

(
0 −σ2
σ2 0

)
, γ3M =

(
−iσ1 0
0 −iσ1

)
.

As a summary, Pauli-Dirac representation leads to the hermitian matrix β to be proportional
to the matrix T3 = e3 ·W , and hermitian matrices α to e1. Weyl representation is that
representation where matrix β es proportional to T1 = e1 ·W and the matrices α to −e3. In
the supersymmetric representation the β is proporcional to −T2 = −e2 ·W , and the matrices
α to e1. Majorana representation is a unitary transformation which combines particle and
antiparticle states evenly.
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4.2.3 Gauge Transformation

Let us consider a change of the phase of the part of the wave function corresponding to
the particle but not to the antiparticle, in the Pauli-Dirac representation. Acting on the Dirac
spinor we have the unitary transformation,

G


ψ1

ψ2

ψ3

ψ3

 =


eiαψ1

eiαψ2

ψ3

ψ3

 , G =

(
eiαI 0
0 I

)
, G−1 = G† =

(
e−iαI 0
0 I

)
,

which a�ects only to the upper components of the wave function. In the Pauli-Dirac represen-

Figure 4.6: The change of phase α of the particle corresponds to a rotation of value α of
the center of charge in the direction of its internal motion. The axis vector e3 and the spin
S are not a�ected by this transformation.

tation this means that when acting on the basic observables with this unitary transformation
we get,

Ge1G
† =

(
0 eiασ

e−iασ 0

)
=

(
0 (cosα+ i sinα)σ

(cosα− i sinα)σ 0

)
= cosαe1 + sinαe2,

Ge2G
† =

(
0 ieiασ

−ie−iασ 0

)
=

(
0 (− sinα+ i cosα)σ

(− sinα− i cosα)σ 0

)
=

= − sinαe1 + cosαe2,

Ge3G
† = e3, GSG† = S,

GT1G
† = cosαT1 + sinαT2, GT2G

† = − sinαT1 + cosαT2, GT3G
† = T3.

This transformation corresponds in the �gure 4.6 to the displacement of an angle α of the
position of the center of charge of the particle. If the change of phase would a�ect to only one
of the components of the Dirac spinor, this would represent a rotation of the center of charge
of the corresponding basic vector of the �gure 4.3.
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4.2.4 Dynamics of observables

In the Heisenberg representation, the time derivative of any observable A is

dA

dt
=
i

ℏ
[H,A] +

∂A

∂t
. (4.33)

The wave function depends on the kinematical variables. Among them we �nd the time vari-
able. The time evolution of the particle corresponds to a time translation generated by the Hamil-
tonian H, in such a way that ψ(t, x1, . . . , xn) = exp(−iHt/ℏ)ψ(0, x1, . . . , xn). The expectation
value, at instant t of an observable A, when the system is on the state ψ(t) is

< A(t) >=< ψ(t)|A|ψ(t) >=< ψ(0)|eiHt/ℏAe−iHt/ℏ|ψ(0) > .

This amounts to take the expectation value of a di�erent operator, eiHt/ℏAe−iHt/ℏ but on the
state at the initial time t = 0. At the instant t+∆t

< A(t+∆t) >=< ψ(t+∆t)|A|ψ(t+∆t) >=< ψ(0)|eiH(t+∆t)/ℏAe−iH(t+∆t)/ℏ|ψ(0) > .

and the di�erence

< A(t+∆t) > − < A(t) >=
i

ℏ
< ψ(0)|HA−AH|ψ(0) > ∆t,

and therefore
d < A(t) >

dt
=
i

ℏ
< ψ(0)|[H,A]|ψ(0) > .

In this way, the calculation of the time variation of an expectation value is equivalent to the
expectation value of the observable [H,A] with respect to the initial state ψ(0). It is easy to see
that if the observable A is explicitely time dependent, then the observable we have to consider is
the one de�ned in (4.33), with respect to the initial state ψ(0) of the system.

We can see that for Dirac, the point r is moving at the speed c. In fact, the commutator
[H, r] is di�erent from zero because [Pi, xj ] = −iℏδij , and therefore, the velocity of the point r
is

u =
dr

dt
=
i

ℏ
[H, r] =

i

ℏ
[c (P − eA) ·α, r] = cα,

even under any electromagnetic interaction (4.26). The eigenvalues of the matrices αi are ±1,
and therefore if any component of the velocity vector is measured without dispersion, only can
take the values ±c.

The Pauli-Dirac representation is compatible with the acceleration du/dt lying along the
vector e2. In fact, in the center of mass frame and in the Heisenberg representation, Dirac's
Hamiltonian reduces to H = βmc2, and the time derivative of the velocity observable u = cα
is

du

dt
=
i

ℏ
[mc2β, cα] =

2mc3

ℏ

(
0 iσ
−iσ 0

)
=

c2

R0
3e2, (4.34)

c2/R0 being the constant modulus of the acceleration in this frame, and where 3e2 plays the
role of a unit vector along that direction.

The time derivative of this Cartesian system is

de1
dt

=
i

ℏ
[βmc2, e1] =

c

R0
e2, (4.35)

de2
dt

=
i

ℏ
[βmc2, e2] = −

c

R0
e1, (4.36)

de3
dt

=
i

ℏ
[βmc2, e3] = 0, (4.37)

since e3 is orthogonal to the trajectory plane and does not change, and where c/R0 = ω is the
angular velocity of the internal orbital motion. This time evolution of the observables ei is the
correct one if assumed to be a rotating left-handed system of vectors as shown in Figure 4.2-(a).
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It is for this reason that we considered at the beginning of this chapter that the body frame
rotates with the same angular velocity as the orbital motion of the charge.

We should arrive to the same conclusion if we use the Weyl representation, where Dirac
matrices are given in (4.27). In fact, in this representation

de1
dt

=
i

ℏ
[βWmc

2, e1] = 0, (4.38)

de2
dt

=
i

ℏ
[βWmc

2, e2] =
c

R0
e3, (4.39)

de3
dt

=
i

ℏ
[βWmc

2, e3] = −
c

R0
e2. (4.40)

To be consistent with the above consideration as 3ei as unit vectors, this means that the spin
in the center of mass frame should be along 3e3. This is the case for the upper components
while for the lower components (which in this representation correspond to H < 0 states) the
orientation is the opposite. This means that for particles the corresponding set of axis forms
a left handed system while for antiparticles they behave as a right handed system, showing a
clear chirality di�erence between particles and antiparticles.

In general

dS

dt
=
i

ℏ
[H,S] =

i

ℏ
[cP ·α+ βmc2,S] = cP ×α ≡ P × u,

is not a constant of the motion, but for the center of mass observer, this spin operator u×U+W
is the same with respect to any point and is constant in this frame:

dS

dt
=
i

ℏ
[βmc2,S] = 0. (4.41)

Only the T3 spin component on the body axis remains constant while the other two T1 and
T2 change because of the rotation of the corresponding axis,

dT1
dt

=
i

ℏ
[βmc2, T1] =

c

R0
T2, (4.42)

dT2
dt

=
i

ℏ
[βmc2, T2] = −

c

R0
T1, (4.43)

dT3
dt

=
i

ℏ
[βmc2, T3] = 0. (4.44)

Nevertheless it is the component T1 which remains constant in the Weyl representation

dT1
dt

=
i

ℏ
[βWmc

2, T1] = 0, (4.45)

dT2
dt

=
i

ℏ
[βWmc

2, T2] =
c

R0
T3, (4.46)

dT3
dt

=
i

ℏ
[βWmc

2, T3] = −
c

R0
T2. (4.47)

When analyzed from the point of view of an arbitrary observer, the classical motion is a
helix and the acceleration is not of constant modulus c2/R0, and the spin operator S is no
longer a constant of the motion, because it is the total angular momentum J = r×P +S that
is conserved.
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4.2.5 Probability Conservation

Quantum mechanical Dirac equation is:

iℏ
∂Φ

∂t
− ℏ
i
u · ∇Φ−mc2βΦ = 0, (4.48)

where Φ is either the spinor (4.17) or the spinor (4.18) which is a four component spinor.

Φ(t, r,u,α) =


ψ1(t, r)
ψ2(t, r)
ψ3(t, r)
ψ4(t, r)

 (4.49)

once the dependence on the kinematical variables u and α has been substituted by a linear
combination in terms of the four basic spinors. The velocity operator u = cα is Dirac velocity
operator written in terms of the hermitian 4× 4 Dirac matrices α, and β = γ0 is the hermitian
4× 4 Dirac matrix, related to the spin projection along the body axis. Each spacetime function
ψi(t, r), i = 1, 2, 3, 4, is solution of the Klein-Gordon equation, (∂µ∂µ +m2c2/ℏ2)ψi = 0.

If we now take the complex conjugate and transpose of the above expression we get

−iℏ∂Φ
∗

∂t
+

ℏ
i
∇Φ∗ · u−mc2Φ∗β = 0, (4.50)

where Φ∗ represents the �le spinor, complex conjugate and transpose of the spinor (4.49). Now
the �rst equation (4.48) is multiplied on the left hand side by the row vector Φ∗, and the
expression (4.50) by the column vector Φ on the right hand side, and substract the second from
the �rst, we arrive to

∂(Φ∗Φ)

∂t
+∇(Φ∗uΦ) = 0.

If we call Φ∗Φ =
∑
ψ∗
i ψi = ρ(t, r), it is a scalar and de�nite positive function which can be

interpreted as the probability density of presence of the electron and Φ∗uΦ = j(t, r), as the
current probability density, so that Dirac equation leads to the continuity equation

∂ρ

∂t
+∇ · j = 0. (4.51)

There exist a local conservation of the probability at any point (t, r) ∈ R4, of spacetime.
This conservation law implies that the integral at constant t,

∫
V ρdV is conserved for any

integration volume V . If this volume is the whole three-dimensional space, this integral is 1, as
it corresponds to a normalized wave function.

The current density j = Φ∗uΦ = cψ∗γ0γψ, and since (γ0)2 = I, we can de�ne the conjugate
spinor, as the row vector ψ̄ = ψ∗γ0, this allows us to write the continuity equation in a covariant
form in terms of the four vector jµ = cψ̄γµψ ≡ (cρ, j), as

∂µj
µ = 0. (4.52)

If the four vector jµ is multiplied by the value of the charge e, we obtain the electric current
density four vector, which also satis�es the same continuity equation. This reinforces the idea
that the wave function, as a function of t and r, what represents is how the charge is distributed
around the point r, which represents the location of the electric charge, as is assumed in the
classical model.

Because the electric current density four vector is jµ = ecψ̄γµψ, the interaction with an
external �eld is written in the form of a minimal coupling, in terms of the external potentials,
which are functions of (t, r):

jµ(t, r)Aµ(t, r).
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In quantum electrodynamics there is no other coupling than the coupling between the external
�elds and the particle current, which also reinforces the idea that, efectively, from the classical
point of view what we have is the interaction of a charged point, the center of charge, with the
external potentials and no further multipoles.

4.2.6 PCT Invariance

Figure 4.7: Space reversal of the electron in the center of mass frame is equivalent to
a rotation of value π along S. The local system of axis remain left-handed because the
particle (or antiparticle) character does not change.

In the Figure 4.7 we represent the parity reversal P of the description of the electron as
given by this model of luxon which is circling around the center of mass at the velocity c and
in the center of mass frame it changes the variables according to

P : {r → −r,u→ −u, du/dt→ −du/dt,S → S, H → H, e1 → −e1, e2 → −e2, e3 → e3, }.

In the Pauli-Dirac representation as we see in Figure 4.2, this amounts to a rotation of value π
around axis e3 and thus

P ≡ R(π, e3) = exp(iπe3 · S/ℏ) = exp(iπT3/ℏ) = iγ0,

which is one of the possible representations of the parity operator ±γ0 or ±iγ0. In Weyl's
representation this is a rotation of value π around e1 which gives again P ≡ iγ0. Parity reversal
does not afect to the character particle or antiparticle and also to the left-handed or righ-handed
local system. We can check with P ≡ iγ0, we get

PHP † = mc2PβP † = H, PSP † = S, Pe1P
† = −e1, Pe2P

† = −e2, Pe3P
† = e3.

In the Figure 4.8 we represent the time reversal operation T also in the center of mass frame

T : {r → r,u→ −u, du/dt→ du/dt,S → S, H → −H, e1 → −e1, e2 → e2, e3 → e3},

but this corresponds to a particle of H < 0 such that the relative orientation of spin, velocity
and position, given by equation (2.169) agrees with the motion depicted in this �gure. The
local system of axis is left-handed. The time reversal operator is given in this reference2 and
can also be considered as a rotation of value π around the axis e2,

T = R(π, e2) = exp(iπe2 · S/ℏ) = exp(iπT2/ℏ) =
(
0 −I
I 0

)
, T−1 = T †.

2B. Thaller, The Dirac equation, Springer, Berlin (1992), p 75.
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Figure 4.8: Time reversal of the electron produces a particle of negative energy.

THT † = mc2TβT † = −H, TST † = S, Te1T
† = −e1, Te2T

† = e2, Te3T
† = −e3.

The PT transformation is given by the matrix

TP =

(
0 I
I 0

)
, PT =

(
0 −I
−I 0

)
,

and when transforming the gamma matrices γµ produce

Pγ0P−1 = γ0, PγiP−1 = −γi, Tγ0T−1 = −γ0, TγiT−1 = γi,

(PT )γµ(PT )−1 = −γµ,

because the four matrices γ transform like the components of a fourvector

(PT )xµ(PT )−1 = −xµ, (PT )∂µ(PT )−1 = −∂µ,

This is the reason why the Dirac equation for the free particle is invariant under the complete
Poincaré group including inversions.

A Dirac particle is a mechanical system whose intrinsic attributes are mass m > 0 and
spin ℏ/2. We also see that the sign of H is also Poincaré invariant and it is also an intrinsic
property which establishes two di�erent systems of the same value ofm and S. The system with
H > 0 is called the particle and the other with H < 0 the antiparticle. The value of the mass
attribute is introduced by hand. To characterize its interaction with an external electromagnetic
�eld, we also introduce by hand another intrinsic property the electric charge e, located at the
point r. This implies that in addition to the mechanical properties m and S the system has
electromagnetic properties like the electric charge e and because the charge location is separated
from its center of mass and its motion is at the speed of light, we also have an electric dipole
moment d and a magnetic moment µ, respectively. The electric charge can also have either a
positive or negative sign. If we consider the charge conjugation transformation C,

P
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and the global PCT transformation gives,

PCT



S
m
H
e
µ
d

 =



S
m
H
e
µ
d

 .

The PCT transformation transforms the particle into the antiparticle and conversely, reversing
also the local frame, while keeping invariant the mechanical attributes m and S and the elec-
tromagnetic attributes µ and d. The PCT invariance of the system establishes a relationship
between the sign of H and the sign of e, although an indeterminacy exists in the selection of
the sign of the charge of the particle. The product eH is PCT invariant. Dirac equation is
PCT invariant because this transformation maps H > 0 solutions into H < 0 solutions and
conversely, because this equation describes both types of elementary particles.

This implies that particle and antiparticle, in the center of mass frame, have a magnetic
moment and an oscillating electric dipole in a plane orthogonal to the spin. Once the spin
direction is �xed, the magnetic moment of both have the same relative orientation with the
spin, either parallel or antiparallel, according to the selection of the sign of the electric charge.
The electric dipole moment oscillates leftwards for particles and rightwards for antiparticles
which shows a di�erence between them which is called chirality. If as usual we call the electron
to the system of negative electric charge the particle, the above PCT transformation transforms
the system (a) of �gure 4.9 into the system (b). If what we call the particle is of positive electric
charge, then the spin and magnetic moment are opposite to each other for both particle and
antiparticle.

Figure 4.9: Electromagnetic attributes µ and d for (a) a negatively charged particle and
its PCT transformed (b), the positive charged antiparticle, and their relative orientation
with respect to the spin, in the center of mass frame. The electric dipole of the particle
oscillates leftwards and rightwards for the antiparticle.

However, to our knowledge no explicit direct measurement of the relative orientation between
spin and magnetic moment of the free electron, can be found in the literature although very
high precision experiments are performed to obtain the absolute value of g, the gyromagnetic
ratio.
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4.2.7 Two plausible experiments

A plausible indirect experiment 3 has been proposed to measure the relative orientation
between spin and magnetic moment for one electron atoms in the outer shell, like Rb or Cs.

Rb87 atoms have one electron at the level 5s. Its nucleus has spin 3/2 and the ground
state of the atom has a total spin 1, and therefore the outer electron has its spin in the opposite
direction to the spin of the nucleus. The magnetic moment of the atom is basically the magnetic
moment of this outer electron because the inner shells are full and the magnetic moment of the
nucleus is relatively smaller.

Ultracold Rb87 atoms in an external magnetic �eld will be oriented with their magnetic
moments pointing along the �eld direction. If in this direction we send a beam of circularly po-
larized photons of su�cient energy ∼ 6.8GHz to produce the corresponding hyper�ne transition
to �ip the electron spin in the opposite direction and thus leaving the atom in a spin 2 state,
only those photons with the spin opposite to the spin of the outer electron will be absorbed.
Measuring the spin orientation of the circularly polarized beam will give us the spin orientation
of the electron thus showing its relationship with the magnetic moment orientation. Now the
task is to check also the relative orientation for positrons.

The inde�niteness in the sign of the charge of matter is also present in Dirac's formalism.
This prediction is consistent with the known structures formed by a particle and the correspond-
ing antiparticle. As a matter of fact, the positronium (electron-positron bound sytem) has a
ground state of spin 0 and magnetic moment 0. This means that the spins of both electron
and positron are antiparallel to each other and the same thing happens to the corresponding
magnetic moments. Therefore, for the electron and positron there should exist the same relative
orientation between the spin and magnetic moment.

Another example is the neutral pion π0 which is a linear combination of the quark-antiquark
bound systems uū, dd̄ and sometimes the pair ss̄ is also included. It is a system of 0 spin and
0 magnetic moment. Because each of the above quarks have di�erent masses and charges, and
thus di�erent magnetic moments, the possibility is that each quark-antiquark pair is a system
of 0 spin and 0 magnetic moment, and, therefore each quark and the corresponding antiquark
must have the same relative orientation between the spin and the magnetic moment.

Another experiment is the measurement of the precession direction of the spin of e+ and
e− and of µ+ and µ− in a storage ring. If e+ and e− and µ+ and µ− have the same relative
orientation between spin and magnetic moment, then the torque and thus the precession will
be the same.

µ×B =
dS

dt

Nevertheless, if we inject into the accelerator particles and antiparticles with the spin up, and
because the magnetic �eld of the ring has to be reversed for the antiparticle, then the precession
direction of both beams will be opposite to each other. If it is possible to detect the precession
direction this will con�rm the prediction and also the relative orientation between spin and
magnetic moment.

4.2.8 Chirality

The classical model which satis�es Dirac's equation when quantized gives rise to two possible
physical systems of H > 0 and H < 0. The H > 0 is usually called the particle. According
to the previous analysis the internal motion of the charge takes place on a plane orthogonal to
the spin direction and in a leftward sense when we �x as positive the spin direction. For the
antiparticle the motion is rightwards. For particles, the local orientable frame of unit vectors

3M.Rivas, Are the electron spin and magnetic moment parallel or antiparallel vectors?,
ArXiv:physics/0112057.
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ei behaves as a left handed system rotating with an angular velocity in the opposite direction
to the spin, while for antiparticles it can be considered as a right handed one.

Figure 4.10: Relative orientation of the body axis for the antiparticle that leads to Pauli-
Dirac representation. It behaves as a rotating right handed Cartesian frame around the
spin direction.

If we should have started the analysis by considering �rst the antiparticle, then in order
to get the same Pauli-Dirac representation as before we have to consider the body axis as the
ones depicted in �gure 4.10, i.e., in the opposite direction to the ones we chose before and this
leads by the same arguments that the γµ matrices have to replaced by the −γµ, so that the
Hamiltonian in the center of mass frame is −βmc2. In this way the motion of the body frame,
instead of (4.35-4.37) is

de1
dt

=
i

ℏ
[−βmc2, e1] = −ωe2, (4.53)

de2
dt

=
i

ℏ
[−βmc2, e2] = ωe1, (4.54)

de3
dt

=
i

ℏ
[−βmc2, e3] = 0, (4.55)

with ω = c/R0, which clearly corresponds to a rotating right handed system with an angular
velocity around the spin direction.

Matter is left handed and antimatter is right handed in this kind of models as far as the
charge motion and the rotation of the local body frame are concerned, so that particles and
antiparticles show a clear chirality.

Although the local motion of the charge, which takes place in a region of order of Compton's
wavelength, is probably physically unobservable, this motion corresponds nevertheless to the
oscillation of the instantaneous electric dipole moment, which oscillates at very high frequency,
but its direction of motion, once the spin direction is �xed, re�ects this di�erence between
particle and antiparticle. This electric dipole motion is independent of whether the particle is
positively or negatively charged.

Finally, when we compare the spin operator and the vector e3 we see

S =
ℏ
2

(
σ 0
0 σ

)
, e3 =

1

3

(
σ 0
0 −σ

)
.
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that the two upper components of the Dirac spinor correspond to positive energy solutions
and therefore the upper components of these operators are related by S ∼ e3, while the lower
components correspond to negative energy solutions and for this components these operators
behave as S ∼ −e3, and thus the spin projection operator T ∼ e3 in both cases, a vector
relationship which is clearly depicted in the �gures 4.2 and 4.10, respectively.

4.3 Dirac algebra

The three spatial spin components Si, the three spin projections on the body frame Tj and
the nine components of the body frame (ei)j , i, j = 1, 2, 3, whose matrix representations are
given in the z = 0 case in (4.15) or in (4.16) in the z = 1 case, together with the 4 × 4 unit
matrix I, form a set of 16 linearly independent hermitian matrices. They are a linear basis of
Dirac's algebra, and satisfy the following commutation relations:

[Si, Sj ] = iℏϵijkSk, [Ti, Tj ] = −iℏϵijkTk, [Si, Tj ] = 0, (4.56)

[Si, (ej)k] = iℏϵikr(ej)r, [Ti, (ej)k] = −iℏϵijr(er)k, (4.57)

and the scaled 3ei vectors in the z = 0 case

[(3ei)k, (3ej)l] =
4i

ℏ
(δijϵklrSr − δklϵijrTr) , (4.58)

showing that the ei operators transform like vectors under rotations but they are not commuting
observables. In the case z = 1, the scaled −9ei, satisfy the same relations.

If we �x the pair of indexes i, and j, then the set of four operators S2, Si, Tj and (ej)i form a
complete commuting set. In fact, the wave functions Φi, i = 1, . . . , 4, given before (3.75)-(3.78),
are simultaneous eigenfunctions of S2, S3, T3 and (e3)3 with eigenvalues s = 1/2 and for s3, t3,
and e33.

The basic observables satisfy the following anticommutation relations:

{Si, Sj} = {Ti, Tj} =
ℏ2

2
δijI, (4.59)

{Si, Tj} =
ℏ2

2
(3ej)i, (4.60)

{Si, (3ej)k} = 2 δikTj , {Ti, (3ej)k} = 2 δijSk, (4.61)

{(ei)j , (ek)l} =
2

9
δikδjlI+

2

3
ϵikrϵjls(er)s. (4.62)

If we de�ne the dimensionless normalized matrices:

aij = 3(ei)j , (or aij = −9(ei)j), si =
2

ℏ
Si, ti =

2

ℏ
Ti, (4.63)

together with the 4× 4 unit matrix I, they form a set of 16 matrices Γλ, λ = 1, . . . , 16 that are
hermitian, unitary, linearly independent and of unit determinant. They are the orthonormal
basis of the corresponding Dirac's Cli�ord algebra.

The set of 64 unitary matrices of determinant +1, ±Γλ, ±iΓλ, λ = 1, . . . , 16 form a �nite
subgroup of SU(4). Its composition law can be obtained from:

aij akl = δikδjlI+ iδikϵjlr sr − iδjlϵikr tr + ϵikrϵjls ars, (4.64)

aij sk = iϵjkl ail + δjk ti, (4.65)

aij tk = −iϵikl alj + δik sj , (4.66)
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si ajk = iϵikl ajl + δiktj , (4.67)

si sj = iϵijk sk + δijI, (4.68)

si tj = tj si = aji, (4.69)

ti ajk = −iϵijl alk + δijsk, (4.70)

ti tj = −iϵijk tk + δijI, (4.71)

and similarly we can use these expressions to derive the commutation and anticommutation
relations (4.56-4.62).

Dirac algebra is generated by the four Dirac gamma matrices γµ, µ = 0, 1, 2, 3 that satisfy
the anticommutation relations

{γµ, γν} = 2ηµνI, (4.72)

ηµν being Minkowski's metric tensor.
Similarly it can be generated by the following four observables, for instance: S1, S2, T1 and

T2. In fact by (4.68) and (4.71) we obtain S3 and T3 respectively and by (4.69), the remaining
elements.

Classically, the internal orientation of an electron is characterized by the knowledge of the
components of the body frame (ei)j , i, j = 1, 2, 3 that altogether constitute an orthogonal
matrix. To completely characterize in a unique way this orthogonal matrix we need at least
four of these components. In the quantum version, the knowledge of four (ei)j matrices and
by making use of (4.64)-(4.71), allows us to recover the remaining elements of the complete
Dirac algebra. It is in this sense that the internal orientation of the electron completely
characterizes its internal structure. Dirac's algebra of translation invariant observables of the
electron can be algebraically generated by any four of the orientation operators.

4.4 Additional spacetime symmetries

The kinematical variables of this classical Dirac particle are reduced to time t, position r,
velocity u and orientation α, but the velocity is always u = c. It is always 1 in natural units.
If the particle has mass m ̸= 0 and spin s ̸= 0, we can also de�ne a natural unit of length
s/mc and a natural unit of time s/mc2. The unit of length is the radius of the zitterbewegung
motion of �gure 2.10, and the unit of time is the time employed by the charge, in the centre of
mass frame, during a complete turn. This implies that the whole set of kinematical variables
and their time derivatives can be taken dimensionless, and the classical formalism is therefore
invariant under spacetime dilations which do not modify the speed of light.

It turns out that although we started with the Poincaré group as the basic spacetime sym-
metry group, this kind of massive spinning Dirac particles, has a larger symmetry group. It
also contains at least spacetime dilations with generator D. The action of this transformation
on the kinematical variables is

t′ = eλt, r′ = eλr, u′ = u, α′ = α.

The new conserved Noether observable takes the form

D = tH − r · P . (4.73)

Let R(β) be an arbitrary rotation which changes observer's axes. The action of this arbitrary
rotation R(β) on the kinematical variables is

t′ = t, r′ = R(β)r, u′ = R(β)u, R(α′) = R(β)R(α),
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and this is the reason why the generators J of rotations involve di�erential operators with
respect to all these variables, the time excluded.

The orientation of the particle, represented by the variables α, or the equivalent orthogonal
rotation matrix R(α), is interpreted as the orientation of an hypothetical Cartesian frame of
unit axis ei, i = 1, 2, 3, located at point r. It has no physical reality but can be interpreted as
the corresponding Cartesian frame with origin at that point. But the selection of this frame is
completely arbitrary so that the formalism is independent of its actual value. This means that,
in addition to the above rotation group between inertial observers, there will be another rotation
group of elements R(γ) which modi�es only the orientation variables α, without modifying the
variables r and u, i.e., the rotation only of the body frame:

t′ = t, r′ = r, u′ = u, R(α′) = R(γ)R(α), (4.74)

The generators of this new rotation group, which a�ects only the orientation variables, will
be the projection of the angular momentum generators W onto the body axes. It is clear
that the operations of the rotation of the observer frame and the rotation of the body frame
commute with each other. This last rotation represents an active rotation of the body axis.
From Noether's theorem the corresponding classical conserved observables are

Ti = W · ei, (4.75)

where ei are the three orthogonal unit vectors which de�ne the body axis.
If R(α) is the orthogonal rotation matrix which describes the orientation of the particle,

when considered by columns these columns describe the components of the three orthogonal
unit vectors ei, i = 1, 2, 3. Equations (4.74) correspond to the transformation e′i = R(γ)ei of
the body frame.

The Wi operators represent the components of the angular momentum operators associated
to the change of orientation of the particle and projected in the laboratory frame. The corre-
sponding conserved quantities (4.75) are that components of the angular momentum operators
projected onto the body frame Ti = ei ·W . When quantizing the system they are given by the
di�erential operators (4.90)-(4.92) of the appendix below and satisfy

T 2 =W 2, [Ti, Tj ] = −iϵijkTk,

[Ti,Kj ] = [Ti, Jj ] = [Ti, H] = [Ti, D] = [Ti, Pj ] = 0.

We can see that the self-adjoint operators Ti generate another SU(2) group which is the rep-
resentation of the local rotation group SO(3)L which modi�es only the orientation variables,
commutes with the rotation group generated by the Jj , and with the whole enlarged Poincaré
group, including spacetime dilations.

Since we expect that the formalism is independent of the orientation variables we have
another SO(3) group of spacetime symmetries of the particle.

4.4.1 Analysis of the enlarged symmetry group

Let H, P , K and J be the generators of the Poincaré group P. With the usual identi�cation
of pµ ≡ (H/c,P ) as the four-momentum operators and wµ ≡ (P · J , HJ/c −K × P ) as the
Pauli-Lubanski four-vector operator, the two Casimir operators of the Poincaré group are

C1 = pµp
µ, C2 = −wµw

µ.

These two Casimir operators, if measured in the centre of mass frame where P = K = 0, in
natural units c = 1, ℏ = 1, reduce respectively in an irreducible representation to C1 = m2 and
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C2 = H2J2 = m2s(s + 1). The two parameters m and s, which characterize every irreducible
representation of the Poincaré group, represent the intrinsic properties of a Poincaré invariant
elementary particle.

Let us consider the additional spacetime dilations of generator D. The action of this trans-
formation on the kinematical variables is

t′ = eλt, r′ = eλr, u′ = u, α′ = α.

Let us denote this enlargement of the Poincaré group, sometimes called the Weyl group, by W.
In the quantum representation, this new generator when acting on the above wavefunctions,
has the form:

D = it∂/∂t+ ir · ∇. (4.76)

It satis�es
[D, pµ] = −ipµ, [D,Jµν ] = 0.

This enlarged group has only one Casimir operator4 which, for massive systems where the
operator C1 ̸= 0 is invertible, is reduced to

C = C2C
−1
1 = C−1

1 C2 ≡ C2/C1 = s(s+ 1).

In the centre of mass frame this operator is reduced to C = S2, the square of the spin operator.
By assuming also the spacetime dilation invariance this implies that the mass is not an

intrinsic property. It is the spin which is the only intrinsic property of this elementary particle.
In fact, since the radius of the internal motion is R = s/mc, a change of length and time scale
corresponds to a change of mass while keeping s and c constant. By this transformation the
elementary particle of spin 1/2 modi�es its internal radius and therefore its mass and goes into
another mass state.

The structure of the di�erential operator J = r × P + Z + W , where the spin part S =
Z +W has only s = 1/2 eigenvalue for the above model, implies that the eigenvalue of the W 2

corresponds to w = 1/2 while for the Z2 part can be reduced to the two possibilities z = 0 or
z = 1.

In addition to the group W we also consider the representation of the local rotation group
generated by the Ti with eigenvalue w = t = 1/2. We have thus a larger spacetime symmetry
group with an additional SU(2) structure when quantized.

The generators Ti commute with all generators of the group W, and this new symmetry
group can be written as W ⊗ SU(2)T .

This new group has only two Casimir operators S2 and T 2 of eigenvalues 1/2. This justi�es
that our wavefunction will be written as a four-component wavefunction. When choosing the
complete commuting set of operators to classify its states we take the operator T 2 = S2, the
S3 and T3 which can take the values ±1/2 and for instance the pµpµ and the pµ. In this way
we can separate in the wavefunction the orientation and velocity variables from the spacetime
variables,

ψ(t, r,u,α) =
i=4∑
i=1

ϕi(t, r)χi(u,α)

where the four χi(v,α) can be classi�ed according to the eigenvalues |s3, t3 >. The functions
ϕi(t, r) can be chosen as eigenfunctions of the Klein-Gordon operator

pµp
µϕi(t, r) = m2

iϕi(t, r).

4Abellanas L and Martinez Alonso L 1975 J. Math. Phys. 16 1580
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Because this operator pµpµ does not commute with the D observable, the mass eigenvalue mi

is not an intrinsic property and the corresponding value depends on the particular state ϕi we
consider.

For the classi�cation of the χi(u,α) states we have also to consider theZ angular momentum
operators. Because [Z2, S2] = [Z2, T 2] = [Z2, pµ] = 0, we can choose Z2 as an additional
commuting observable. It can only take integer eigenvalues when acting on functions of the
velocity variables, because it has the structure of an orbital angular momentum. But because the
total spin S = Z+W , and the S2 has eigenvalue 1/2, the possible eigenvalues of Z2 can be z = 0
or z = 1. See the appendix below for the possible clasi�cation of the χi(u,α) part, according
to z = 0 which gives rise to the (3.75-3.78) eigenfunctions, and the z = 1 eigenfunctions (4.97-
4.100). In this last case the eigenfunctions cannot be simultaneously eigenfunctions of Z3.
Nevertheless the expectation value of Z3 in the z = 0 basis vectors Φi is 0, while its expectation
value in the z = 1 basis Ψi is ±2/3.

4.4.2 Enlargement of the kinematical space

Once the kinematical group has been enlarged by including spacetime dilations, we have a
new dimensionless group parameter asociated to this one-parameter subgroup which can also
be used as a new kinematical variable, to produce a larger homogeneous space of the group. In
fact, if we take the time derivative of the constant of the motion (4.73) we get

H = P · u.

If we compare this with the equation (4.19), one term is lacking. This implies that we need,
from the classical point of view, an additional kinematical variable, a dimensionless scale β, such
that under the action of this new transformation the enlarged kinematical variables transform

t′ = eλt, r′ = eλr, u′ = u, α′ = α, β′ = λ+ β.

From the group theoretical point of view this new dimensionless variable corresponds to the
normal dimensionles group parameter of the transformation generated by D.

From the Lagrangian point of view, the new Lagrangian has also to depend on β and β̇,
with a general structure

L̃ = ṫT + ṙ ·R+ u̇ ·U + ω ·W + β̇B,

with B = ∂L̃/∂β̇. The constant of the motion associated to the invariance of the dynamical
equations under this new transformation implies that

D = tH − r · P −B,

and the new generator in the quantum version takes the form

D = it∂/∂t+ ir · ∇+ i
∂

∂β
.

In this way the last term of (4.19) is related to the time derivative of this last term

dB

dt
=

1

c2
S ·
(
du

dt
× u

)
.

This new observable B, with dimensions of action, has a positive time derivative for particles
and a negative time derivative for antiparticles. This sign is clearly related to the sign of H. In
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the center of mass frame P = 0, H = ±mc2 = dB/dt, with solution B(t) = B(0) ±mc2t. In
units of ℏ this observable represents half the phase of the internal motion

B(t) = B(0)± 1

2
ℏωt.

Because the additional local rotations generated by the Ti commute with the W group, the
above kinematical variables also span a homogeneous space of the whole W ⊗ SU(2)T group
and, therefore, they represent the kinematical variables of an elementary system which has this
new group as its kinematical group of spacetime symmetries.

4.4.3 Relationship with the standard model

We have analyzed the spacetime symmetry group of a relativistic model of a Dirac particle.
Matter described by this model (H > 0 states), is left handed while antimatter (H < 0),
is right handed, as far as the relative orientation between the spin and the motion of the
charge, is concerned. For matter, once the spin direction is �xed, the motion of the charge is
counterclockwise when looking along the spin direction. It is contained in a plane orthogonal
to the spin direction, with the usual sign convention for multivectors in the geometric algebra.
The motion is clockwise for antimatter.

This particle has as symmetry group of the Lagrangian W ⊗ SO(3)L and W ⊗ SU(2)T
in its quantum description, which is larger than the Poincaré group we started with as the
initial kinematical group of the model. It contains in its quantum description, in addition to
the Poincaré transformations, a U(1) group which is a unitary representation of the spacetime
dilations and also a SU(2)T group which is the unitary representation of the symmetry group of
local rotations of the body frame. The whole group has two Casimir operators S2, the Casimir
of W and T 2 the Casimir of SU(2)T , which take the eigenvalues s = t = 1/2 for the Dirac
particle considered here.

Some of the features we get have a certain resemblance to the standard model of elementary
particles, as far as kinematics is concerned. If we interpret the generators Ti of the unitary
representation of the local rotations as describing isospin and the angular momentum operators
Z related to the zitterbewegung as describing colour, an elementary particle described by this
formalism is a massive system of spin 1/2, isospin 1/2, of undetermined mass and charge. It can
be in a s3 = ±1/2 spin state and also in a t3 = ±1/2 isospin state. There are two nonequivalent
irreducible representations according to the value of the zitterbewegung part of the spin z. It
can only be a colourless particle z = 0 (lepton?) or a coloured one z = 1 in any of three
possible colour states z3 = 1, 0,−1, (quark?) but no greater z value is allowed. The basic
states can thus also be taken as eigenvectors of Z2 but not of Z3, so that the corresponding
colour is unobservable. There is no possibility of transitions between the coloured and colourless
particles because of the orthogonality of the corresponding irreducible representations, Φi and
Ψj , < Φi|Ψj >= 0.

Because the eigenvalues of Z3 are unobservable we also have an additional unitary group
of transformations SU(3) which transforms the three Z3 eigenvectors Y j

i of (4.101) among
themselves and which do not change the z = 1 value of the eigenstates Ψi. Nevertheless, the
relationship between this new SU(3) internal group, which is not a spacetime symmetry group,
and W ⊗ SU(2)T is not as simple as a direct product and its analysis is left to a subsequent
research. In another context, the z = 0 states corresponds to the motion of the charge pasing
through the centre of mass and therefore no closed current loop and thus no magnetic moment.

This formalism is pure kinematical. We have made no mention to any electromagnetic,
weak or strong interaction among the di�erent models. So that, if we �nd this comparison with
the standard model a little arti�cial, the mentioned model of Dirac particle just represents a
massive system of spin 1/2, spin projection on the body frame 1/2, of undetermined mass and
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charge. It can be in a s3 = ±1/2 spin state and also in a t3 = ±1/2 when the spin is projected
on the body axis. There are two di�erent models of these Dirac particles according to the value
of the orbital or zitterbewegung spin, z = 0 or z = 1, in any of the three possible orbital spin
states z3 = 1, 0,−1, which are unobservable, but no particle of greater z value is allowed. It
is the spin, with its twofold structure orbital and rotational, the only intrinsic attribute of this
Dirac elementary particle.

4.5 An interaction Lagrangian for two Dirac particles

An elementary particle can be annihilated by the interaction with the corresponding antipar-
ticle, but if it is not destroyed, we made the assumption that the structure of an elementary
particle is not modi�ed by any interaction so that its intrinsic properties, the spin S and the
spin projection on the body frame T cannot be altered by the interaction with an external �eld
or by the presence in its neigbourhood of any other particle.

Let us consider a compound system formed by two spinning particles with the same kind
of kinematical variables. We shall use a subscript a = 1, 2 to distinguish the variables corre-
sponding to each particle. Then the kinematical space of the compound system is spanned by
the variables (ta, ra,ua,αa, βa), a = 1, 2. The Lagrangian of the system will be written as

L = L1 + L2 + LI

where the La, a = 1, 2, are the free Lagrangians of each particle and LI is the interaction
Lagrangian we are looking for. Both La are invariant under the enlarged group S and we are
going to �nd an interaction Lagrangian LI also invariant under S. The general structure of
the free Lagrangian La of each particle, which only depends on the corresponding kinematical
variables of particle a, is

L̃a = Taṫa +Ra · ṙa +Ua · u̇a +W a · ωa +Baβ̇a

where Ta = ∂L̃a/∂ṫa, Ra = ∂L̃a/∂ṙa, Ua = ∂L̃a/∂u̇a, W a = ∂L̃a/∂ωa and Ba = ∂L̃a/∂β̇a,
because of the homogeneity of each L̃a in terms of the τ−derivatives of the corresponding
kinematical variables. The spin and the spin projection on the body frame for each particle, are

Sa = ua ×Ua +W a, Tai = eai ·W a

where eai, i = 1, 2, 3 are three orthogonal unit vectors with origin at point ra.
The interaction Lagrangian between these two particles L̃I will be in general a function

of the kinematical variables of both particles and of their τ−derivatives. If both intrinsic
properties Sa and Ta of each particle are not modi�ed by any interaction then the interaction
Lagrangian cannot be a function of the derivatives of the kinematical variables u̇a and ωa,
a = 1, 2. Otherwise the functions Ua and W a will be di�erent than in the free case. In this
case the functions Ua and W a, which give rise to the de�nition of the spin, are obtained only
from the corresponding free Lagrangian L̃a.

Then, as far as the τ−derivatives of the kinematical variables are concerned, the interaction
Lagrangian L̃I will only depend on the variables ṫa, ṙa and β̇a, a = 1, 2. In addition to this,
it will also be a function of the kinematical variables ta, ra, ua and βa, but not of αa because
of the invariance under the local rotation group SO(3)L. Spacetime dilation invariance implies
that the Lagrangian is a function of the phase di�erence β1−β2, and of β̇1− β̇2, but being both
phases completely arbitrary and independent of each other it means that must be independent
of these variables.

Because of the constraint ua = ṙa/ṫa, the interaction Lagrangian will thus be �nally a
function

L̃I = L̃I(ta, ra, ṫa, ṙa),
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and a homogeneous function of �rst degree of the derivatives ṫa, ṙa, a = 1, 2.
If we call as usual the Minkowski four-vector xµa ≡ (ta, ra), translation invariance implies

that the Lagrangian must be a function of xµ1 − xµ2 . The following two terms ηµν ẋ
µ
1 ẋ

ν
2 and

ηµν(x
µ
1 − x

µ
2 )(x

ν
2 − xν1), where ηµν is Minkowski's metric tensor, are Poincaré invariant. If we

consider that the evolution parameter τ is dimensionless, these terms have both dimensions of
length squared. It therefore implies that its quotient is dimensionless and therefore invariant
under spacetime dilations. The other requirement is that the Lagrangian is a homogeneous
function of �rst degree of the τ−derivatives of the kinematical variables. The squared root
will do the job. A �nal discrete symmetry will be assumed because when the two particles are
the same, and therefore indistinguishable, the interaction Lagrangian must be invariant under
the interchange 1 ↔ 2 between the labels of the two particles. We thus arrive to the S group
invariant Lagrangian

L̃I = g

√
ηµν ẋ

µ
1 ẋ

ν
2

ηµν(x
µ
1 − x

µ
2 )(x

ν
2 − xν1)

= g

√
c2ṫ1ṫ2 − ṙ1 · ṙ2

(r2 − r1)2 − c2(t2 − t1)2

where g is a coupling constant.
Alternative Lagrangians which ful�ll these requirements can be constructed. For instance,

L̃ = g(ẋ1 − ẋ2)
µ(x1 − x2)µ/(x1 − x2)

2, but this one is a total τ−derivative of the function
log(x1 − x2)

2. Another could be L̃ = g(ẋ1 + ẋ2)
µ(x1 − x2)µ/(x1 − x2)

2, also dimensionless
and linear in the derivatives of the kinematical variables, but it reverses its sign under the
interchange 1↔ 2, and thus all interaction observables, like the interaction energy are reversed,
which is physically meaningless for two alike particles.

Another possibility would be

L̃I = g
ηµν ẋ

µ
1 ẋ

ν
2

ηµν(ẋ
µ
1 − ẋ

µ
2 )(x

ν
2 − xν1)

= g
c2ṫ1ṫ2 − ṙ1 · ṙ2

(ṙ1 − ṙ2) · (r2 − r1)− c2(ṫ1 − ṫ2)(t2 − t1)
,

which full�ls the requirements of homogeneity and scale invariance. In a sinchronous description
it looks like

LI = g
c2 − u1 · u2

(u1 − u2) · (r2 − r1)
(4.77)

The interaction between two Dirac particles is not unique. We know that among leptons
and quarks there are short range interactions like the weak and strong interactions and a short
and long range one like the electromagnetic interaction. The proposed Lagrangian has the
advantage of describing an interaction which is scale invariant and thus it is valid as a long and
short range interaction and which has a Coulomb-like behaviour when the spin is supressed, as
we shall see in the next section. In this way it suplies a kind of generalization of an action at a
distance electromagnetic interaction. The novelty is that this interaction Lagrangian has been
obtained by assuming a spacetime symmetry group larger than the Poincaré group.

4.5.1 Synchronous description

Once an inertial observer is �xed we shall consider a synchronous time description, i.e. to
use as evolution parameter the own observer's time t which is the same as the two time variables
t1 and t2. In this case, t = t1 = t2, ṫ1 = ṫ2 = 1, and thus

LI = g

√
c2 − u1 · u2

(r2 − r1)2
= g

√
c2 − u1 · u2

r
(4.78)

where r = |r1 − r2| is the instantaneous separation between the corresponding charges in this
frame and ua = dra/dt the velocity of the charge of particle a.
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An average over the charge position and velocity in the centre of mass of particle 1 implies
that < r1 >= q1 and < u1 >= 0, so that the interaction becomes the instantaneous Coulomb
interaction, between the centre of mass of the �rst particle and the charge position of the other.
The average over the other then corresponds to the instantaneous Coulomb interaction of two
spinless point particles because when neglecting the zitterbewegung we are suppressing the spin
structure.

It is suggesting, in the international system of units, that the coupling constant gc =
±e2/4πϵ0 in terms of the electric charges of each particle and where the sign ± depends on
the charges, whether they are opposite or of the same sign. If the coupling constant has dimen-
sions of action, we write as g = αℏ, it results that the dimensionless constant α, is precisely the
�ne structure constant

α =
e2

4πϵ0ℏc
.

In this way, the interaction is independent of the masses of the particles and in the synchronous
description looks like

LI = αℏ
√
c2 − u1 · u2

r
.

The Lagrangian of the two particle system L̃ = L̃1 + L̃2 + L̃I is not invariant under scale
transformation, because the free Lagrangians L̃i, i = 1, 2 are not, and a change of space-
time scale what describes is the interaction, with the same L̃I of two other particles of the
same charge and spin, but of di�erent masses as the previous particles. If initially we are
describing the interaction between two electrons, the scale transformation suggests that the
rescaled material system corresponds to the interaction, with the same interaction Lagrangian
L̃I , of two muons or two tau-particles. If we use dimensionless variables by using as a unit of
lenght the internal radius R0 = ℏ/2mc and as a unit of velocity the universal constant c, the
interaction Lagrangian is

LI =
αℏc

ℏ/2mc

√
1− u1 · u2

r
= 2αmc2

√
1− u1 · u2

r
,

where all variables are dimensionless. If L1 and L2 depend on the mass of the particles, by
rescaling the whole Lagrangian by the factor mc2, we obtain a dimensionless Lagrangian which
in the synchronous description is

L = L1 + L2 + 2α

√
1− u1 · u2

r
. (4.79)

It is independent of the masses of the particles and the only physical parameter is the �ne
structure constante α.

The Lagrangian (4.77) becomes in the synchronous description of the form

LI = αℏ
c2 − u1 · u2

(u1 − u2) · (r2 − r1)
,

with the same coupling constant. If we make the same scaling as before and the �nal factor by
mc2, it becomes

L = L1 + L2 + 2α
1− u1 · u2

(u1 − u2) · (r2 − r1)
, (4.80)

in terms of the same dimensionless physical constant α, and where all variables are dimension-
less.

A �rst conclusion for this synchronous description, for both (4.79) and (4.80) is that to
have interaction between the particles it is necessary that always u1 ̸= u2. Otherwise there
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will be no interaction because the interacting Lagrangian vanishes. A mechanical system of two
electrons at rest with their spins parallel and moving with the same velocity u1 = u2, do not
interact, independently of their separation of their centers of charge. The same happens for an
electron-positron system with opposite spins where we can have u1 = u2, and the interaction
Lagrangian will be zero.

The formalism is Poincaré invariant while the interaction is invariant under the enlarged
group S, which also contains scale transformations and local rotations. The free part L0 would
describe particles of spin 1/2 and di�erent masses, but the interaction woud be independent of
the masses of the particles. All leptons and quarks have di�erent masses, but their interaction
would be described bay the same L̃I .

The variational derivative of L with respect to the variables ra produces from the part La

the term −dpa/dt,

−dpa

dt
= − d

dt

(
∂La

∂ua

)
+
d2

dt2

(
∂La

∂aa

)
,

because La is independent of ra, and from the part LI we get

∂LI

∂ra
− d

dt

(
∂LI

∂ua

)
= F a

which �nally gives rise to the dynamical equations

dpa

dt
= F a, a = 1, 2.

The variational derivative of L with respect to the orientation variables, is the same like in the
free case because LI is independentof these variables and thus

dW a

dt
= ωa ×W a, a = 1, 2.

Because the mechanical linear momentum of each particle can be writeen in terms of the velocity
of its center of mass, pa = γ(va)mva, a = 1, 2. The �rst equation will de�ne the acceleration of
the center of mass of each particle, and this leads to de�ne this center of mass as

qa = ra +
(qa − ra)

2

c2 − va · ua

d2ra
dt2

.

This amounts that the second order di�erential equation for the center of charge of each particle
in terms of the position and velocity of the center of mass is:

d2ra
dt2

=
c2 − va · ua

(qa − ra)2
(qa − ra), a = 1, 2.

We shall make use of this form to describe the interaction between two electrons, which leads
to the existence of bound states up to some upper relative velocity, in the section 6.6.
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4.6 Appendix: The group W ⊗ SU(2)T ⊗ U(1)Q

Under in�nitesimal time and space translations of parameters δτ and δb, respectively, the
kinematical variables transform as

t′ = t+ δτ, r′ = r + δb, u′ = u, α′ = α, β′ = β

so that the self-adjoint generators of translations are

H = i
∂

∂t
, P = −i∇, [H,P ] = 0.

Under an in�nitesimal spacetime dilation of normal parameter δλ, they transform in the way:

t′ = t+ tδλ, r′ = r + rδλ, v′ = v, α′ = α, β′ = β + δλ

so that the generator takes the form (ℏ = 1)

D = it
∂

∂t
+ ir · ∇+ i

∂

∂β
= tH − r · P −B, [D,H] = −iH, [D,Pj ] = −iPj .

To describe orientation we can represent every element of the rotation group by the three-vector
α = αn, where α is the rotated angle and n is a unit vector along the rotation axis. This is
the normal or canonical parameterization. Alternatively we can represent every rotation by the
three-vector ρ = tan(α/2)n. In this case, every rotation matrix takes the form

R(ρ)ij =
1

1 + ρ2
(
(1− ρ2)δij + 2ρiρj + 2ϵikjρk

)
.

The advantage of this parameterization is that the composition of rotations R(ρ′) = R(µ)R(ρ)
takes the simple form

ρ′ =
µ+ ρ+ µ× ρ

1− µ · ρ
.

Under an in�nitesimal rotation of parameter δµ = δα/2, in terms of the normal parameter, the
kinematical variables transform as

δt = 0, δβ = 0

δri = −2ϵijkrjδµk
δui = −2ϵijkujδµk
δρi = (δik + ρiρk + ϵiklρl) δµk,

so that the variation of the kinematical variables per unit of normal rotation parameter δαk is

δtk = 0, δβk = 0

δrik = −ϵijkrj
δuik = −ϵijkuj

δρik =
1

2
[δik + ρiρk + ϵiklρl] ,

and the self-adjoint generators Jk, are

Jk = iϵijkrj
∂

∂ri
+ iϵijkuj

∂

∂ui
+

1

2i

(
∂

∂ρk
+ ρkρi

∂

∂ρi
+ ϵiklρl

∂

∂ρi

)
.
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They can be separated into three parts, according to the di�erential operators involved, with
respect to the three kinds of kinematical variables r, u and ρ, respectively:

J = L+Z +W ,

Lk = iϵijkrj
∂

∂ri
,

Zk = iϵijkuj
∂

∂ui
, Wk =

1

2i

(
∂

∂ρk
+ ρkρi

∂

∂ρi
+ ϵiklρl

∂

∂ρi

)
. (4.81)

They satisfy the angular momentum commutation rules and commute among themselves:

[Lj , Lk] = iϵjklLl, [Zj , Zk] = iϵjklZl, [Wj ,Wk] = iϵjklWl,

[L,Z] = [L,W ] = [Z,W ] = 0.

and thus
[Jj , Jk] = iϵjklJl, [J , H] = [J , D] = 0, [Jj , Pk] = iϵjklPl.

The above orientation variable ρ, under a general boost of velocity v, transforms as

ρ′ =
ρ+ F (v,u,ρ)

1 +G(v,u,ρ)
,

where

F (v,u,ρ) =
γ(v)

1 + γ(v)
(u× v + v(u · ρ) + (u× ρ)× v) ,

G(v,u,ρ) =
γ(v)

1 + γ(v)
(u · v + v · (u× ρ)) , γ(v) = (1− v2)−1/2.

Finally, under an in�nitesimal boost of value δv, γ(v) ≈ 1, the kinematical variables trans-
form as

δt = r · δv
δr = tδv

δu = δv − u(u · δv)
δρ = − [ρ(u · δv) + ρ ((u× ρ) · δv)− u× δv − δv(u · ρ)−

(u× ρ)× δv] /2,
δβ = 0,

and the variation of these variables per unit of in�nitesimal velocity parameter δvj is

δtj = rj

δrij = tδij

δvij = δij − uiuj

δρij = −1

2
[ρjui + ρiϵjklukρl − ϵikjuk − δijukρk] ,

δβj = 0,

so that the boost generators Kj have the form

Kj = irj
∂

∂t
+ it

∂

∂rj
+ i

(
∂

∂uj
− ujui

∂

∂ui

)
+

1

2i

(
ρjui

∂

∂ρi
+ ρiϵjklukρl

∂

∂ρi
− ϵikjuk

∂

∂ρi
− ukρk

∂

∂ρj

)
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Similarly, the generatorsKj can be decomposed into three parts, according to the di�erential
operators involved and we represent them with the same capital letters as in the case of the J
operators but with a tilde:

K = L̃+ Z̃ + W̃ , L̃j = irj
∂

∂t
+ it

∂

∂rj
, Z̃j = i

(
∂

∂uj
− ujui

∂

∂ui

)
,

W̃j =
1

2i

(
ρjui

∂

∂ρi
+ ρiϵjklukρl

∂

∂ρi
+ ϵjkiuk

∂

∂ρi
− ukρk

∂

∂ρj

)
They satisfy the commutation rules:

[L̃j , L̃k] = −iϵjklLl, [Z̃j , Z̃k] = −iϵjklZl, [L̃, Z̃] = [L̃, W̃ ] = 0,

and also
[Kj ,Kk] = −iϵjklJl.

We can check that
Z̃ = u×Z, W̃ = u×W .

If we de�ne the spin operator S = Z + W , and the part of the kinematical momentum
S̃ = Z̃ + W̃ = u× S, they satisfy

[Sj , Sk] = iϵjklSl, [Sj , S̃k] = iϵjklS̃l, [S̃j , S̃k] = −iϵjklSl,

where in the last expression we have used the constraint u2 = 1. They generate the Lie algebra
of a Lorentz group which commutes with spacetime translations [S, pµ] = [S̃, pµ] = 0.

With respect to the part SU(2)T , let us calculate its generators. This group, with in�nites-
imal parameters δνk, when acting on the kinematical variables in the form:

δt = 0, δβ = 0, δri = 0, δui = 0, δρi = (δik + ρiρk + ϵiklρl) δνk,

In the ρ parameterization of the rotation group, the unit vectors of the body frame ei, i = 1, 2, 3
have the following components:

(ei)j = R(ρ)ji,

so that the Tk = ek ·W operators of projecting the rotational angular momentum W onto the
body frame are given by

Tk =
1

2i

(
∂

∂ρk
+ ρkρi

∂

∂ρi
− ϵiklρl

∂

∂ρi

)
. (4.82)

They di�er from the Wk in (4.81) by the change of ρ by −ρ, followed by a global change of
sign. They satisfy the commutation relations

[Tj , Tk] = −iϵjklTl. (4.83)

The minus sign on the right hand side of (4.83) corresponds to the di�erence between the active
and passive point of view of transformations. The rotation of the laboratory axis (passive
rotation) has as generators the J , which satisfy [Jj , Jk] = iϵjklJl. The Ti correspond to the
generators of rotations of the particle axis (active rotation), so that, the generators −Ti will
also be passive generators of rotations and satisfy [−Tj ,−Tk] = iϵjkl(−Tl).

In the normal parameterization of rotations α = αn, if we describe the unit vector n
along the rotation axis by the usual polar and azimuthal angles θ and ϕ, respectively, so that
n ≡ (sin θ cosϕ, sin θ sinϕ, cos θ), the above Wi generators take the form

W1 =
1

2i

[
2 sin θ cosϕ

∂

∂α
+

(
cos θ cosϕ

tan(α/2)
− sinϕ

)
∂

∂θ
−(

sinϕ

tan(α/2) sin θ
+

cos θ cosϕ

sin θ

)
∂

∂ϕ

]
, (4.84)
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W2 =
1

2i

[
2 sin θ sinϕ

∂

∂α
+

(
cos θ sinϕ

tan(α/2)
+ cosϕ

)
∂

∂θ
−(

cos θ sinϕ

sin θ
− cosϕ

tan(α/2) sin θ

)
∂

∂ϕ

]
, (4.85)

W3 =
1

2i

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
+

∂

∂ϕ

]
, (4.86)

W 2 = −
[
∂2

∂α2
+

1

tan(α/2)

∂

∂α
+

1

4 sin2(α/2)

{
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

}]
, (4.87)

W+ =W1 + iW2 =
eiϕ

2i

[
2 sin θ

∂

∂α
+

cos θ

tan(α/2)

∂

∂θ
+ i

∂

∂θ
− cos θ

sin θ

∂

∂ϕ
+

i

tan((α/2)) sin θ

∂

∂ϕ

]
, (4.88)

W− =W1 − iW2 =
e−iϕ

2i

[
2 sin θ

∂

∂α
+

cos θ

tan(α/2)

∂

∂θ
− i ∂

∂θ
− cos θ

sin θ

∂

∂ϕ
−

i

tan(α/2) sin θ

∂

∂ϕ

]
, (4.89)

and the passive Ti generators take the form

T1 =
−i
2

[
2 sin θ cosϕ

∂

∂α
+

(
cos θ cosϕ

tan(α/2)
+ sinϕ

)
∂

∂θ
−(

sinϕ

tan(α/2) sin θ
− cos θ cosϕ

sin θ

)
∂

∂ϕ

]
, (4.90)

T2 =
−i
2

[
2 sin θ sinϕ

∂

∂α
+

(
cos θ sinϕ

tan(α/2)
− cosϕ

)
∂

∂θ
−(

−cos θ sinϕ

sin θ
− cosϕ

tan(α/2) sin θ

)
∂

∂ϕ

]
, (4.91)

T3 =
−i
2

[
2 cos θ

∂

∂α
− sin θ

tan(α/2)

∂

∂θ
− ∂

∂ϕ

]
. (4.92)

Ti are related to Wi by changing α into −α.
With respect to the part U(1)Q, of generator Q, which commutes with the remaining gen-

erators, the action of an in�nitesimal element δχ of this este group acting on the kinematical
variables is:

δt = 0, δβ = δχ, δri = 0, δui = 0, δρi = 0,

so that the quantum representation of this generator is

Q = −i ∂
∂β
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Because it commutes with the others, we can separate variables in the wave function in terms
of this new variable

Qf(β) = qf(β), f(β) ∼ eiqβ,

and the general form of the wave function can be written as

ψ(t, r,u,α, β) = eiqβΨ(t, r,u,α),

and the new variable β apears as a general phase.
The normalized eigenvectors of W 2 = T 2 and W3 and T3 for w = t = 1/2, written in the

form |w3, t3 >, (which are also eigenvectors of Z2 with z = 0) are written as |0; s3, t3 >

Φ1 = |1/2,−1/2 >= i
√
2 sin(α/2) sin θeiϕ, (4.93)

Φ2 = | − 1/2,−1/2 >=
√
2 (cos(α/2)− i cos θ sin(α/2)) (4.94)

Φ3 = |1/2, 1/2 >= −
√
2 (cos(α/2) + i cos θ sin(α/2)) , (4.95)

Φ4 = | − 1/2, 1/2 >= −i
√
2 sin(α/2) sin θe−iϕ. (4.96)

The rising and lowering operators W± and the corresponding T± transform them among each
other. {Φ1,Φ2} are related by W±, and similarly the {Φ3,Φ4} while the sets {Φ1,Φ3} and
{Φ2,Φ4} are separately related by T±. For instance

W−Φ1 = Φ2, W−Φ2 = 0, W−Φ3 = Φ4,

T−Φ1 = Φ3, T−Φ3 = 0, T−Φ2 = Φ4.

They form an orthonormal set with respect to the normalized invariant measure de�ned on
SU(2)

dg(α, θ, ϕ) =
1

4π2
sin2(α/2) sin θ dα dθ dϕ,

α ∈ [0, 2π], θ ∈ [0, π], ϕ ∈ [0, 2π].∫
SU(2)

dg(α, θ, ϕ) = 1.

The wavefunction ψ can be separated in the form

ψ(t, r,u,α) =

i=4∑
i=1

ϕi(t, r)χi(u,α)

where the four χi can be classi�ed according to the eigenvalues |s3, t3 >. The functions ϕi(t, r)
can be chosen as eigenfunctions of the Klein-Gordon operator

pµp
µϕi(t, r) = m2

iϕi(t, r).

The functions χ(u,α) can also be separated because the total spin S with s = 1/2, is the sum
of the two parts S = Z + W , with [Z,W ] = 0, so that since the W part contributes with
w = 1/2 then the Z part contributes with z = 0 or z = 1. The z = 0 contribution corresponds
to the functions χi(α) independent of the velocity variables and the orthonormal set are the
above Φi, i = 1, 2, 3, 4, which can also be written in the form |z; s3, t3 >, with z = 0.

Because Z = −iu×∇u, for the z = 1 part the eigenvectors of Z2 and Z3 are the spherical
harmonics Y i

1 (β, λ), i = −1, 0, 1. The variables β and λ represent the orientation of the velocity
vector u. Because [Zi,Wj ] = 0, we can again separate the variables in the functions χ(u,α).
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In this case the χ(u,α) =
∑
ϕi(β, λ)λi(α, θ, ϕ). The four orthonormal vectors, eigenvectors of

S3, Z2 with z = 1 and T3, |1; s3, t3 >, are now

Ψ1 = |1; 1/2, 1/2 >= 1√
3

(
Y 0
1 (β, λ)Φ1 −

√
2Y 1

1 (β, λ)Φ2

)
, (4.97)

Ψ2 = |1;−1/2, 1/2 >= 1√
3

(
−Y 0

1 (β, λ)Φ2 +
√
2Y −1

1 (β, λ)Φ1

)
, (4.98)

Ψ3 = |1; 1/2,−1/2 >= 1√
3

(
Y 0
1 (β, λ)Φ3 −

√
2Y 1

1 (β, λ)Φ4

)
, (4.99)

Ψ4 = |1;−1/2,−1/2 >= 1√
3

(
−Y 0

1 (β, λ)Φ4 +
√
2Y −1

1 (β, λ)Φ3

)
. (4.100)

where Φi are the same as those in (4.93-4.96) and the spherical harmonics Y i
1 (β, λ) are

Y 1
1 = −

√
3

8π
sin(β)eiλ̃, Y 0

1 =

√
3

4π
cos(β), Y −1

1 =

√
3

8π
sin(β)e−iλ̃. (4.101)

The Zi operators are given by

Z1 = i sinλ
∂

∂β
+ i

cosβ

sinβ
cosλ

∂

∂λ
, Z2 = −i cosλ

∂

∂β
+ i

cosβ

sinβ
sinλ

∂

∂λ
,

Z3 = −i
∂

∂λ
.

The rising and lowering operators Z± are

Z± = e±iλ

(
± ∂

∂β
+ i

cosβ

sinβ

∂

∂λ

)
,

so that
Z−Y

1
1 =
√
2 Y 0

1 , Z−Y
0
1 =
√
2 Y −1

1 .

The four spinors Ψi are orthonormal with respect to the invariant measure

dg(β, λ;α, θ, ϕ) =
1

4π2
sin2(α/2) sin θ sinβ dα dθ dϕ dβdλ

α ∈ [0, 2π], β, θ ∈ [0, π], λ, ϕ ∈ [0, 2π].

Similarly as before, the rising and lowering operators S± = Z± +W± and the corresponding
T± transform the Ψi among each other. In particular {Ψ1,Ψ2} are related by S±, and similarly
{Ψ3,Ψ4} while the sets {Ψ1,Ψ3} and {Ψ2,Ψ4} are separately related by T±. This is the reason
why the general spinor in this representation is a four-component object.

In the z = 0 basis Φi (4.93-4.96), the spin operators and the basis vectors of the body frame
take the form

S =
1

2

(
σ 0
0 σ

)
= W ,

T1 =
1

2

(
0 I
I 0

)
, T2 =

1

2

(
0 −iI
iI 0

)
, T3 =

1

2

(
I 0
0 −I

)
,

e1 =
−1
3

(
0 σ
σ 0

)
, e2 =

−1
3

(
0 −iσ
iσ 0

)
, e3 =

−1
3

(
σ 0
0 −σ

)
,

in terms of the Pauli σ matrices and the 2× 2 unit matrix I.
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In the z = 1 basis Ψi (4.97-4.100), the operators Si and Ti take the same matrix form as
above, while the ei are

e1 =
1

9

(
0 σ
σ 0

)
, e2 =

1

9

(
0 −iσ
iσ 0

)
, e3 =

1

9

(
σ 0
0 −σ

)
.

In all cases, the 6 Hermitian traceless matrices Si, Tj , the nine Hermitian traceless matrices
eij and the 4× 4 unit matrix are linearly independent and they completely de�ne a Hermitian
basis for Dirac's algebra, so that any other translation invariant observable of the particle will
be expressed as a real linear combination of the above 16 Hermitian matrices. We have used
this fact previously to explicitely obtain Dirac's equation for this model.

Both representations are orthogonal to each other, < Φi|Ψj >= 0, and they produce two
di�erent irreducible representations of the group, so that they describe two di�erent kinds of
particles of the same spin 1/2.

The matrix representation of the Zi and Wi operators in the basis Ψi are given by

Z =
2

3

(
σ 0
0 σ

)
, W =

−1
6

(
σ 0
0 σ

)
,

although the spinors Ψi are not eigenvectors of Z3 and W3. In the basis Φi, the representation
of the Zi are vanishing matrices because in this case S = W . We see that Z is a positive
multiple, greater than S and therefore it has the same direction, while W has the opposite
direction, as it corresponds to the picture of the front page.

In both cases z = 0 and z = 1, we have that

T1e1 + T2e2 + T3e3 = e1T1 + e2T2 + e3T3 = W ,

which justi�es that the operators Ti are the components of the rotative angular momentum W ,
projected into the corresponding axis of the local frame ei.



Chapter 5

Electromagnetic structure of the

electron

5.1 Structure of the spinning electron

Let us consider that the classical electron is described by the model whose charge is moving
in circles at the speed of light in the center of mass frame.

One of the immediate questions concerning the classical structure of the electron is, what is
the associated electromagnetic �eld of the particle? We see that the charge is accelerated and
according to the classical electromagnetic theory, the particle must necessarily radiate contin-
uously. However, from the mechanical point of view we have produced a classical free system,
such that properties like the mechanical energy and mechanical linear and angular momentum
are conserved in time. The Lagrangian that describes the system is Poincaré invariant, and
if we think about a free system, the corresponding �eld structure cannot produce loss of en-
ergy and linear momentum. The free particle has to have associated an electromagnetic �eld
without radiation. Radiation has to be produced whenever the center of mass of the particle is
accelerated, i.e., when the particle is no longer free.

There must exist radiationless solutions of Maxwell's equations, associated to point charges
moving in circles at the speed of light. One possibility is to consider solutions derived from the
Liénard-Wiechert potentials (Aµ

ret+A
µ
adv)/2, whereA

µ
ret andA

µ
adv are the corresponding retarded

and advanced potentials. But, even if we take as the probable electric �eld (Eret +Eadv)/2, it
is neither static nor Coulomb-like, and therefore it does not look like the estimated electric �eld
of a point electron. Nevertheless, the point particle model is an approximation of an elementary
particle considered as a spinless particle, and in nature there seems to exist no spinless particles.

We are going to compute the instantaneous electromagnetic �eld of the model of Dirac
particle and consider next a static solution: the time average retarded �eld during a complete
turn of the charge. We are going to see the Coulomb behaviour of this �eld but not of the
corresponding advanced time average �eld.

5.1.1 Covariant formulation

We can give a covariant formulation of the Lienard-Wiechert potentials and also of the
electric and magnetic �elds which are independent of the evolution parameter τ . Let us call
zµ(τ) ≡ (ctp(τ), rp(τ)), to the kinematical variables which describe the evolution of the center of
charge of an elementary particle. Let xµ ≡ (ct,x) be the instant and location of the observation
point and call Rµ = xµ − zµ(τ). The covariant expression of the Lienard-Wiechert potentials

233
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generated by the charge at that point is written as,

Aµ(x) =
e

c

żµ(τ)

(x− z(τ))ν żν(τ)
=
e

c

żµ

Rν żν
, e =

q

4πϵ0
, Aµ ≡ e

c

{1,β}
R(1− n · β)

,

where τ is the value of the arbitrary evolution parameter at the retarded instant, β = up(τ)/c,
R = |R| and n = R/R. The potentials at that point are not independent because AµR

µ = e/c
and it implies that RνRν = 0 at the retarded instant. If we take the derivative of this expression
with respect to xµ, taking into account that τ(x) is a function of the observation point x, and
using the most compact notation (a · b) ≡ aµbµ we get

∂µ(R ·R) = 0 = Rµ − (R · ż) ∂τ
∂xµ

, τ,µ ≡
∂τ

∂xµ
=

Rµ

(R · ż)
≡ {1,−n}

(1− n · β)cṫp
.

In this way, by supressing the global factor e/c,

Aµ,ν =
z̈µτ,ν
(R · ż)

− żµ
(R · ż)2

(żν + (R · z̈)τ,ν − (ż · ż)τ,ν)

and after the substitution of τ,ν it leads to

Aµ,ν =
z̈µRν

(R · ż)2
− żµżν

(R · ż)2
− żµ(R · z̈)Rν

(R · ż)3
+
żµ(ż · ż)Rν

(R · ż)3

If we rise the index ν

Aµ
,ν =

z̈µR
ν

(R · ż)2 − żµż
ν

(R · ż)2 − żµ(R · z̈)Rν

(R · ż)3 +
żµ(ż · ż)Rν

(R · ż)3 .

After contraction of µ with ν, is easy to see that the �rst term cancels out with the third and also

the second with the fourth, and thus Aµ
,µ = 0 and the potentials satisfy Lorenz condition.

The �eld, without the global factor e/c, looks like

Fµν = Aν,µ −Aµ,ν =
żνRµ − żµRν

(R · ż)3
((ż · ż)− (R · z̈)) + z̈νRµ − z̈µRν

(R · ż)2
. (5.1)

This expression of the electromagnetic �eld can also be written as

Fµν =
1

(R · ż)
d

dτ

(
żνRµ − żµRν

(R · ż)

)
. (5.2)

The potentials and the �elds are homogenoeus functions of zero degree of the derivatives with
respect to τ of the kinematical variables of the particle which creates the �eld, and therfore the
result is independent of the evolution parameter used to describe the evolution of the sources
of the �eld.

Jacobi's identities

The �eld of a point charge (5.1) satisfy Jacobi's identities

RαFµν +RµFνα +RνFαµ = 0, ∀α, µ, ν.

With α = 0, µ = i And ν = j, we arrive to

Fij =
RiFj0 −RjFi0

R0
, B =

1

c
n×E,

because F12 = −Bz, F10 = −Ex/c.
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Time of the particle

If we use as evolution parameter the time of the particle, τ = tp, at the retarded instant,
since Rµ ≡ (R,R), we get

żµ ≡ (c,u(tp)), z̈µ ≡ (0,a(tp)), (R·ż) = cR(1−n·β), (ż·ż) = c2(1−β2), (R·z̈) = −R·a.

Because Ei/c = F0i, And R0 = R, the �rst term of (5.1) gives rise to the velocity �eld, which
looks

1

c
Ei =

q

4πϵ0c

−uiR+ cRi

c3R3(1− n · β)3
c2(1− β2), Eβ =

q

4πϵ0

1− β2

R2(1− n · β)3
(n− β).

The acceleration terms of (5.1) give rise, respectively, to

−uR+ cR

c3R3(1− n · β)3
(R · a), − a

c2R(1− n · β)2

and �nally, in the International System of Units the acceleration �eld is

Ea =
q

4πϵ0

[
(n− β)(n · a)
c2R(1− n · β)3

− a

c2R(1− n · β)2

]
=

q

4πϵ0

n× ((n− β)× a)

c2R(1− n · β)3
(5.3)

Observer time

If we use as evolution parameter the time of the observer τ = t at the retarded instant tr,
then

żµ ≡
(
c
dtp
dt
,
drp
dt

)
, z̈µ ≡

(
c
d2tp
dt2

,
d2rp
dt2

)
,

But from R = c(t− tp), taking the derivative of this expression with respect to t, it gives

dtp
dt

= 1− 1

c

dR

dt
,

d2tp
dt2

= −1

c

d2R

dt2

If we also take the derivative with respect to t of (R ·R) = R2 −R2 = 0, we get:

2R
dR

dt
− 2R · dR

dt
= 0, R

dR

dt
−R · dR

dt
= 0,

and from R = r − rp, taking the derivative with respect to t,

dR

dt
= −drp

dt
,

d2rp
dt2

= −d
2R

dt2
.

and thus

Rµ = (R,R), żµ =

(
c− dR

dt
,−dR

dt

)
, z̈µ =

(
−d

2R

dt2
,−d

2R

dt2

)
.

The part

(R · ż) = Rc−
(
R
dR

dt
−R · dR

dt

)
= Rc,

because the term in brackets vanishes.

(ż · ż) = c2
(
1− 1

c

dR

dt

)2

−
(
dR

dt

)2

= c2
(
1− 2

c

dR

dt

)
+

(
dR

dt

)2

−
(
dR

dt

)2

(R·z̈) = −Rd
2R

dt2
+R·d

2R

dt2
, (ż·ż)−(R·z̈) = c2

(
1− 2

c

dR

dt

)
+
1

2

d2

dt2
(
R2 −R2

)
= c2

(
1− 2

c

dR

dt

)
.
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because the last term R2 −R2 = 0. Since

żiR0 − ż0Ri = −
drpi
dt

R+ c
dtp
dt
Ri = R

dRi

dt
+

(
c− dR

dt

)
Ri,

z̈iR0 − z̈0Ri = −
d2rpi
dt2

R+ c
d2tp
dt2

Ri = R
d2Ri

dt2
− d2R

dt2
Ri,

the �eld becomes:

1

c
E =

e

c

1

c3R3

(
R
dR

dt
+

(
c− dR

dt

)
R

)
c2
(
1− 2

c

dR

dt

)
+
e

c

1

c2R2

(
R
d2R

dt2
− d2R

dt2
R

)
,

i.e.,

E =
eR

R3
+
eR

c

d

dt

(
R

R3

)
+

e

c2
d2

dt2

(
R

R

)
=

q

4πϵ0

[
n

R2
+
R

c

d

dt

( n

R2

)
+

1

c2
d2n

dt2

]
, (5.4)

the expression of the �eld of Heaviside-Feynman.
For the magnetic �eld we get

B =
1

c
n×E =

µ0q

4π

[
1

R
n× dn

dt
+

1

c
n× d2n

dt2

]
(5.5)

Gauss theorem

All components of the �eld are relevant. Let us compute the outgoing �ux of the �eld around
a sphere of radius R centered at the charge, and at any time. All points of this surface have, at
the instant t, the same retarded point for the position of the charge. We are going to take the
retarded velocity in the direction of OZ and the unit vector n from the retarded charge to the
observation point, at an angle θ with respect to the velocity. The part of the acceleration term
of the electric �eld (5.3) is perpendicular to the vector n, and therefore its �ux vanishes. The
other part has two terms, one in the direction of n and another in the direction of β, such that
when projected into the direction orthogonal to the sphere, which is the same as the direction
of the vector n from the retarded point, if gives

E(t, r) =
q(1− β2)

4πϵ0R2(1− n · β)3
(n− β), E · n =

q(1− β2)
4πϵ0R2(1− n · β)2

, dS = R2 sin θdϕdθ

∮
E · ndS =

q(1− β2)
2ϵ0

∫ π

0

sin θdθ

(1− β cos θ)2
=

q

ϵ0

because after the change cos θ = u, sin θdθ = −du and the∫ −1

1

−du
(1− βu)2

=
−1
β

1

(1− βu)

∣∣∣∣−1

1

=
2

1− β2
.

This result is independent of the value β, and it is also valid in our case with β = 1. Therefore,
in the case of the �eld of a Dirac particle we cannot eliminate this part of the �eld, because
although the numerator vanishes, it also vanish n− β and the denominator (1− n · β) in the
direction where n = β. In the limit, the �eld does not vanish, it is singular. To compute the �eld
of spinning particles, outside the zitterbewegung plane, only the acceleration �eld contributes
but we cannot eliminate the velocity �eld on the zitterbewegung plane. If we do not include
this velocity, the Maxwell equation ∇ ·E = ρ/ϵ0, will not be satis�ed, i.e., Gauss theorem will
not hold.
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5.1.2 Radiation �eld according to Dirac

Dirac1 considers that the electron(the positron) has a point like property, the electric charge
e, localized at a point, zµ(τ), which correspond to the localized kinematical variables of our
spinning particle. He assumes that the �eld created by this point is the retarded �eld Fµν

ret .
This �eld comes from the potentials Aµ which satisfy the Lorenz condition ∂µAµ = 0 and the
equation related to the sources □Aµ = µ0j

µ, in the International Sistema of Units. Of all
possible solutions of these equations the retarded solution is selected. If the particle is going to
radiate it is necessary to be under the presence of some external �eld Aµ(x)in which satisfy the
sourceless equations ∂µAµ(x)in = 0 and □Aµ

in = 0, in the region where the particle is located,
and thus the total �eld in the surrounding of the charge is

Fµν
act = Fµν

ret + Fµν
in .

It is the superposition of the external �eld Fµν
in and the retarded �eld created by the charge.

Dirac also states that by symmetry the real �eld can also be written as the superposition of the
advanced solution Fµν

adv, and another outgoing �eld Fµν
out,

Fµν
act = Fµν

adv + Fµν
out,

which would represent the outgoing radiation from the region where the charge is located,
including the radiation produced by the charge. The di�erence

Fµν
rad = Fµν

out − F
µν
in = Fµν

ret − F
µν
adv,

would be a sourceless �eld and would represent the electromagnetic �eld radiated by the electron.
If the electron would be under no external �eld, the radiation would necessarily be zero. When
de�ning Aµ

rad = Aµ
ret −A

µ
adv, this implies that the �eld radiated by the particle satis�es Lorenz

condition ∂µA
µ
rad = 0 and the sourceless equation □Aµ

rad = 0, because it is a �eld which is not
linked to the particle and has abandoned it.

As another alternative to Dirac method, let us calculate this �eld in the surroundings of the
charge, as was proposed by Barut2. The point is very close to the charge but in the trajectory
x = z(τ), at the retarded and advanced instants τB = τ − σ, and τA = τ + σ, respectively. We
shall use the expression of the �elds (5.1) and we represent it as

Fµν(x) =
1

(R · ż)3
(żνRµ ((ż · ż)− (R · z̈)) + z̈νRµ(R · ż))− {ν ←→ µ}

where {ν ←→ µ} represents the same term as the �rst but with ν and µ interchanged. We have
to determine

F rad
µν (z(τ)) = lim

σ→0

(
F ret
µν (τB)− F adv

µν (τA)
)
.

To do that, let us make the expansion to lowest orders of the di�erent terms. For the retarded
�eld we have

R(τB) = z(τ)− z(τB) = ż(τB)σ + z̈(τB)σ
2/2 +

...
z (τB)σ

3/6 + · · ·

(R · ż)τB = (ż · ż)τBσ + (ż · z̈)τBσ
2/2 + (ż ·

...
z )τBσ

3/6 + · · · = (ż · ż)τBσ − (z̈ · z̈)τBσ
3/6 + · · · ,

(R · z̈)τB = (z̈ · ż)τBσ+ (z̈ · z̈)τBσ
2/2+ (z̈ ·

...
z )τBσ

3/6+ · · · = (z̈ · z̈)τBσ
2/2+ (z̈ ·

...
z )τBσ

3/6+ · · · ,

since for the point particle (ż · ż) = c2, (ż · z̈) = 0, (z̈ · z̈) + (ż ·
...
z ) = 0 and so on.

1P.A.M. Dirac, Classical theory of radiating electrons, Proc. Roy. Soc. A 167, 148 (1938)
2A.O. Barut, Electrodynamics and classical theory of �elds and particles, Dover NY (1980).
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For the advanced �eld we have

R(τA) = z(τ)− z(τA) = −ż(τA)σ + z̈(τA)σ
2/2−

...
z (τA)σ

3/6 + · · ·

(R · ż)τA = −(ż · ż)τAσ+ (ż · z̈)τAσ
2/2− (ż ·

...
z )τAσ

3/6 + · · · = −(ż · ż)τAσ+ (z̈ · z̈)τAσ
3/6 + · · · ,

(R · z̈)τA = (z̈ · ż)τAσ+ (z̈ · z̈)τAσ
2/2+ (z̈ ·

...
z )τAσ

3/6+ · · · = (z̈ · z̈)τAσ
2/2− (z̈ ·

...
z )τAσ

3/6+ · · · ,

To lowest order, the retarded �eld at some intermediate point (z(τ)), is

F ret
µν (z(τ)) = −

(żν z̈µ − żµz̈ν)τB +O(σ)

2σ(ż · ż)2(1− (z̈ · z̈)/(ż · ż) σ2/6)3
.

For the advanced �eld to lowest order we also get

F adv
µν (z(τ)) = − (żν z̈µ − żµz̈ν)τA +O(σ)

2σ(ż · ż)2(1− (z̈ · z̈)/(ż · ż) σ2/6)3
.

The radiation �eld on the particle is

F rad
µν = lim

σ→0
(F ret

µν − F adv
µν ) =

1

(ż · ż)2
lim
σ→0

(żν z̈µ − żµz̈ν)τA − (żν z̈µ − żµz̈ν)τB
2σ

,

i.e.,

F rad
µν =

1

(ż · ż)2
d

dτ
(żν z̈µ − żµz̈ν) =

żν
...
z µ − żµ

...
z ν

(ż · ż)2
(5.6)

because τA − τB = 2σ, and we also see that it is a homogeneous function of zero degree of the
derivatives of the kinematical variables. The result obtained by Dirac is the same as this but
with a coe�cint of 2/3.

If this radiation �eld corresponds to a photon emitted at that instant, it would produce a
reaction force on the particle which would modify the linear momentum in a value

dpµ

dτ
= eFµν

radżν =
e2

4πϵ0c

(
1

(ż · ż)
...
z
µ
+

(z̈ · z̈)
(ż · ż)2

żµ
)
,

wher we have written (z̈ · z̈) = −(ż ·
...
z ) and including the constant coe�cient in the International

Sistem of units e/4πϵ0c. This force has opposite direction to the velocity of the point because
the coe�cient (z̈ · z̈) < 0, and the third derivative

...
z , has opposite direction to ż suggesting that

the emmited photon has the direction of the velocity of the particle. For the spinning particle
we have the problem that the four-vector ż, satis�es (ż · ż) = 0. If we had that (ż · ż) ̸= 0, for
the free Dirac particle when analyzed in the CM frame, the reaction term vanishes because the
third derivative has opposite direction to the velocity. It is necessary that the motion of the
particle would no longer be free to produce radiation.

In our spinning model the charge is moving at the speed c and describes a curly trajectory
such that the �eld created expands at the speed c and never reaches the position of the charge
at later times, and thus, therefore there would not exist the self-force described by Dirac.

5.1.3 The instantaneous electromagnetic �eld of a Dirac particle

The retarded(or advanced) electric �eld of a point charge at the observation point x at the
instant t, is given by

E = Eβ +Ea, e ≡ q

4πϵ0
,

where

Eβ(t,x) =
e(1− β2)

R2(1− n · β)3
(n− β) , (5.7)
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Ea(t,x) =
e

Rc2(1− n · β)3
n× ((n− β)× a) , (5.8)

are the velocity and acceleration �elds, respectively. The observables r, u = dr/dt and a =
du/dt, are respectively, the position, velocity and acceleration of the charge, evaluated at the
retarded(or advanced) instant tr = t−R/c, (or ta = t+R/c). The vector β = u/c, and

n =
x− r

|x− r|
, R = |x− r|.

The magnetic �eld is B = n×E/c. Because the center of charge of a Dirac particle is moving
at the speed c, β = 1, and the velocity �eld Eβ vanishes, except at those points on the XOY
plane where n = β, where it is singular. From here we deduce that outside the plane XOY
the only contribution to the �eld is (5.8) which is always orthogonal to the unit vector n from
the retarded position and which decreases at large distances like 1/R. On the plane XOY the
electric �eld is also perpendicular to the vector n, except on those points where the retarded
point satis�es n = β where the �eld becomes in�nite.

Figure 5.1: Components En, Eβ and Ea of the electric �eld at point P . En and Eβ are of
the same intensity and that part of Ea projected along the vector n cancels the part En,
and thus the resultant �eld E is always orthogonal to the retarded unit vector n and forms
in the normal plane an angle α with the vector Ea⊥ .

The �eld (5.8) has three parts, and because the acceleration a = c2/R0, is written as

E =
en(n · â)

RR0(1− n · β)3
− eβ(n · â)
RR0(1− n · β)3

− eâ

RR0(1− n · β)2
= En +Eβ +Ea.

where â is a unit vector along the direction of the acceleration. At the point P of the OZ axis
and in those units where e = 1 and R0 = 1, because n · β = 0, these �elds take the values
En = sinα/R = Eβ and Ea = 1/R and are represented at the �gure 5.1. The component of
Ea along the vector n cancels the component En, and the resultant of the �eld is contained on
the plane perpendicular to the vector n, of intensity 1/R in these units and at an angle α with
the projection on this plane of the component Ea.

Efectively, the component of Ea orthogonal to n, denoted by Ea⊥ is of intensity cosα/R,
and when added to Eβ of intensity sinα/R on the perpendicular plane to n produces a �nal
vector E of intensity 1/R and which forms the same angle α with the proyection Ea⊥ .
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If we represent at the point P all resultant �elds during a complete turn of the charge, we
obtain a cone of revolution, of angle π/2− α and the generatrix has a size 1/R in these units.
In the �gure 5.2 we represent the values of the �eld at every point of coordinate z = 1, 2, 3 and
4 during a complete turn of the charge.

Figure 5.2: Revolution cones which represent respectively, the instantaneous electric �elds
during a complete turn of the charge, at the points of the axis OZ of coordinates z = 1, 2, 3, 4.
At the point 1 the semiangle of the cone is α = π/4, and it is the same angle between the
�eld and the vector −a⊥, at the retarded instant.

Figure 5.3: Instantaneous electric �elds during a complete turn of the charge of values from
bottom to top (0. 5, 0, 1), (1, 0, 2), (1, 0, 3) and (1, 0, 4), respectively.

In the �gures 5.3, 5.4 And 5.5 we represent the resultant �eld at the points shown. The
local intensity is increasing but as we shall see, its time average value is radial and decreases
with the distance like 1/r2, with respect to the origin.

In cartesian components, if we call ϕ the phase of the charge at the retarded position, the
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Figure 5.4: Instantaneous electric �elds during a complete turn of the charge and where
the corresponding vertex is located at those black dots of coordinates (x, y, z), along the
straight line y = 0, z = x, and from bottom to top (2, 0, 2), (3, 0, 3), (4, 0, 4) and (5, 0, 5),
respectively.

Figure 5.5: Instantaneous electric �elds during a complete turn of the charge and where
the corresponding vertex is located at those black dots of coordinates (x, y, z), along the
straight line y = 0, z = 4, and from left to right at (0, 0, 4) (1, 0, 4), (2, 0, 4), (3, 0, 4) and (4, 0, 4),
respectively.
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components of the electric �eld, up to a global factor e/R2
0, are

Ex =
(1− x cosϕ− y sinϕ)(x− cosϕ+R sinϕ)

(R+ x sinϕ− y cosϕ)3
+

R cosϕ

(R+ x sinϕ− y cosϕ)2
, (5.9)

Ey =
(1− x cosϕ− y sinϕ)(y − sinϕ−R cosϕ)

(R+ x sinϕ− y cosϕ)3
+

R sinϕ

(R+ x sinϕ− y cosϕ)2
, (5.10)

Ex =
z(1− x cosϕ− y sinϕ)
(R+ x sinϕ− y cosϕ)3

, R =
√
1 + x2 + y2 + z2 − 2x cosϕ− 2y sinϕ. (5.11)

In all these �gures we have to imagine the corresponding cone, with origin at the observation
point, which subtends the circular motion of the charge. Then, for every retarded position,
we have to depict at the observation point a perpendicular straight line to the cone generatrix
up to reach the corresponding point on the red line. The vector from the observation point
to the red line, which is orthogonal to the corresponding generatrix of the cone, represents the
instantaneous electric �eld.

5.1.4 The time average electric and magnetic �eld of a Dirac particle

Let us assume that we have a test charge in the neighborhood of the electron. The frequency
of the zitterbewegung is very high, of order ∼ 1021 s−1. If our test particle is moving slowly,
then presumably the detected electric �eld will be some time average �eld during a complete
turn of the charge.

The complete analytical expression of a time average �eld at any arbitrary point has not
yet been obtained. However, to obtain an estimate, let us compute the average �eld on some
particular point. Let us consider that the electron is at rest, with the center of mass at the
origin of a reference frame. The constant spin is pointing along the OZ axis. We shall try to
calculate this average �eld at a point P of coordinate z in this OZ axis. In Figure 5.6, we
represent the di�erent magnitudes at the retarded time t̃, needed to apply equation (5.8).

Figure 5.6: Instantaneous electric �eld of the electron at point P has a component along
−a⊥ and −β, and we can check that it is orthogonal to n.

In that particular point shown in the �gure, n · β = 0, and thus

E =
e

c2R
(n× (n× a)− n× (β × a)) =

e

c2R
(−a⊥ − β(n · a)) ,
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where the vector a⊥ = a−n(a ·n), is the component of the acceleration orthogonal to the unit
vector n. For the observation point P , the expression n · a is constant at any retarded point,
and the time average of β during a complete turn is zero, and for the vector a⊥ it reduces to
its z-component a⊥ sinα. Since the acceleration in this frame is a = c2/R0, a⊥ = a cosα and
sinα = R0/R and cosα = z/R, the time average electric �eld at point P is

E(z) =
ez

(R2
0 + z2)3/2

ẑ, (5.12)

where ẑ is a unit vector along the OZ axis. The advanced �eld has exactly the same expression.
For the antiparticle we have to change e for −e, and the velocity β by −β, and the average
makes no di�erence of (5.12).

If we had use the Heaviside-Feynman expresion (5.4), the average �eld would be the instan-
taneous Coulomb �eld at the point P , and when taking the average value during a complete
turn of the charge, its projection along the direction OZ will be

E(z) =
e

R2
cosαẑ,

which gives again (5.12), because the other two contributions d(n/R2)/dt and d2n/dt2 are
orthogonal to OZ and its average value is zero.

This is a radial static �eld from the origin of the reference frame with a Coulomb-like
behaviour 1/z2, but it does not diverge at the origin. We depict this �eld in Figure 5.7, and
compared with the Coulomb �eld of a point charge at the origin, where we take as a unit of
length the radius R0 of the internal motion.

We can clearly see the �tting of the average �eld and the Coulomb �eld for large z, around
|z| ≥ 5R0. The maximum of the average �eld takes place at z = R0/

√
2. If we consider that the

static �eld of a pointlike electron is this time average �eld, then the electrostatic energy does
not diverge and the energy will be renormalized. The instantaneous �eld diverges at the charge
position like 1/R, the energy behaves like 1/R2 and the volume element goes like 4πR2dR, and
therefore there is no divergence of the energy in the surrounding of the charge. Nevertheless
there are other points of the zitterbewegung plane, in which the instantaneous �eld also diverges,
and the computation of the energy is still to be done.

Figure 5.7: Average retarded (or advanced) electric �eld (5.12) and Coulomb �eld along
the OZ axis.

However, if we are involved in high energy processes, our test particle is moving su�ciently
fast relative to the electron, then the �eld it feels is the instantaneous 1/R �eld, which is greater
than the average �eld, and becomes important for points closer to the electron. This means that



244 CHAPTER 5. ELECTROMAGNETIC STRUCTURE OF THE ELECTRON

the average energy density of the local instantaneous �eld is greater than the average Coulomb-
like energy density, and we can naively interpret this di�erence, from the classical point of view,
as the energy associated to the cloud of virtual photons in the surroundings of the particle. Is
this the corresponding in�nite energy which is usually cancelled out in the renormalization of
quantum electrodynamics?

To compute numerically the average �eld at an arbitrary position, let us consider the di�erent
magnitudes depicted in Figure 5.8.

Figure 5.8: Charge motion and observation point P .

If at time t = 0 the charge is located at point A on the OX axis, then at time t the di�erent
observables shown in the �gure are described in Cartesian coordinates and in the laboratory
frame by

k = R0[cosωt, sinωt, 0] ≡ R0k̃, β =
u

c
= [− sinωt, cosωt, 0],

r = [x, y, z], a =
du

dt
=

c2

R0
[− cosωt,− sinωt, 0] =

c2

R0
â,

R = r − k = R0(r̃ − k̃), n =
R

R
, R = |R| = R0R̃.

With these de�nitions, �eld (5.8) can be written as

E(t, r) =

(
e

R2
0

)
n× ((n− β)× â)

(1− n · β)3R̃
.

We want to compare the time average value of this �eld with the static Coulomb �eld of a point
charge e at the center of mass

E0(r) =

(
e

R2
0

)
r̂

r2
,

where r̂ is a unit vector in the radial direction. The constant factor in brackets in front of these
formulae will be dropped out from now on. In this way the unit of length is the zitterbewegung
radius R0.

When the charge is at the point indicated in Figure 5.8, the retarded �eld it produces at
point P is evaluated at the observation time to = t + R/c. Thus dto = dt + dR̃/ω, because
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R0/c = 1/ω. If we express dR̃ in terms of dt, we get dto = (N(t)/R̃(t))dt, where N and R̃ are
explicitly given by

R̃(t) =
√
(x̃− cosωt)2 + (ỹ − sinωt)2 + z̃2,

N(t) = R̃(t) + x̃ sinωt− ỹ cosωt.

We are going to average the �eld at P with respect to the observation time at that point during
a complete period of the motion of the charge T . If we de�ne a dimensionless evolution time
τ = ωt, then ωT = 2π and thus

1

T

∫ T

0
E(to) dto =

1

T

∫ T

0
E(t)

N(t)

R̃(t)
dt =

1

2π

∫ 2π

0
E(τ)

N(τ)

R̃(τ)
dτ. (5.13)

In terms of the τ evolution the di�erent expressions are

n× (n× â) = n(n · â)− â,

and

n(n · â) = 1− x̃ cos τ − ỹ sin τ
R̃2

[x̃− cos τ, ỹ − sin τ, z̃],

â = [− cos τ,− sin τ, 0],

while
n× (β × â) =

1

R̃
[ỹ − sin τ,−x̃+ cos τ, 0],

and
1− n · β =

1

R̃

(
R̃+ x̃ sin τ − ỹ cos τ

)
.

We are interested in the radial and transversal part of the �eld Er = E · r̂, Eθ = E · θ̂,
and Eϕ = E · ϕ̂, respectively. Here r̂, θ̂ and ϕ̂ are respectively the usual unit vectors in polar
spherical coordinates. If we consider that the observation point P is on the plane XOZ, then
we have to take x̃ = r sin θ, ỹ = 0 and z̃ = r cos θ, where r is the radial separation from the
origin in units of R0.

The �nal expressions for the �eld components are

Er(r, θ, τ) =
(R̃2 − r2 − 1) sin θ cos τ + R̃ sin θ sin τ + r(1 + sin2 θ cos2 τ)(

R̃+ r sin θ sin τ
)3 ,

Eθ(r, θ, τ) =

[
(R̃2 − 1) cos τ + R̃ sin τ + r sin θ cos2 τ

]
cos θ(

R̃+ r sin θ sin τ
)3 ,

Eϕ(r, θ, τ) =
(R̃2 − 1) sin τ + R̃(r sin θ − cos τ) + r sin θ sin τ cos τ(

R̃+ r sin θ sin τ
)3 ,

with
R̃ =

√
r2 − 2r sin θ cos τ + 1.

To take the time average value of the above �elds we have to perform the integration (5.13) so
that the above expressions of Er, Eθ and Eϕ have to be multiplied by N(τ)/R̃(τ), where now

N(τ) = R̃+ r sin θ sin τ.
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The average retarded radial electric �eld for θ = 0 is already depicted in Figure 5.7 but we
also include it in the next Figure 5.9. We see the Coulomb behavior of the radial component
for the directions θ = 0, π/3, π/4, π/6. Similarly, in Figure 5.10 is displayed the transversal
component of the average retarded electric �eld < Eθ(r, θ) > for the same directions, that goes
to zero very quickly. For θ = π/2, we see that < Eθ(r, π/2) >= 0. The average < Eϕ(r, θ) >
vanishes everywhere for any θ ̸= π/2. On the plane θ = π/2 the numerical routine fails.
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Figure 5.9: Time average < Er(r) > of the radial component of the retarded electric �eld
in the directions θ = 0, π/3, π/4 and π/6.
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Figure 5.10: Time average of the component < Eθ(r) > of the retarded electric �eld in the
directions θ = 0, π/3, π/4 and π/6. It goes to zero very quickly. For θ = π/2 it vanishes
everywhere.

The average magnetic �eld can be computed in the same way. Here we shall consider only
the retarded solution and we will compare it with the magnetic �eld produced by an intrinsic
magnetic moment µ placed at the center of mass. This magnetic �eld is 3

B0(r) =
3r̂(r̂ · µ)− µ

c2r3
.

For our system the magnetic moment produced by the moving charge is of value ecR0/2 in the
direction of OZ, so that in units of R0 it can be written as

B0(r) =

(
e

2cR2
0

)
3r̂(r̂ · ẑ)− ẑ

r̃3
.

The nonvanishing components are

B0r(r, θ) =

(
e

cR2
0

)
cos θ

r̃3
, B0θ(r, θ) =

(
e

cR2
0

)
sin θ

2r̃3
. (5.14)

3 J.D. Jackson, Classical Electrodynamics, John Wiley and Sons, NY 3rd. ed. (1998).
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In our model, the instantaneous magnetic �eld is B = n×E/c. Their components can be
written, after deleting a constant factor e/cR2

0, as:

Br(r, θ, τ) =
(1− r sin θ cos τ) cos θ(
R̃+ r sin θ sin τ

)3 ,

Bθ(r, θ, τ) =
r cos τ(1 + sin2 θ)− (1 + r2) sin θ − R̃r sin τ(

R̃+ r sin θ sin τ
)3 ,

Bϕ(r, θ, τ) =
(R̃ cos τ + sin τ)r cos θ(
R̃+ r sin θ sin τ

)3 .

To proceed with the retarded time average integral we have to multiply the above �elds by
N(t)/R̃(t), as before. The numerical integration is compared with the analytical expression of
the magnetic �eld of a dipole (5.14) for di�erent directions.

The magnetic dipole �eld (5.14) goes to in�nity when r → 0. In Figures 5.11-5.13 we show
the matching of the B0r(r) components of the dipole and the computed time average value
< Br(r, θ) >, for r > R0 and in the directions given by θ = π/6, π/4 and π/3. Similarly, in
Figures 5.14-5.16, for the corresponding B0θ(r, θ) and < Bθ(r, θ) > components.
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Figure 5.11: Radial components of the dipole �eld B0r(r) and the time average retarded
magnetic �eld < Br(r) >, along the direction θ = π/6.
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Figure 5.12: Radial components of the dipole �eld B0r(r) and the time average retarded
magnetic �eld < Br(r) >, along the direction θ = π/4.

The computed time averages < Br(r) > and < Bθ(r) > do not diverge at the origin but
have the behavior depicted in 5.17 and 5.18, respectively, when represented along the directions
θ = 0, π/3, π/4 and π/6, and they take the values cos θ and − sin θ respectively, at point r = 0.
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Figure 5.13: Radial components of the dipole �eld B0r(r) and the time average retarded
magnetic �eld < Br(r) >, along the direction θ = π/3.
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Figure 5.14: Time average retarded magnetic �eld < Bθ(r) > and the dipole �eld B0θ(r),
along the direction θ = π/6.
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Figure 5.15: Time average retarded magnetic �eld < Bθ(r) > and the dipole �eld B0θ(r),
along the direction θ = π/4.
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Figure 5.16: Time average retarded magnetic �eld < Bθ(r) > and the dipole �eld B0θ(r),
along the direction θ = π/3.
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Figure 5.17: Time average retarded magnetic �eld < Br(r) > along the directions θ =
0, π/3, π/4 and π/6 and its behavior at r = 0. For θ = π/2 it vanishes everywhere.
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Figure 5.18: Time average retarded magnetic �eld < Bθ(r) > along the directions θ =
0, π/3, π/4 and π/6 and its behavior at r = 0.

The time average value of the transversal component < Bϕ(r, θ) > vanishes everywhere for
all directions.

To end this section we can think about the possibility of computing the average �elds using
the advanced solutions in spite of the retarded ones.
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Figure 5.19: Time average radial component < Er(r) > of the advanced electric �eld in the
directions θ = 0, π/3, π/4 and π/6.

In that case the observation time will be related with the laboratory time by to = t−R/c,
and therefore dto = (M(t)/R̃(t))dt, where R̃(t) is the same as before, but

M(t) = R̃(t)− x̃ sinωt+ ỹ cosωt.

Then, if we depict, for instance, the advanced average radial electric �eld in Figure 5.19, for the
same directions as in Figure 5.9, we see the di�erent behavior in these radial directions and,
although the �eld decreases for large distances, it nevertheless does not �t with a Coulomb �eld.



250 CHAPTER 5. ELECTROMAGNETIC STRUCTURE OF THE ELECTRON

The numerical routine fails to compute the corresponding integrals for θ = π/2 where we
have some inde�niteness of the integrands for observation points lying on theXOY plane. There
are no singularities for points inside the circle of radius R0. We have a divergence of order 1/r
for points on this circle, but this divergence can be removed by taking a principal value of the
time integral. Finally, the quotient term 1 − n · β can vanish for some observation points on
the XOY plane outside the circle of radius R0, whenever the retarded n and β become parallel
vectors. But this can happen only for a single point of the retarded charge position in the
average integral and perhaps some kind of principal value should be taken to properly obtain
a �nite average value. The di�culties of obtaining an analytical estimate for these integrals
make this analysis incomplete. Nevertheless, the nice �tting of the average electric �eld with a
Coulomb �eld and the average magnetic �eld with the �eld of a magnetic dipole, for distances
of a few Compton wave lengths away, except on the θ = π/2 plane where we have not been
able to obtain an estimate, suggests that we devote some e�ort to renormalize and improve the
model at a classical level.

5.1.5 Electromagnetic energy and angular momentum

If we compute the electromagnetic energy associated to the instantaneous �eld (5.8), since
B = n×E/c, it implies that the energy density is

h(to) =
1

2
ϵ0E

2 +
1

2µ0
B2 = ϵ0E

2 − 1

2
ϵ0(n ·E)2,

and therefore the energy at any instant of observation time to is

E(to) =
∫
R3

h(to)dV.

The value of E2(to) of the �eld, has to be evaluated from the location of the charge in the
corresponding retarded time t, with to = t+R/c.

Since E = Eβ + Ea, as we have analyzed Gauss theorem in section 5.1.1, it is necessary
to consider both �elds, although Eβ vanishes escept at those points on the plane XOY when
β → 1.

E2 = E2
β + E2

a + 2Eβ ·Ea.

Because

Eβ =
e(1− β2)

R2(1− n · β)3
(n− β) ,

Ea =
e

Rc2(1− n · β)3
n× ((n− β)× a) .

The following vectors, in terms of an arbitary value of β are

n =
1

R̃
[x̃− cosωt, ỹ − sinωt, z̃],

β = β[− sinωt, cosωt, 0],

a =
β2c2

R0
[− cosωt,− sinωt, 0].

The di�erent scalar products are

a · n =
β2c2

R0R̃
(1− x̃ cosωt− ỹ sinωt)
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n · β =
β

R̃
(−x̃ sinωt+ ỹ cosωt) ,

1− n · β =
1

R̃

(
R̃+ βx̃ sinωt− βỹ cosωt

)
For the part E2

β , (n− β)2 = (1 + β2 − 2n · β), and therefore

E2
β =

e2

R4
0

(1− β2)2(1 + β2 − 2β (−x̃ sinωt+ ỹ cosωt) /R̃)

R̃4(1− n · β)6
. (5.15)

For the part of E2
a,

[n× ((n− β)× a)]2 = a2(1− n · β)2 − (1− β2)(a · n)2,

and thus E2
a is written as

E2
a =

e2(a2(1− n · β)2 − (1− β2)(a · n)2)
R2c4(1− n · β)6

,

E2
a =

e2

R4
0

β4
[
R̃2(1− n · β)2 − (1− β2) (1− x̃ cosωt− ỹ sinωt)2

]
R̃4(1− n · β)6

(5.16)

in terms of the dimensionless distance R̃ = R/R0. Finally, the part 2Eβ ·Ea contains the term

(n− β) · [n× ((n− β)× a)] = (β2 − n · β)(n · a),

because the other term β · a = 0. We get

2Eβ ·Ea =
e2

R4
0

2β2(1− β2)(β2 − n · β) (1− x̃ cosωt− ỹ sinωt)
R̃4(1− n · β)6

. (5.17)

For the part (n ·E)2 only Eβ contributes,

−1

2
(n ·E)2 = − e

2

R4
0

(1− β2)2(1− n · β)2

2R̃4(1− n · β)6
, (5.18)

We are going to suppress the dimensionless factor ϵ0e2/R4
0, and to write it in the International

System of Units, we have to replace e→ e/4πϵ0.
The energy density h(x, y, z, to) in dimensionless variables is the sum of the four terms (5.15),

(5.16), (5.17) and (5.18), and the energy becomes:

E(to) =
ϵ0e

2R3
0

(4πϵ0)2R4
0

∫
R3

h(x, y, z, to)dṼ =
e22mc

4πϵ04πℏ

∫
R3

h(x, y, z, to)dṼ =
e22mc

4πϵ04πℏ
M,

where the volume element dV = R3
0dṼ is written in terms of dimensionless variables and

therefore the result of the integration is the strict dimensionles numerical valueM . The integral
depends on the value of β and once the integral is performed we have to take the limit β → 1.
Since the center of mass of the electron is at rest, R0 = ℏ/2mc and if we assume that the
whole energy of the electron is purely electromagnetic, we can identify this energy with the rest
energy, and thus

mc2 =
e22mc

4πϵ04πℏ
M, 1 =

e2

4πϵ0hc
M =

α

2π
M, α ≃ 1

137
, (5.19)
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wher α is the �ne structure constant. The value of e2 will be uniquely determined(up to a
sign) once the above integral is performed. This integral has di�culties, and if our conjecture
is correct it will produce the value M = 2π/α ≈ 861.009.

e2 =
4πϵ0hc

M
.

An elementary particle with a pure electromagnetic structure, will have a unique value (up
to a sign) for the electric charge. and therefore electrons, muons and tau particles, and their
corresponding antiparticles, which only interact in the electro-weak way, will all have the same
charge, independently of their masses. In the case of quarks, not all internal structure is pure
electromagnetic, because it also interacts strongly, and therefore in the equation (5.19) the
computed electromagnetic energy will be a fractionk of its total rest energ mc2, and therefore
con lo que

e2 = k
4πϵ0hc

M
, k < 1.

Quarks will have an electric charge smaller than the charge of the particles which only interact
electroweakly. The theory should give the value k = 1/9 or 4/9 for the up and down quarks,
respectively.

The value of the energy must be independent of the observation time to, since the motion
of the center of charge is stationary, and must be the same as the corresponding time average
value,

E =
1

T

∫ T

0
E(to)dto =

ϵ0
T

∫
R3

dV

∫ T

0
E2dto,

for any value T , in particular for the period of the internal motion.

Electromagnetic angular momentum

Let us compute the electromagnetic angular momentum of the system with respect to the
origin. The projection of this angular momentum along the direction OZ is identi�ed with the
mechanical angular momentum of the particle −ℏ/2, and we get another equation

−ℏ
2
=

∫
R3

(r × g)zdV,

g = ϵ0E ×B = ϵ0E × (n×E/c) =
ϵ0
c

(
E2n−E(n ·Eβ)

)
,

because Ea is perpendicular to n. The part

ϵ0
c
E2(r × n)z =

R0

R̃
(ỹ cosωt− x̃ sinωt), (5.20)

contains E2, which is the sum of the three terms (5.15), (5.16) and (5.17). The part r ×E =
r ×Eβ + r ×Ea, and we have the two terms

(r × (n− β))z =
R0

R̃
(ỹ cosωt− x̃ sinωt)− βx cosωt− βy sinωt,

(r × a)z = β2c2(ỹ cosωt− x̃ sinωt),

which are multiplied by

n ·Eβ =
e(1− β2)

R2(1− n · β)2
.
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Because (r ×E)z = xEy − yEx,

(r ×Eβ)z =
e(1− β2)

R2(1− n · β)3

(
1

R̃
(y cosωt− x sinωt)− βx cosωt− βy sinωt

)
,

(r ×Ea)z =
e

Rc2(1− n · β)3
[(a · n)(r × (n− β))z − (1− n · β)(r × a)z] ,

and thus

−ϵ0
c
(n ·Eβ)(r ×Eβ)z = −

ϵ0e
2(1− β2)2R0

cR4(1− n · β)5

(
1

R̃
(ỹ cosωt− x̃ sinωt)− βx̃ cosωt− βỹ sinωt

)
.

(5.21)
Similarly

−ϵ0
c
(n ·Eβ)(r ×Ea)z = −

ϵ0e
2(1− β2)β2

cR3R̃(1− n · β)5
×[

(1− x̃ cosωt− ỹ sinωt)
(
1

R̃
(ỹ cosωt− x̃ sinωt)− βx̃ cosωt− βỹ sinωt

)
−

−
(
R̃+ βx̃ sinωt− βỹ cosωt

)
(ỹ cosωt− x̃ sinωt)

]
(5.22)

−ℏ
2
=

∫ 3

R
SzdV,

where Sz is the sum of the equations (5.20), (5.21) and (5.22).
Let us assume that the integral is performed at the observation instant t0 = 0, when the

center of charge is at the point A ≡ (1, 0, 0). For this point, the retarded distance up to the
charge is R̃ = 0. For another arbitrary point P ≡ (x, y, z) the corresponding retarded point is
B ≡ (cos θ, sin θ, 0), and because the radius of the circle is 1, θ = −R̃, as is shown in the �gure.

Figure 5.20: The dimensionless distance R form the observation point P to the retarded
point B is the same as the arc length AB.

With the following change of variables

x = R sinλ cosϕ+cosR, y = R sinλ sinϕ−sinR, z = R cosλ, R ∈ [0,∞], λ ∈ [0, π] ϕ ∈ [0, 2π].

The Jacobian of the transformation is

J = R2 sinλ(1− sinλ sin(R+ ϕ)),
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and R = R̃.
As a summary, the integral for the electromagnetic energy, wich gives the constant M , in

the limit β → 1, is

M =

∫ ∞

0
dR

∫ π

0
dλ

∫ 2π

0
dϕ

8 sinλ

(2− cos(R− λ+ ϕ) + cos(R+ λ+ ϕ))3
,

For the integral of the angular momentum we get

N =

∫ ∞

0
dR

∫ π

0
dλ

∫ 2π

0
dϕ

− sin2 λ sin(R+ ϕ)

R(1− sinλ sin(R+ ϕ))3
.

Both integrals when performed with Mathematica give 0, but if the calculation is done numeri-
caly it produces very high oscillating values even for a �nite limit of the range of the integration
variable R.



Chapter 6

Some spin features

6.1 Gyromagnetic ratio

If we have a charged point particle of mass m and charge e moving in space, and let us
compute its angular momentum J and magnetic moment µ with respect to some point, these
properties satisfy

µ =
e

2m
J

In the case of the electron, the relationship between the spin S and its magnetic moment µ
with respect to the center of mass, is

µ = g
e

2m
S, g = 2.

The dimensionless magnitude g is called the gyromagnetic ratio, because determines the re-
lationship between the magnetic property of generating a magnetic �eld with the mechanical
property associated to the rotation.

The g = 2 gyromagnetic ratio of the electron was considered for years a success of Dirac's
electron theory. 1 Later, Levy-Leblond 2 obtained similarly g = 2 but from a s = 1/2 non-
relativistic wave equation. Proca 3 found g = 1 for spin 1 particles and this led Belinfante 4

to conjecture that the gyromagnetic ratio for elementary particles is g = 1/s, irrespective of
the value s of its spin. He showed this to be true for quantum systems of spin 3/2, and a
few years later the conjecture was analyzed and checked by Moldauer and Case 5 to be right
for any half-integer spin, and by Tumanov 6 for the value s = 2. In all these cases a minimal
electromagnetic coupling was assumed.

Weinberg 7 made the prediction g = 2 for the intermediate bosons of the weak interactions
when analyzing the interaction of W bosons with the electromagnetic �eld by requiring a good
high-energy behavior of the scattering amplitude. The discovery of the charged W± spin 1
bosons with g = 2, contradictory to Belinfante's conjecture, corroborated Weinberg's prediction
and raised the question as to whether g = 2 for any elementary particle of arbitrary spin.

Jackiw 8 has given another dynamical argument con�rming that the gyromagnetic ratio of
spin-1 �elds is g = 2, provided a nonelectromagnetic gauge invariance is accepted. He also gives

1 P.A.M. Dirac, Proc. Roy. Soc. London A117, 610 (1928).
2 J.M. Levy-Leblond, Comm. Math. Phys. 6, 286 (1967).
3 A. Proca, Compt. Rend. 202, 1420 (1936); Journ. Phys. Radium, 49, 245 (1988).
4 F.J. Belinfante, Phys. Rev. 92, 997 (1953).
5 P.A. Moldauer and K.M. Case, Phys. Rev. 102, 279 (1956).
6 V.S. Tumanov, Sov. Phys. JETP, 19, 1182 (1964).
7 S. Weinberg, in Lectures on Elementary Particles and Quantum Field Theory, edited by S. Deser, M.

Grisaru and H. Pendleton, MIT press, Cambridge, MA (1970), p. 283.
8 R. Jackiw, Phys. Rev. D 57, 2635 (1998).
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some ad hoc argument for s = 2 �elds, consistent with the g = 2 prescription.
Ferrara et al. 9 in a Lagrangian approach for massive bosonic and fermionic strings, by

the requirement of a smooth �xed-charge M → 0 limit, get g = 2 as the most natural value
for particles of arbitrary spin. However the only known particles which ful�ll this condition
are charged leptons and W± bosons, i.e., charged fermions and bosons of the lowest admissible
values of spin. No other higher spin charged elementary particles have been found.

The aim of this section, instead of using dynamical arguments as in the previous attempts,
is to give a kinematical description of the gyromagnetic ratio of elementary particles 10 which
is based upon the double content of their spin operator structure.

The general structure of the quantum mechanical angular momentum operator with respect
to the origin of the observer frame, in either relativistic or nonrelativistic approach, is

J = r × ℏ
i
∇+ S = r × P + S, (6.1)

where the spin operator is

S = u× ℏ
i
∇u +W , (6.2)

and ∇u is the gradient operator with respect to the velocity variables and W is a linear di�er-
ential operator that operates only on the orientation variables α and therefore commutes with
the other. For instance, in the ρ = n tan(α/2) parameterization W is written as

W =
ℏ
2i

[∇ρ + ρ×∇ρ + ρ(ρ · ∇ρ)] . (6.3)

The �rst part in (6.2), related to the zitterbewegung spin, has integer eigenvalues because
it has the form of an orbital angular momentum in terms of the u variables. Half-integer
eigenvalues come only from the operator (6.3). This operator W takes into account the change
of orientation, i.e., the rotation of the particle.

We have seen in either relativistic or non-relativistic examples that if the only spin content
of the particle S is related to the zitterbewegung part Z = u×U , then the relationship between
the magnetic moment and zitterbewegung spin is given by

µ =
e

2
k × dk

dt
= − e

2m
Z, (6.4)

i.e., with a normal up to a sign gyromagnetic ratio g = 1. If the electron has a gyromagnetic
ratio g = 2, this implies necessarily that another part of the spin is coming from the angular
velocity of the body, but producing no contribution to the magnetic moment.

Therefore for the electron, both parts W and Z contribute to the total spin. But the W
part is related to the angular variables that describe orientation and does not contribute to the
separation k between the center of charge and the center of mass. It turns out that the magnetic
moment of a general particle is still related to the motion of the charge by the expression (6.4),
i.e., in terms of the Z part but not to the total spin S. It is precisely when we try to express
the magnetic moment in terms of the total spin that the concept of gyromagnetic ratio arises.

Now, let us assume that both Z and W terms contribute to the total spin S with their
lowest admissible nonvanishing values, and must have unique values. This is the idea contained
in the atomic principle in the sense that an elementary particle has no excited states they must
have �xed values for its physical properties.

For a Dirac particle we have found that the total spin is s = 1/2 and that both parts have
opposite orientations while the total spin S has the same orientation as the part Z. The orbital

9 S. Ferrara, M. Porrati and V.L. Telegdi, Phys. Rev. D 46, 3529 (1992).
10 M. Rivas, J.M.Aguirregabiria and A. Hernández, Phys. Lett. A 257, 21 (1999).
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part Z cannot have a vanishing value because the motion of the center of charge does not go
through the center of mass and the lowest admisible value from the quantum point of view is
z = 1 and therefore w = 1/2 in the opposite direction for the rotative part. When we express
the magnetic moment in terms of the total spin, because Z = 2S, is why the gyromagnetic
ratio takes the value g = 2.

The experimental value of g for leptons is

ge = 2.00231930436182, gµ = 2.0023318418, gτ = 2.00235442,

up to the maximum number of veri�ed digits. We see that is a little bigger than the predicted
value g = 2, of Dirac equation. The reason could be that one feature is the prediction and the
other the measurement. When we measure a property we have to interact with the lepton and
this interaction modi�es the kinematics. When we introduce the particle in a magnetic �eld the
motion of the center of charge is modi�ed and basically the magnetic moment is the intensity
of this current times the area enclosed by this trajectory. If the trajectory is modi�ed the area
too and therefore the measurement of the magnetic moment is not the predicted. The deviation
would depend on the intensity of the magnetic �eld during the experiment.

There is a quantum radiative correction which is independent of the external magnetic �eld,
which was determined by Schwinger (1948), which takes the value α/π = 0.0023228, in terms
of the �ne structure constant such that the experimental result is:

g = 2 +
α

π
+ g(B),

where the part g(B) depends on the external magnetic �eld.
In the case of protons and neutrons, the relationship between their magnetic moment and

spin is:

µp = gp
e

2mp
S, gp = 5.585694, µn = gn

e

2mp
S, gn = −3.826085,

where mp is the proton mass. These are two particles of spin 1/2 which do not satisfy Dirac
equation, because this equation predicts that g has to be g = 2. Protons and neutrons are not
elementary particles, and it is the internal motion of the charged quarks which produce the
measured magnetic moment. This is very clear in the case of the neutron, a particle of total
charge 0, but with a nonvanishing magnetic moment.

6.2 The electron clock

In the De Broglie thesis 11 it is postulated that: Every piece of isolated matter has an internal
periodic motion, of an unknown nature, whose frequency is ν = mc2/h. Nevertheless, Dirac
�nds that the frequency associated to the motion of the point r of the electron, is twice than the
frequency postulated by De Broglie. We have shown that this internal frequency corresponds
to the motion at the speed of light, of the center of charge around the center of mass, and
which describes an elementary particle of spin 1/2. This model satisifes Dirac equation when
quantized. This model is depicted is the front page. The motion is a circle of radius R0 = ℏ/2mc
and frequency ν0 = 2mc2/h, in the center of mass frame.

11L. de Broglie, Thèse de doctorat (1924). Sommaire: . . . nous admettons dans le présent travail l'existence
d'un phénomène periodique d'une nature encore à préciser qui serait lié à tout morceau isolé d'énergie et qui
dépendrait de sa masse propre par l'équation de Planck-Einstein.
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Figure 6.1: Motion of the center of mass of the electron with velocity v and hellical motion, at the
speed of light, of the center of charge of the free electron. The two angular momenta S and SCM

are depicted. They show that SCM is conserved, while S preces saround the linear momentum.
The transversal velocity of the center of charge is u⊥ =

√
c2 − v2, and therefore it takes more time

for a moving electron to complete a turn. The electron clock of a moving electron is going slower
by a factor γ(v) than the clock of the electron at rest.

6.2.1 Measuring the electron clock

If the electron has the internal periodic motion described in our model, when the center
of mass moves with constant velocity, the trajectory of the center of charge has also a spatial
periodicity. We can talk of its wavelength as its spatial period, or equivalently the length run
by the center of mass during a complete turn of the center of charge. The frequency depends
also an the motion of the center of mass.

Let us assume the the center of mass is moving at the speed v as is depicted in the �gure
6.1. The center of charge follows a hellical trajectory at the speed of light, then its transversal
velocity is u⊥ =

√
c2 − v2, and therefore a moving electron takes more time to complete a

turn, and the electron clock is slower than for the electron at rest. If we call T0 = 2πR0/c to
the period of this internal motion for the center of mass observer, then for the observer who
sees the electron moving at the speed v it takes more time T = 2πR0/u⊥ = γ(v)T0, where
γ(v) = (1− v2/c2)−1/2.

If we sent an electron beam with a velocity v through a crystal, for instance a silicon crystal,
and the velocity is such that the spatial periodicity of the lattice d = 3.84Å for Si, and the spatial
periodicity of the beam λ = vT , are commensurables, i.e., either d = kλ, or λ = nd, with k
and n integer numbers, then a resonant scattering of the beam with the atoms of the lattice
can happen. If every electron gets a transversal linear momentum ∆p when interacts with an
atom, and a longitudinal linear momentum negligible when compared with p, when the electron
has crossed a region with N atoms, the transversal linear momentum will be N∆p, because the
interaction with each atom will be basically the same. This electron will be de�ected by an angle
of order N∆p/p. Gouanére et al.12, propose to measure the intensity of the electron beam which
crosses the crystal in the forward direction. Then there will exist some resonant linear momenta
for which the intensity of the beam will decrease because of this resonant transversal scattering.

12M Gouanère, M. Spighel, N. Cue, MJ. Gaillard, R. Genre, R. Kirsch,JC. Poizat, J. Remillieux, P. Catillon
and L. Roussel Found. Phys. 38, 659, (2008).
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Figure 6.2: On the left part of the �gura it is represented the distribution of silicon atoms. The
nuclei are separated by a distance d = 3.84Å. On the right we have two possible motions. Motion
(a) is the projection on the XOY plane of the motion of the center of charge of an electron
polarized in the forward direction. In (b) the spin of the electron is transversal to the motion of
the center of mass. It is also depicted in red, the corresponding trajectory of the center od mass.
This motion and the crystal lattice are not depicted at the same scale. λC = 2R ∼ 10−13m is the
amplitude of the transversal oscillation of the center of charge. and λ = vT is the distance the
center of mass runs during a complete turn of the center of charge.

In the �gure 6.2 it is represented the motion of two polarized electrons, one longitudinally (a)
and the other (b) transversally to the motion of the center of mass. We compare the spatial
periodicity of the motion of the center of charge of each electron with the periodicity of the
silicon lattice.

When d = kλ, the electron interacts with every atom of the lattice in the same way, and
in the case λ = nd, the interaction is every n atoms. In each interaction the transfer of
transversal linear momentum will be basically the same. A greater λ implies also a greater
linear momentum, and therefore the dispersion angle will be smaller. Since

d = kλ = kvT = kγ(v)vT0 =
kγ(v)v

ν0
=
kmγ(v)v

mν0
=

kp

mν0

there will exist some resonant linear momenta

pDk =
mν0d

k
=

161.748

k
MeV/c, k = 1, 2, . . . (Dirac frequency)

for which the detector will measure a decrease in the intensity of the outgoing beam.
In the mentioned experiment Gouanére et al., used a detector located at 3 m from the

silicon crystal with a window of 3× 3 mm, so that electrons scattered by an angle greater than
0.001 rad will not be detected. They try to measure De Broglie frequency, which is half Dirac's
frequency. In this case the resonant momenta satisfy

pBk =
mν0d

k
=

80.874

k
MeV/c, k = 1, 2, . . . (De Broglie frequency)

and they establish in their experiment a range for the linear momentum between 54 and 110
MeV/c, to obtain, at least, the �rst resonant frequency corresponding to k = 1. What they
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Figure 6.3: Transcription of �gure 4 of the Gouanere et al reference of 2008, which shows the
experimental outcome of the detected number of electrons versus the linear momentum p of the
electron beam in MeV/c (dotted line). Curve (a) (in blue) represents their Monte Carlo calculation
for de Broglie's frequency ν. Curve (b) (in red) represents their Monte Carlo calculation by
considering that the electron internal frequency is twice de Broglie's frequency 2ν. It matches
with the experimental result except for a shift from 80.874 MeV/c to 81.1 MeV/c. This shift could
be related to the temperature of the sample and therefore with a change of the parameter d of
the lattice.

obtained, see �gure 6.3, was the resonant peak for the value p = 81.1 MeV/c instead of the
expected p =80.874 MeV/c, which corresponds to k = 2 in the case when the internal frequency
is that of our model or Dirac's frequency.

If the electron clock had De Broglie frequency ν0 = mc2/h, then the resonant peaks will be
those of the �gure 6.4, while if the frequency is that of Dirac, twice De Broglie frequency, the
resultant peaks will be those of the �gure 6.5. All De Broglie peaks can also be obtained if the
frequency is that of Dirac but not conversely. The presence of one kind of peaks or the other, will
show as a �rst glance, how to discriminate between these alternative frequencies. The accurate
measurement of the peaks represents an accurate measurement of the internal frequency of the
electron ν0. It would be desirable to enlarge the energy range of the experiment of Gouanére
et al. to detect those peaks below 80.874 MeV/c. This will show the existence of this internal
periodic motion and will allow us to determine the frequency of a high precission clock, the
clock of the electron.

The accurate measurement of this frequency will be used to de�ne a natural unit of time,
associated to physical phenomena related the electrons and their interactions. With the natural
unit of velocity c, this allows us to obtain a natural unit of length, and therefore in our classical
kinematical description of the electron, all kinematical variables can be taken dimensionless in
this sytem of units, thus justifying the additional scale invariance of the model.

6.3 Instantaneous electric dipole

The internal motion of the charge of the electron in the center of mass frame is a circle at
the speed of light. The position of the charge in this frame is related to the total spin by eq.
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Figure 6.4: Di�erent resonant peaks of the interaction of the electron beam with the silicon lattice,
if assumed that the internal electron frequency is De Broglie's frequency ν0 = mc2/h. Some of the
previsible peaks of the following �gure do not appear in this ansatz.

Figure 6.5: Di�erent resonant peaks of the interaction of the electron beam with the silicon lattice,
if assumed that the internal electron frequency is twice De Broglie's frequency ν0 = 2mc2/h. Only
the peaks corresponding to pk, k = 1, . . . , 6, are depicted. The picks corresponding to P3, p5, . . . do
not appear in the previous �gure.
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(2.167), i.e.,

k =
1

mc2
S × u, (6.5)

where S is the total constant spin and u = dk/dt, with u = c is the velocity of the charge. In
addition to this motion there is a rotation of a local frame linked to the particle that gives rise
to some angular velocity, but this rotation has no e�ect on the electric dipole structure. (See
Fig. 6.6 where the angular velocity and the local frame are not depicted).

Figure 6.6: Electron charge motion in the C.M. frame.

Now, from the point of view of the center of mass observer, the particle behaves as though
it has a magnetic moment related to the particle current by the usual classical expression

µ =
1

2

∫
k × j d3r =

e

2
k × dk

dt
,

where e is the charge and j(r − k) = e dk/dt δ3(r − k) is the particle current density. The
orbital term k× dk/dt is related to the zitterbewegung part of spin that quantizes with integer
values and which for spin 1/2 and spin 1 charged particles is twice the total spin S, giving rise
to a pure kinematical interpretation of the gyromagnetic ratio g = 2 for this model as seen in
the previous section.

But also in the center of mass frame the particle has an oscillating instantaneous electric
dipole moment d = ek, that is thus related to the total spin by

d =
e

mc2
S × u. (6.6)

This instantaneous electric dipole, which ful�lls the usual de�nition of the momentum of the
point charge e with respect to the origin of the reference frame, is translation invariant because
it is expressed in terms of a relative position vector k. It can never be interpreted as some kind
of �uctuation of a spherical symmetry of a charge distribution. Even in this kind of model, it
is not necessary to talk about charge distributions, because all particle attributes are de�ned
at a single point r.

In his original 1928 article, 13 Dirac obtains that the Hamiltonian for the electron has, in
addition to the Hamiltonian of a free point particle of mass m, two new terms that in the

13 P.A.M. Dirac, Proc. Roy. Soc. London, A117, 610 (1928).
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presence of an external electromagnetic �eld are

eℏ
2m

Σ ·B +
ieℏ
2mc

α ·E = −µ ·B − d ·E, (6.7)

where

Σ =

(
σ 0
0 σ

)
, and α = γ0γ,

i.e., Σ is expressed in terms of σ Pauli-matrices and α is Dirac's velocity operator when written
in terms of Dirac's gamma matrices.

We shall show that the quantum counterpart of expression (6.6) is in fact the electric dipole
term of Dirac's Hamiltonian (6.7). The di�culty to relate the classical expression of the dipole
moment with its quantum version lies how to interpret the `cross' product in (6.6), introduced
by J. Willard Gibbs in 1884, in terms Dirac matrices or in terms of the matrix (or geometric)
product of the elements of Dirac's algebra that represent the quantum version of the above
observables, so that a short explanation to properly interpret these observables as elements of
a Cli�ord algebra is given in what follows.

Both, velocity operator u = cα and spin operator S are bivectors in Dirac's algebra, consid-
ered as elements of the Geometric or Cli�ord algebra of space-time in the sense of Hestenes. 14

In fact, Dirac's alpha matrices are written as a product of two gamma matrices αi = γ0γi
and also the spin components Sj = (iℏ/2) γkγl, j, k, l cyclic 1, 2, 3, and where the four gamma
matrices, γµ, µ = 0, 1, 2, 3 are interpreted as the four basic vectors of Minkowski's space-time
that generate Dirac's Cli�ord algebra. They satisfy γµ · γν = ηµν , i.e., γ20 = 1 and γ2i = −1,
where the dot means the inner product in Dirac's Cli�ord algebra. We thus see that velocity
and spin belong to the even subalgebra of Dirac's algebra and therefore they also belong to Pauli
algebra or geometric algebra of three-dimensional space. Under spatial inversions γ0 → γ0 and
γi → −γi, the velocity operator changes its sign and it is thus a spatial vector, while the spin
is invariant under this transformation as it corresponds to a spatial bivector or pseudovector.

Figure 6.7: A basis for vectors (a) and bivectors (pseudovectors) (b) of Pauli algebra.

The relationship between the cross product and the outer and inner product of two vectors
a and b in Pauli algebra is,

a× b = −ia ∧ b = b · (ia), (6.8)

where ∧ represents the symbol for the outer product in the geometric algebra, the imaginary
unit i represents the unit pseudoscalar three-vector and ia is the dual bivector of vector a.

The inner product of a vector b and a bivector A is expressed in terms of the geometric
product in the form

b ·A =
1

2
(bA−Ab) (6.9)

14 D. Hestenes, Space-Time algebra, Gordon and Breach, NY (1966); D. Hestenes and G. Sobczyk, Cli�ord
Algebra to Geometric Calculus, D. Reidel Pub. Co. Dordrecht, (1984).
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where in Dirac's or Pauli algebra the geometric product bA is just the ordinary multiplication
of matrices.

If we choose a basis of vectors and pseudovectors as in Fig. 6.7, where the double-lined
objects of part (b) represent the dual vectors of the corresponding spatial bivectors, and express
in these bases the observables of Fig. 6.6, then the spatial velocity vector u = cγ0γ2 and the
pseudovector S = (ℏ/2)γ2γ3 and therefore, using (6.8) and (6.9) we get

S × u = u · (iS) = icℏ
2

(
1

2
(γ0γ2γ2γ3 − γ2γ3γ0γ2)

)
=
−icℏ
2

γ0γ3.

Now vector k = Rγ0γ3 with R = ℏ/2mc, and by substitution in (6.6) we get the desired result,

d3 = −
ieℏ
2mc

α3.

From this relation, if we use as a unit of length the radius R0, this implies that the separation,
from the quantum mechanical point of view, between the CC and the CM, in dimensionless
units is

r̃ − q̃ = −iα.

From the algebraic poitn of view, Dirac velocity operator in dimensionless units is ũ = α. As we
have seen in section 4.2.3, a rotation of value π/2 in the phase of the internal motion, eiπ/2 = i
is equivalent to rotate π/2 the velocity vector, and this de�nes a dimensionles vector from CC
to CM, and thus the opposite vector is r̃ − q̃ = −iα.

6.3.1 Darwin term of Dirac's Hamiltonian

When analyzing Dirac's equation in the presence of an external electric �eld E, Darwin 15

found in the expansion of the Hamiltonian an energy term, that bears his name, of the form

− ℏ2e
8m2c2

∇ ·E ≡ ℏ2e
8m2c2

∇2V. (6.10)

The usual interpretation of this term 16 corresponds to the idea of the zitterbewegung and
therefore to the �uctuation of the position of the electron r around the center of mass q. In our
model this is very well understood because for the spinning electron, there is a separation S/mc
between the center of mass and center of charge. Thus, by expanding the interaction potential
around the center of mass q we get

V (q + δr) = V (q) + δr · ∇V +
1

2
δriδrj

∂2V

∂ri∂rj
+ · · · .

The �uctuation of the relative coordinates of the center of charge position vanish and thus
< δri >= 0. Similarly < δriδrj >= 0 for i ̸= j and the lowest order non-vanishing terms come
from the �uctuations of

< (δr1)
2 >=< (δr2)

2 >=< (δr3)
2 >=

1

3
< |δr|2 >= 1

3

S2

m2c2
.

We thus get

V (q + δr) = V (q) +
S2

6m2c2
∇2V,

15 C.G. Darwin, Proc. Roy. Soc. (London), A118, 654 (1928).
16 J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading Mass. (1967), p.119.
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but for a spin 1/2 particle S2 = 3ℏ2/4 and by multiplying the above expression by the elec-
tric charge e we get the electrostatic potential energy of a charge at point q, eV (q), and the
additional Darwin term (6.10). One important feature is that the Darwin term, related to
the separation between the center of mass and center of charge, can also be used within a
non-relativistic context, as shown by Fushchich et al. 17

6.4 Compton E�ect

Circularly polarized light corresponds to a beam of photons where all the photons have
their spins oriented in the same direction, forward or backward 18. In the interaction of a plane
electromagnetic wave with a pointelectron at rest the scattered electron always moves forward,
at a certain angle with the direction of the wave motion. The wave transfers a linear momentum
which has a component in the direction of the propagation of the wave. If we interpret this
direction with the direction of the motion of the photons in the beam, we can make a relativistic
analysis of the interaction between the electron and photon, considered as point particles. This
analysis was performed by Arthur H. Compton in 1923.

In fact, Let us assume that we have an electron at rest and an incoming photon along the
axis OZ of linear momentum p and energy H = pc = hf . After the collision, the photon
comes out with a linear momentum p′ at an angle α with the initial direction and the electron
with a linear momentum k at the direction β, as depicted in the �gure. Conservation of linear

momentum and energy leave us to:

p′ cosα+ k cosβ = p, p′ sinα = k sinβ, cp+mc2 = cp′ +
√
m2c4 + c2k2. (6.11)

It is a system of three equations with four unknowns, α, β, p′ and k, which has no unique
solution. But if we �x one of these variables, for instance the outgoing direction of the photon
α, we get a unique value for the remaining ones p′, k and β. Since k = p− p′,

k2 = p2 + p′
2 − 2p · p′ =

1

c2

(
H2 +H ′2 − 2HH ′ cosα

)
17 V.I. Fushchich, A. Nikitin and V.A. Sagolub, Rep. Math. Phys. 13, 175 (1978).
18R. A. Beth, Mechanical Detection and Measurement of the Angular Momentum of Light, Phys. Rev. 50,

115 (1936).
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and by substituting this in

c(p− p′) +mc2 =
√
m2c4 + c2k2

taking the square, we arrive to

mc3(p− p′) = mc2(H −H ′) = HH ′(1− cosα),
1

H ′ −
1

H
=

1− cosα

mc2

and therefore the relation between the frequencies of the photons involved in this reaction is

1

f ′
− 1

f
=

h

mc2
(1− cosα). (6.12)

and for the wavelengths

λ′ − λ = λC(1− cosα), λC =
h

mc
= 2.426 · 10−12m,

where λC represents the Compton wavelength of the electron. In the models of spinning elec-
trons the separation between the center of charge and the center of mass is R0 = ℏ/2mc =
1.93·10−13m.

The variation of the energy of the scattered photon in terms of the dispersion angle is given
by

hf ′ =
hf

1 +
hf

mc2
(1− cosα)

= hfA(α), A(α) =
1

1 + q(1− cosα)
,

where q = p/mc and it is represented in the �gure:
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Figure 6.8: Representation of the function A(α) = f ′/f , for an incoming photon of hf = 2mc2.

In this �gure, when α = π, the photon goes backward, f ′/f = 0.2, and this corresponds to
an experiment with photons of energy hf = 2mc2 ≈ 1 MeV, twice as much as the rest energy
of the electron.

The linear momenta of the outgoing photon and electron are, respectively:

p′ =
pmc

mc+ p(1− cosα)
= pA(α), k = p

√
1 +A(α)2 − 2A(α) cosα, (6.13)

and the dispersion angle of the electron

sinβ =
A(α) sinα√

1 +A(α)2 − 2A(α) cosα
, cosβ =

1−A(α) cosα√
1 +A(α)2 − 2A(α) cosα

. (6.14)

We see in the �gures 6.10 and 6.11 that for low dispersion angles of the photon, α ≈ 0,
sinβ ≈ 1, and the electron goes out basically at 90◦ of the incoming photon. It only goes
forward sinβ = 0, when the scattered photon is coming backwards α ≈ π. For α ≈ π/2, we get
in both cases sinβ ≈ 0.3 and 0.62, respectively.
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Figure 6.9: Variation with α of the linear momentum k of the otgoing electron.
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Figure 6.10: Variation of the dispersion angle β of the outgoing electron in terms of the
dispersion angle of the photon, in the case H ≈ 1MeV = 2mc2.
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Figure 6.11: Variation of the dispersion angle of the outgoing electron β in terms of the
photon dispersion angle, for an incoming photon of energy 5 eV, H ≈ 10−5mc2.
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6.4.1 Contribution of the spin

If we take into account the spins of the photon Z and of the electron S, the interaction also
conserves the total angular momentum of this system.

Let us take the OZ axis along the direction of the motion of the incoming photon and the
plane XOZ as the plane containing the linear momenta of the outgoing particles.Let θ and ϕ
be the initial orientation of the spin of the electron, and θ′ And ϕ′ its �nal orientation. Because
the spin of the photon has the direction of its linear momentum, up to a sign, the conservation
of the three components of the total angular momentum leads to:

S sin θ cosϕ = Z2 sinα+ S sin θ′ cosϕ′, S sin θ sinϕ = S sin θ′ sinϕ′,

Z1 + S cos θ = Z2 cosα+ S cos θ′,

i.e.,
sin θ cosϕ = (Z2/S) sinα+ sin θ′ cosϕ′, sin θ sinϕ = sin θ′ sinϕ′,

(Z1/S) + cos θ = (Z2/S) cosα+ cos θ′,

where Z1 and Z2 are the components of the spin of the photon in the direction of its motion,
and we know that takes the value Z1 = Z2 = ±ℏ. It is a system of three equations with three
unknowns θ′, ϕ′ and α, which will give us �nally the spin orientation of the electron θ′, ϕ′ and
the outgoing direction of the photon α. Together the conservation equations of the previous
section, we see that the direction of the outgoing photon α depends on the initial orientation of
the spin of the electron, which can be controlled by means of an external magnetic �eld.

From the �rst two equations we arrive to

sin2 θ′ = (Z2/S)
2 sin2 α− 2(Z2/S) sinα sin θ cosϕ+ sin2 θ.

If in the last one we separate the term of θ′ and take the squared of it,

cos2 θ′ = (Z1/S + cos θ − (Z2/S) cosα)
2

adding together, we obtain an equation with a single unknown, α, the outgoing angle of the
photon:

sinα sin θ cosϕ = (Z1/Z2 − cosα)(Z1/S + cos θ).

If Z1 and Z2 have the same orientation with respect to the corresponding linear momentum of
the photon, Z1/Z2 = +1, and in terms of the half angle we get

cot(α/2) =
Z1/S + cos θ

sin θ cosϕ
, Z1/Z2 = +1,

but if Z1 and Z2 have the opposite orientation Z1/Z2 = −1,

tan(α/2) = −Z1/S + cos θ

sin θ cosϕ
, Z1/Z2 = −1.

Because cot(z/2) =
√
(1 + cos z)/(1− cos z) = 1/ tan(z/2), this implies that

cosα =
(Z1/S + cos θ)2 − sin2 θ cos2 ϕ

(Z1/S + cos θ)2 + sin2 θ cos2 ϕ
, Z1/Z2 = 1. (6.15)

cosα =
sin2 θ cos2 ϕ− (Z1/S + cos θ)2

(Z1/S + cos θ)2 + sin2 θ cos2 ϕ
, Z1/Z2 = −1. (6.16)
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which is the opposite to the previous one. For the angle ϕ′ one obtains:

tanϕ′ =
tanϕ

1− Z2 sinα

S sin θ cosϕ

(6.17)

while θ′ is obtained from the last equation

cos θ′ = cos θ + Z1/S − Z2/S cosα. (6.18)

If we take the absolute value of the spin of the electron as S =
√
(1/2 + 1)/2ℏ, Z1/S = ±2/

√
3.

If we represent the value of cosα, we obtain the �gures 6.12. To know where the cosα reach
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Figure 6.12: Variation of cosα in the caseZ1/Z2 = 1, Z1/S = 2/
√
3 and Z1/Z2 = −1, respec-

tively.

a maximum or a minimum, is su�cient to take the derivative with respect to θ and ϕ in the
expression (6.15), equate both derivatives to zero, and we obtain the system of equations

sin θ cos2 ϕ(Z1/S + cos θ)(1 + Z1/S cos θ) = 0, sin2 θ sin 2ϕ(Z1/S + cos θ) = 0,

such that the minimum is reached for cos θ = −S/Z1 = −
√
3/2, θ = 5π/6, ϕ = 0, π, and takes

the value cosα = −1/2. For this value, the scattered photon leaves at an angle α = 2π/3, or
120◦, which is the maximum backward direction of any photon. A greater backward direction
would imply that the electron would be moving towards the photon. For ϕ = π, the variation
of cosα with θ of (6.15) is that of the �gure

0.5 1.0 1.5 2.0 2.5 3.0

8Q<

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

COSΑ

If Z1 is oriented backwards, we obtain this maximum outgoing direction, but the spin of the
electron has to have the orientation cos θ =

√
3/2, θ = π/6, ϕ = 0, π.

In the �rst case, if θ = 0, or aproximately zero, whatever ϕ be, results α = 0 and the photon
is not deviated. the same happens in the second case if θ = π. Polarized electrons in the
direction of the motion of the photons seem to be invisible.

We have taken as the plane ZOX the plane which contains both photons, the initial and
the �nal dispersed photon, and in this plane the angle of dispersion α is determined by the
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Figure 6.13: If Z1/S = 2, the variation of cosα with the spin orientation leaves to ϕ = π
and the outgoing photon can only exit within the angle ±60◦ with respect to the incoming
direction.
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Figure 6.14: Variation of cosα versus ϕ, for the value θ = 5π/6 in the �rst case, or θ = π/6
in the second.
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orientation of the spin of the electron (θ, ϕ). Conversely, if what we control is the orientation of
the spin of the electron, then the dispersion plane is unde�ned by a rotation of arbitrary value
−ϕ, where the outgoing photon makes an angle α with the initial direction. In another form, if
what we control in the laboratory is θ, the orientation of the outgoing photon is (α,−ϕ) with
respect to the plane subtended by the direction of the incoming photon and the direction of the
spin of the electron.

If the experiment is not performed with free electrons, but rather with the electrons bound
to atoms, the interaction can excited the atoms to upper states and the problem is di�erent.
Because the electron is an elementary particle, it is not possible to modify the absolute value
of its spin, which is what we have considerd in this analysis.

Experimentaly outgoing photons with a dispersion angle greater than 150◦ with respect to
the incoming direction are found, but according to this analysis the greater angle is of 120◦. In all
this calculation we have assumed a strict point-like electron. This experimental fact invalidates
this calculation, and we have to take into account the feature that the center of mass and center
of charge of a Dirac particle, are di�erent points. From the electromagnetic point of view, the
photon collides with the center of charge of the electron. We have to recalculate all these items
because we have to consider also the angular momentum of the moving electron with respect
to its center of charge.

6.4.2 Model of spinning electron

We are going to consider that the pointlike photon collides with the center of charge of
the electron. We take this center of charge as the origin of the laboratory reference frame as
depicted in the �gure: The incoming photon goes along the OZ axis, the outgoing photon is

contained in the XOZ plane with an angle α with the direction OZ and the spin of the electron
at rest S has the usual orientation θ And ϕ. The scattered electron has a linear momentum k
also contained in the plane XOZ with an angle β with respect to OZ.

We show in the picture the structure of the electron at rest as a Dirac particle with the
center of mass and center of charge two di�erent points. The vector r represents the relative
position of the center of charge with respect to the center of mass. We call ψ the phase of the
internal motion of the center of charge and R0 = S/mc, the radius of this internal motion at
the speed of light.



272 CHAPTER 6. SOME SPIN FEATURES

If the spin of the electron were oriented along OZ axis, the vector r should be given by

r0 = R0

 cosψ
sinψ
0

 ,

but because it has an orientation θ and ϕ, we have:

r = Rz(ϕ)Ry(θ)r0 = R0

 cos θ cosϕ cosψ − sinϕ sinψ
cos θ sinϕ cosψ + cosϕ sinψ

− sin θ cosψ


Before the collision, the angular momentum of the system electron-photon, with respect to the
origin, is just the sum of the spins of both particles, because the electron is at rest, J1 = Z1+S
and expressed by its cartesian components we have:

J1 =

 S sin θ cosϕ
S sin θ sinϕ
Z1 + S cos θ


After the collision the photon has a spin Z2 and the electron spin is oriented with angles θ′ and
ϕ′, and also a linear momentum k. The angular momentun with respect to the origin after the
collision is

J2 = Z2 + S′ − r × k, k = k

− sinβ
0

cosβ

 ,

and expressed by components:

r × k = R0k

 (cos θ sinϕ cosψ + cosϕ sinψ) cosβ
sin θ cosψ sinβ − (cos θ cosϕ cosψ − sinϕ sinψ) cosβ

(cos θ sinϕ cosψ + cosϕ sinψ) sinβ



Z2 = Z2

 sinα
0

cosα

 , S′ = S

 sin θ′ cosϕ′

sin θ′ sinϕ′

cos θ′

 .

From energy and linear momentum conservation the relationship between β and α of the pre-
vious section (6.14) still holds. If the total angular momentum is conserved, and if we express
the primed angles in terms of the others, we get a system of equations:

S′ = J1 −Z2 + r × k

S sin θ′ cosϕ′ = S sin θ cosϕ− Z2 sinα+R0k (cos θ sinϕ cosψ + cosϕ sinψ) cosβ,

S sin θ′ sinϕ′ = S sin θ sinϕ+R0k (sin θ cosψ sinβ − (cos θ cosϕ cosψ − sinϕ sinψ) cosβ) ,

S cos θ′ = Z1 + S cos θ − Z2 cosα+R0k (cos θ sinϕ cosψ + cosϕ sinψ) sinβ.

If we de�ne the magnitudes a = Z1/S, b = Z2/S and R = R0k/S, these equations look:

sin θ′ cosϕ′ = sin θ cosϕ− b sinα+R (cos θ sinϕ cosψ + cosϕ sinψ) cosβ

sin θ′ sinϕ′ = sin θ sinϕ+R (sin θ cosψ sinβ − (cos θ cosϕ cosψ − sinϕ sinψ) cosβ)

cos θ′ = a+ cos θ − b cosα+R (cos θ sinϕ cosψ + cosϕ sinψ) sinβ.

Here we have to substitute sinβ and cosβ in terms of A(α) and since R0 = S/mc, the
coe�cient

R =
R0k

S
= q
√

1 +A(α)2 − 2A(α) cosα,
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with q = p/mc, and thus the terms

R cosβ = q(1−A(α) cosα), R sinβ = qA(α) sinα.

The �nal equations to obtain the orientation of the spin of the electron are

sin θ′ cosϕ′ = sin θ cosϕ− b sinα+ q(cos θ sinϕ cosψ + cosϕ sinψ)(1−A(α) cosα),

sin θ′ sinϕ′ = sin θ sinϕ+q (A(α) sin θ cosψ sinα− (cos θ cosϕ cosψ − sinϕ sinψ)(1−A(α) cosα)) ,

cos θ′ = a+ cos θ − b cosα+ qA(α)(cos θ sinϕ cosψ + cosϕ sinψ) sinα.

If we take the phase ψ = 0, at the instant when the photon collides with the center of charge
of the electron, the above equations simplify to:

sin θ′ cosϕ′ = sin θ cosϕ− b sinα+ q cos θ sinϕ(1−A(α) cosα), (6.19)

sin θ′ sinϕ′ = sin θ sinϕ+ q (A(α) sin θ sinα− cos θ cosϕ(1−A(α) cosα)) , (6.20)

cos θ′ = a+ cos θ − b cosα+ qA(α) cos θ sinϕ sinα. (6.21)

They are three extra equations that together the other three (6.11) will supply a system of six
equations to determine α, β, p′, k, θ′ and ϕ′, if the initial orientation of the spin of the electron
θ, ϕ is known.

By controlling the initial orientation of the spin of the electron, i.e., the values θ and ϕ,
there would be determined the direction α and the energy p′ of the outgoing photons and this
device could be used as a �ne tunning device for producing photons of very accurate frequency
on a cone of semiangle α around the dispersion center, with the only requirement of acting on
the free electrons (for instance in a Penning trap) with some external magnetic �eld.

6.5 Classical Tunneling

As a consequence of the zitterbewegung and therefore of the separation between the center
of mass and center of charge, we shall see that spinning particles can have a non-vanishing
crossing of potential barriers.

Let us consider a spinning particle with spin of (anti)orbital type, as described in Section
2.2, under the in�uence of a potential barrier. The Langrangian of this system is given by:

L =
m

2

ṙ2

ṫ
− m

2ω2

u̇2

ṫ
− eV (r)ṫ. (6.22)

Sharp walls correspond classically to in�nite forces so that we shall consider potentials that give
rise to �nite forces like those of the shape depicted in Fig. 6.15, where V0 represents the top of
the potential.

Then the external force F (x), is constant and directed leftwards in the region x ∈ (−a, 0)
and rightwards for x ∈ (0, b), vanishing outside these regions.

Potentials of this kind can be found for instance in the simple experiment depicted in Figure
6.16 in which an electron beam, accelerated with some acceleration potential Va, is sent into
the uniform �eld region of potential V0 contained between the grids or plates A, C and B.

In Figure 6.16 from a strict classical viewpoint a spinless electron stops at the dotted line
and is rejected backwards. But a classical spinning electron can cross the barrier provided its
kinetic energy is above some minimum value, although below the top of the potential. This
minimum value depends on the separation between plates.

Let us assume for simplicity that the spin is pointing up or down in the z direction such
that the point charge motion takes place in the XOY plane. Let qx, qy and qz = 0, be the
coordinates of the center of mass and x, y and z = 0, the position of the charge.
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Figure 6.15: Triangular potential barrier.

Figure 6.16: Electron beam into a potential barrier. A classical spinless electron never
crosses the dotted line. It is stopped there and rejected backwards. A spinning particle of
the same kinetic energy might cross the barrier.
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The dynamical equations are

d2qx
dt2

=
1

m
F (x),

d2qy
dt2

= 0, (6.23)

d2x

dt2
+ ω2(x− qx) = 0,

d2y

dt2
+ ω2(y − qy) = 0, (6.24)

where

F (x) =


−eV0/a, for x ∈ (−a, 0),
eV0/b, for x ∈ (0, b),
0, otherwise.

Equations (6.23) are nonlinear and we have not been able to obtain an analytical solution
in closed form. We shall try to �nd a numerical solution. To make the corresponding numerical
analysis we shall de�ne di�erent dimensionless variables. Let R be the average separation
between the center of charge and center of mass. In the case of circular internal motion, it
is just the radius R0 of the zitterbewegung. Then we de�ne the new dimensionless position
variables:

q̂x = qx/R, q̂y = qy/R, x̂ = x/R, ŷ = y/R, â = a/R, b̂ = b/R.

The new dimensionless time variable α = ωt is just the phase of the internal motion, such
that the dynamical equations become

d2q̂x
dα2

= A(x̂),
d2q̂y
dα2

= 0,

d2x̂

dα2
+ x̂− q̂x = 0,

d2ŷ

dα2
+ ŷ − q̂y = 0,

where A(x̂) is given by

A(x̂) =


−eV0/âmω2R2, for x̂ ∈ (−â, 0),
eV0/b̂mω

2R2, for x̂ ∈ (0, b̂),
0, otherwise.

In the case of the relativistic electron, the internal velocity of the charge is ωR = c, so that
the parameter e/mc2 = 1.9569× 10−6V−1, and for potentials of order of 1 volt we can take the
dimensionless parameter eV0/mω2R2 = 1.9569× 10−6.

If we choose as initial conditions for the center of mass motion

q̂y(0) = 0, dq̂y(0)/dα = 0,

then the center of mass is moving along the OX axis. The above system reduces to the analysis
of the one-dimensional motion where the only variables are q̂x and x̂. Let us call from now on
these variables q and x respectively and remove all hats from the dimensionless variables. Then
the dynamical equations to be solved numerically are just

d2q

dα2
= A(x),

d2x

dα2
+ x− q = 0, (6.25)

where A(x) is given by

A(x) =


−1.9569× 10−6 a−1V0, for x ∈ (−a, 0),
1.9569× 10−6 b−1V0, for x ∈ (0, b),
0, otherwise.

(6.26)
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Numerical integration has been performed by means of the computer package Dynamics
Solver. 19 The quality of the numerical results is tested by using the di�erent integration
schemes this program allows, ranging from the very stable embedded Runge-Kutta code of
eight order due to Dormand and Prince to very fast extrapolation routines. All codes have
adaptive step size control and we check that smaller tolerances do not change the results.

Figure 6.17: Kinetic Energy during the crossing for the values a = b = 1.

With a = b = 1, and in energy units such that the top of the barrier is 1, if we take an
initial kinetic energy K below this threshold, K = mq̇(0)2/2eV0 = 0.41 we obtain for the center
of mass motion the graphic depicted in Fig. 6.17, where is shown the variation of the kinetic
energy of the particle K(q), with the center of mass position during the crossing of the barrier.
There is always crossing with a kinetic energy above this value. In Fig. 6.18, the same graphical
evolution with a = 1 and b = 10 and K = 0.9055 for a potential of 103 Volts in which the
di�erent stages in the evolution are evident. Below the initial values for the kinetic energy of
0.4 and 0.9 respectively, the particle does not cross these potential barriers and it is rejected
backwards.

If in both examples the parameter a is ranged from 1 to 0.05, thus making the left slope
sharper, there is no appreciable change in the crossing energy, so that with a = 1 held �xed we
can compute the minimum crossing kinetic energies for di�erent b values, Kc(b).

Figure 6.18: Kinetic Energy during the crossing for the values a = 1, b = 10.

To compare this model with the quantum tunnel e�ect, let us quantize the system. In the
quantization of generalized Lagrangians developed in the Chapter 3, the wave function for this
system is a squared-integrable function ψ(t, r,u), of the seven kinematical variables and the
generators of the Galilei group have the form:

H = iℏ
∂

∂t
, P = −iℏ∇, K = mr − tP + iℏ∇u, J = r × P +Z, (6.27)

19 J.M. Aguirregabiria, Dynamics Solver, computer program for solving di�erent kinds of dynamical systems,
which is available from his author through the web site <http://tp.lc.ehu.es/jma.html> at the server of the
Theoretical Physics dept. of The University of the Basque Country, Bilbao (Spain).
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where ∇u is the gradient operator with respect to the u variables. These generators satisfy
the commutation relations of the extended Galilei group, 20 and the spin operator is given by
Z = −iℏu×∇u.

One Casimir operator of this extended Galilei group is the Galilei invariant internal energy
of the system E , which in the presence of an external electromagnetic �eld and with the minimal
coupling prescription is written as,

E = H − eV − 1

2m
(P − eA)2, (6.28)

where V and A are the external scalar and vector potentials, respectively.
In our system A = 0, and V is only a function of the x variable. It turns out that because

of the structure of the above operators we can �nd simultaneous eigenfunctions of the following
observables: the Casimir operator (6.28), H, Py, Pz, Z2 and Zz. The particle moves along
the OX axis, with the spin pointing in the OZ direction, and we look for solutions which are
eigenfunctions of the above operators in the form:(

H − eV (x)− 1

2m
P 2

)
ψ = Eψ, Hψ = Eψ, Pyψ = 0, Pzψ = 0, (6.29)

Z2ψ = s(s+ 1)ℏ2ψ, Zzψ = ±sℏψ, (6.30)

so that ψ is independent of y and z, and its time dependence is of the form exp(−iEt/ℏ). Since
the spin operators produce derivatives only with respect to the velocity variables, we can look
for solutions with the variables separated in the form:

ψ(t, x,u) = e−iEt/ℏϕ(x)χ(u),

and thus (
ℏ2

2m

d2

dx2
+ E − eV (x)− E

)
ϕ(x) = 0, (6.31)

Z2χ(u) = s(s+ 1)ℏ2χ(u), Zzχ(u) = ±sℏχ(u), (6.32)

where the spatial part ϕ(x), is uncoupled with the spin part χ(u), and E−eV (x)−E represents
the kinetic energy of the system. The spatial part satis�es the one-dimensional Schroedinger
equation, and the spin part is independent of the interaction, so that the probability of quantum
tunneling is contained in the spatial part and does not depend on the particular value of the
spin. If the particle is initially on the left-hand side of the barrier, with an initial kinetic energy
E0 = E−E , then we can determine the quantum probability for crossing for a = 1 and di�erent
values of the potential width b.

The one-dimensional quantum mechanical problem of the spatial part for the same one-
dimensional potential depicted in Fig. 6.15 is: 21

ϕ(x) =


eikx +Re−ikx, x ≤ −a,
C1Ai(D(1−G+ x

a ) + C2Bi(D(1−G+ x
a ), −a ≤ x ≤ 0,

C3Ai(L(1−G− x
b
)) + C4Bi(L(1−G− x

b
)), 0 ≤ x ≤ b,

Teikx, x ≥ b,

(6.33)

where x is the same dimensionless position variable as before, and the constants

k =

√
E

2mc2
, D =

3

√
eV0a2

2mc2
, L =

3

√
eV0b2

2mc2
, G =

E

eV0
. (6.34)

20 J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory and its applica-
tions, Acad. Press, NY (1971), vol. 2, p. 221.

21 L. Landau and E. Lifchitz, Mécanique quantique, Mir Moscow (1988), 3rd. edition.
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Functions Ai(x) and Bi(x) are the Airy functions of x. The six integration constants R, T , and
Ci, i = 1, 2, 3, 4, can be obtained by assuming continuity of the functions and their �rst order
derivatives at the separation points of the di�erent regions. The coe�cient |R|2 represents the
probability of the particle to be re�ected by the potential and |T |2 its probability of crossing.

Figure 6.19: Classical and Quantum Probability of crossing for di�erent potentials.

Computing the T amplitude for a = 1 and di�erent values of the potential width b, and
for energies below the top of the barrier eV0, we show in Fig. 6.19, the average probability for
quantum tunneling for four di�erent potentials V0 of 102, 103, 104 and 105 Volts. This average
probability has been computed by assuming that on the left of the barrier there is a uniform
distribution of particles of energies below eV0.

If we consider for the classical spinning particle the same uniform distribution of particles,
then, the function P (b) = 1−Kc(b), where Kc(b) is the minimum dimensionless kinetic energy
for crossing computed before, represents the ratio of the particles that with kinetic energy below
the top of the potential cross the barrier because of the spin contribution.

This function P (b), is also depicted in Fig. 6.19. We see that for the di�erent potentials
shown in that �gure the classical average probability of crossing is smaller than the quantum
one, but for stronger potentials this classical probability, coming from the spin contribution,
becomes relatively important.

Because the tunnel e�ect is a function of ℏ and the spin of elementary particles is also
of order of ℏ it is very di�cult to separate from the outcome of a real experiment involving
elementary particles, which part is due to a pure quantum e�ect and which is the contribution
to crossing coming from the spin structure. From (6.31) and (6.32) it is clear that the quantum
probability of tunneling is independent of the spin.

To test experimentally this contribution, it will be necessary to perform separate experiments
with particles of the same mass and charge but with di�erent values of the spin. Thus, the
di�erence in the outcome will be related to the spin contribution. This can be accomplished for
instance, by using ions of the type A++ that could be either in a singlet, (s = 0) state or in a
triplet (s = 1) state.

But if there exists a contribution to crossing not included in the usual quantum mechanical
analysis we have to modify the quantum mechanical equations. To be consistent with the above
analysis the Schroedinger-Pauli equation should be modi�ed to include the additional electric
dipole term. A term of the form −eER cosωt, where E is the external electric �eld and R the
radius of the zitterbewegung, should be considered to solve the corresponding quantum wave
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function. This term is of the order of the separation R between the center of mass and center
of charge, which is responsible for the classical crossing. This additional electric dipole term is
already included in Dirac's equation but is suppressed when taking the low velocity limit, as
it corresponds to this low energy example. Nevertheless, although this is a low energy process
and the time average value of the electric dipole vanishes, there are very high �eld gradients.

We see that the separation between the center of mass and center of charge that gives rise to
the spin structure of this particle model justi�es that this system can cross a potential barrier
even if its kinetic energy is below the top of the potential.

6.5.1 Spin polarized tunneling

I like to point out the following ideas to discuss whether they can be useful in connection
with the interpretation of the giant magnetoresistance of polycrystaline �lms22. This is known
in the literature as the spin polarized tunneling. 23

The main feature of the �classical� spin polarized tunneling we have seen in the previous
section is not a matter of whether tunneling is classical or not, because this is a nonsense
question. Matter at this scale is interpreted under quantum mechanical rules. But if we use a
model of a classical spinning particle that, when polarized orthogonal to the direction of motion,
produces a crossing that is not predicted by the Schroedinger-Pauli equation, it means that this
quantum mechanical equation is lacking some term. The coupling term −µ ·B, between the
magnetic moment and magnetic �eld that gives rise to the Pauli equation, is inherited from
Dirac's electron theory. But Dirac's equation also predicts another term −d ·E, of the coupling
of an instantaneous electric dipole with the electric �eld. It is this oscillating electric dipole
term that we believe is lacking in quantum mechanical wave equations. In general, the average
value of this term in an electric �eld of smooth variation is zero. But in high intensity �elds
or in intergranular areas in which the e�ective potentials are low, but their gradients could be
very high, this average value should not be negligible.

The conduction of electrons in synterized materials is completely di�erent than the con-
duction on normal conductors. The material is not a continuous crystal. It is formed by small
grains that are bound together by the action of some external pressure. If we can depict roughly
the electric current �ow, this is done by the jumping of electrons from grain to grain, through
a tunneling process in which there is some estimated e�ective potential barrier con�ned in the
gap between grains. Therefore these materials show in general a huge resistivity when compared
with true conductors.

The form of this potential is unknown. The simplest one is to assume a wall of thickness d,
the average separation between grains, and height h. But it can also be estimated as one of the
potentials of the former example. What we have shown previously is that for every potential
barrier, there is always a minimum energy, below the top of the potential, that electrons above
that energy cross with probability 1 when polarized orthogonal to the motion, even within a
classical interpretation. But this e�ect is not predicted by �normal� quantum mechanics because
tunneling is spin independent.

Now, let us assume that we are able to estimate some average e�ective potential barrier in
the intergranular zone of this polycristaline material. If the corresponding minimum crossing
energy of this barrier for polarized electrons is below the Fermi level, then, when we introduce
a magnetic �eld in the direction of the �lm and the magnetic domains in the grains become
polarized, all electrons above that minimum energy of crossing will �ow from grain to grain as

222007 Nobel Prize of Physics to Albert Fert and Peter Grünberg for the discovery in 1988 of Giant Magne-
toresistence.

23 V.N. Dobrovolsky, D.I. Sheka and B.V. Chernyachuk, Surface Science 397, 333 (1998); P. Raychaudhuri,
T.K. Nath, A.K. Nigam and R. Pinto, cond-mat/9805258, preprint.
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in a good conductor, with a classical probability 1. That's all. Here the di�culty is to estimate
properly this potential barrier and therefore the corresponding classical crossing energy.

It can be argued that the presence of the magnetic �eld to polarize electrons produces a
change in the energy of particles. Nevertheless, even for a magnetic �eld of the order of 1 Tesla
and in a potential barrier of 1 Volt, the magnetic term −µ ·B contributes with an energy of
order of ±5.7× 10−5eV, which does not modify the quantum probability of crossing.

6.6 Formation of a bound state of two electrons

We have seen in section 2.6.2 that the dynamical equation of a free Dirac particle and for
any inertial observer is a fourth-order di�erential equation for the position of the charge r which
can be separated into a system of coupled second order di�erential equations for the centre of
mass q and centre of charge r in the form (2.201):

q̈ = 0, r̈ =
1− q̇ · ṙ
(q − r)2

(q − r),

where now the dot means time derivative. The �rst equation represents the free motion of
the centre of mass and the second a kind of relativistic harmonic oscillation of point r around
point q which preserves the constant absolute value c of the velocity ṙ. In fact, if q̇ ≪ ṙ = 1,
|q − r| ∼ 1 and the equation is just the harmonic motion r̈ + r ≃ q, of point r around q.
The factor (1− q̇ · ṙ)/(q − r)2 prevents that when we take the boundary value ṙ(0) = 1, the
solution does not modify this absolute value of the velocity of the charge.

In the case of interaction this second equation remains the same because it corresponds to
the de�nition of the centre of mass position which is unchanged by the interaction, because it
only involves the U and W functions. The �rst equation for particle a is going to be replaced
by dpa/dt = F a where pa is the corresponding linear momentum of each particle expressed as
usual in terms of the centre of mass velocity

pa = γ(q̇a)mq̇a, γ(q̇a) = (1− q̇2a)
−1/2,

and the force F a is computed from the interaction Lagrangian (4.78)

F a =
∂LI

∂ra
− d

dt

(
∂LI

∂ua

)
For particle 1 it takes the form:

F 1 = −g
r1 − r2
|r1 − r2|3

√
1− u1 · u2 +

d

dt

(
gu2

2|r1 − r2|
√
1− u1 · u2

)
(6.35)

where it contains velocity terms which behave like 1/r2 and acceleration terms which go as 1/r
in terms of the separation of the charges r = |r1 − r2|. In this new notation ua = ṙa.

Then the system of second order di�erential equations to be solved are

q̈a =
α

γ(q̇a)
(F a − q̇a(F a · q̇a)) (6.36)

r̈a =
1− q̇a · ṙa
(qa − ra)2

(qa − ra), a = 1, 2 (6.37)

where α is the �ne structure constant once all the variables are taken dimensionless. For that,
we take the space scale factor R = ℏ/2mc and the time scale as T = ℏ/2mc2. All terms of
equation (6.36) which depend on the acceleration of the charges have to be replaced by the
expressions of (6.37).
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It would be desirable to �nd analytical solutions of the above equations (6.36-6.37). Never-
theless we have not succeded in �nding such a goal. However we shall analyse di�erent solutions
obtained by numerical integration. We are going to use the computer program Dynamics Solver
24. The quality of the numerical results is tested by using the di�erent integration schemes
this program allows, ranging from the very stable embedded Runge-Kutta code of eighth order,
due to Dormand and Prince, to very fast extrapolation routines. All codes have adaptive step
size control and we check that smaller tolerances do not change the results. Another advan-
tage is that it can be prepared to analyse solutions corresponding to a wide range of boundary
conditions, automatically.

Figure 6.20: The trajectories of the centres of mass and charge of two spinning particles
with an initial centre of mass velocity q̇a = 0.1 and a small impact parameter.

See in �gure 6.20 the scattering of two equal charged particles with parallel spins. The
centre of mass motion of each particle is depicted with an arrow. If the two particles do not
approach each other too much these trajectories correspond basically to the trajectories of two
spinless point particles interacting through an instantaneous Coulomb force. By too much we
mean that their relative separation between the corresponding centres of mass is always much
greater than Compton's wavelength. This can be understood because of the above discussion
about the Coulomb behaviour of the averaged interaction Lagrangian, if the average position
of each charge is far from the other. For high energy interaction the two particles approach
each other below that separation and therefore the average analysis no longer works because
the charges approach each other to very small distances where the interaction term and the
exact position of both charges, becomes important. In this case new phenomena appear. We
can have, for instance, a forward scattering like the one depicted on �gure 6.21, which is not
described in the classical spinless case, or even the formation of bound pairs for particles of the
same charge, which we shall analyse in what follows.

In �gure 6.22 we represent an initial situation for two equal charged particles with parallel
spins such that the corresponding centres of mass are separated by a distance below Compton's
wavelength. Remember that the radius of the internal motion is half Compton's wavelength.
We locate the charge labels ea at the corresponding points ra and the corresponding mass
labels ma to the respective centre of mass qa. We depict in part (a) the situation when the
two particles have the same phase β1 = β2. The forces F a, on each particle a = 1, 2, are
computed in terms of the positions, velocities and accelerations of both charges, according to

24See reference19



282 CHAPTER 6. SOME SPIN FEATURES

Figure 6.21: Forward scattering of two spinning particles of the same charge with an
initial separation 2qa(0) = 10, centre of mass velocity |q̇a(0)| = 0.18 and a very small impact
parameter. The two centres of mass cross very close to each other, with a small deviation.

(6.35), and are also depicted on the corresponding centres of mass as a consequence of the
structure of the equations (6.36). We see that a repulsive force between the charges produces
also a repulsive force between the centres of mass in this situation. However, in part (b) both
charges have opposite phases β1 = −β2, and now the repulsive force between the charges implies
an atractive force between the corresponding centres of mass. If the initial situation is such
that the centres of mass separation is greater than Compton's wavelength, the force is always
repulsive irrespective of the internal phases of the particles.

Figure 6.22: Boundary values for two Dirac particles with parallel spins and with a separa-
tion between the centres of mass below Compton's wavelength. The dotted lines represent
the previsible clockwise motion of each charge. In (a) both particles have the same phase
and the repulsive force between charges produces a repulsive force between their centres of
mass, while in (b), with opposite phases, the force between the centres of mass is atractive.

In �gure 6.23 we have another situation of opposite phases and where the initial separation
between the centres of mass is larger but still smaller than Compton's wavelength.

To analyse this situation, which is going to produce bound motions, we proceed as follows:
We start the numerical integration by imposing the boundary condition that both centres of
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Figure 6.23: (a) Another situation of two charges with opposite phases which produce an
atractive force between the centres of mass provided they are separated below Compton's
wavelength. In part (b), after half a cycle of the motion of the charges, the force becomes
repulsive between the centres of mass, but its intensity is much smaller than the atractive
force in (a) so that the resulting motion is also a bound motion.

mass are at rest and located at the origin of the reference frame qa(0) = q̇a(0) = 0. For particle
2 we take the initial phase β2(0) = 0 and for β1 we start with β1(0) = 0 and, will be increased
step by step in one degree in the automatic process, up to reach the whole range of 2π radians.
The boundary values of the variables ra(0) and ṙa(0), with the constraint |ṙa(0)| = 1, are taken
as the corresponding values compatible with these phases. The whole system is analysed in
its centre of mass frame, so that for subsequent boundary values these variables are restricted
to q1(0) = −q2(0) and q̇1(0) = −q̇2(0). The automatic integration is performed in such a
way that when the two particles separate, i.e., when their centre of mass separation is above
Compton's wavelength, the integration stops and starts again with a new boundary value of
the phase β1(0) of one degree more, and the new values of the variables ra(0) and ṙa(0). If the
two particles do not separate we wait until the integration time corresponds to 106 turns of the
charges around their corresponding centre of mass, stop the process, keep record of the phases
and initial velocities, and start again with new boundary values. This corresponds, in the case of
electrons, to a bound state living during a time greater than 10−15 seconds. For some particular
boundary values, with opposite phases, we have left the program working during a whole week
and the bound state prevails. This represents a time of life of the bound state greater than
10−9 seconds. Leaving the computation program running for a year will only increase this lower
bound in two orders of magnitude. The general feeling is that the bound states are su�ciently
stable, because even the possible numerical integration errors do not destroy the stability. This
process is repeated again and again by changing slightly the initial values of the centre of mass
variables qa(0) and q̇a(0), in steps of 0.0001 in these dimensionless units and with β2(0) = 0,
and the same procedure with β1(0), as above. To test the acuracy of the integration method,
we check every 103 integration steps that the velocities of the charges of both particles remain
of absolute value 1, within a numerical error smaller than 10−20.

The whole process is repeated by changing the initial β2(0) phase to any other arbitrary
value. We are interested to see whether di�erent results are produced depending on the values
of the phase di�erence β2(0) − β1(0) and of the centre of mass variables qa(0) and q̇a(0). We
collect all data which produce bound motions, and �nd the following results:

1. The initial velocity of their centres of mass must be |q̇a(0)| < 0.01c. Otherwise the bound
motion is not stable and the two particles, after a few turns, go o�.

2. For each velocity |q̇a(0)| < 0.01c there is a range ∆ of the pase β1(0) = β2(0) + π ± ∆
for which the bound motion is stable. The greater the centre of mass velocity of each
particle the narrower this range, so that the bound motion is more likely when the phases
are opposite to each other.

3. We have found bound motions for an initial separation between the centres of mass up to
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0.8 times Compton's wavelength, like the one depicted in �gure 6.23, provided the above
phases and velocities are kept within the mentioned ranges.

In �gure 6.24 we show the bound motion of both particles when their centres of mass
are initially separated q1x = −q2x = 0.2×Compton's wavelength, q̇1x = −q̇2x = 0.008 and
q̇1y = −q̇2y = 0.001, β2 = 0 and β1 = π. Now the force between the charges is repulsive but
nevertheless, if the internal phases β1 and β2 are opposite to each other, it becomes an atractive
force between their centres of mass in accordance to the mechanism shown in �gure 6.22 (b).

This possibility of formation of low energy metastable bound pairs of particles of the same
charge is not peculiar of this interaction Lagrangian. By using the electromagnetic interaction or
even the instantaneous Coulomb interaction between the charges of two spinning Dirac particles
we found in 25 also this behaviour. This bound motion is not destroyed by external electric
�elds and also by an external magnetic �eld along the spin direction. Nevertheless, a transversal
magnetic �eld destroys this bound pair system.

Figure 6.24: Bound motion of the centres of mass and charge of two spinning particles
with parallel spins and with a centre of mass velocity v ≃ 0.0082, for an initial separation
between the centres of mass of 0.2×Compton's wavelength.

When we make the average of the position ra it becomes the centre of mass qa and the
repulsive force between the charges is also a repulsive force between the corresponding centres
of mass and therefore when we suppress the zitterbewegung spin content of the particles there
is no possibility of formation of bound pairs.

Although this result produces a classical mechanism for the formation of a spin 1 bound
system from two equal charged fermions we must be careful about its conclusions. First, it is a
classical description and although the range of energies which produce this phenomenon is a wide
one it does not mean that two electrons can reach that binding energy. This Dirac particle is a
system of 7 degrees of freedom: 3 represent the position r, another 3 the orientation α and �nally
the phase β. If we accept the equipartition theorem for the energy, then for the maximum kinetic
energy which produces a bound motion mv2/2 = 7κT/2, where κ is Boltzmann's constant and
v = 0.01c the maximum velocity of the center of mass of each particle, then it means that a
gas of polarized electrons (like the conducting electrons in a quantum Hall e�ect) could form
bound states up to a temperature below T = 8.47 × 105K, which is a very high temperature.
In a second place, matter at this level behaves according to quantum mechanical rules and

25M. Rivas J. Phys. A: Math. Gen. 36 4703 (2003), (Preprint physics/0112005)
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therefore we must solve the corresponding quantum mechanical bound state to establish the
proper energies and angular momenta at which these bound states would be stationary. This
problem has not been solved yet, but the existence of this classical possibility of formation of
bound pairs justi�es an e�ort in this direction. If the phases of the two particles are the same
(or almost the same) there is no possibility of formation of a bound state. The two fermions
of the bound state have the same spin and energy. They di�er that their phases and linear
momenta are opposite to each other. Is this di�erence in the phase a way to overcome at the
classical level, the Pauli exclusion principle?

6.6.1 The Positronium

If the two particles have opposite charges, the force among them is atractive, and if their
spins had the orientation opposite to each other, the motion of the corresponding centers of
charge of both particles will be the same as the ones we have calculated here. An example of
this interaction is the case of the Positronium, a bound system of an electron-positron pair.
It is a system with bound states although the probability of collision particle-antiparticle is
high and therefore they annihilate each other. The ground state is a state of zero spin and zero
magnetic moment, and zero orbital angular momentum, which stresses the prediction of this
kinematical theory that the spin and magnetic moment of particles and antiparticles have the
same relative orientation. It has a mean life of 1.24×10−10s and the system annihilates into
two photons with opposite spins and linear momenta and of energy corresponding to the energy
of an electron at rest, in the laboratory frame. Another stationary state, with a greater mean
life 1.4×10−7s corresponds to the state of total spin 1, which is either the hyper�ne transition
of the ground state where one of the two particles has reversed its spin or the state of orbital
angular momentum 1 with the spins still opposite to each other. This excited state annihilates
into three photons.

From the classical point of view these stationary bound states admit the same approximated
description as the Bohr atom, with the usual quantization of the orbital angular momentum.

6.7 Hall e�ect

This e�ect was discovered by Edwin Hall in 1879. It deals with the in�uence of an external
magnetic �eld on the current distribution on a conductor. It produces a transversal static
di�erence of potential perpendicular to the direction of the current. If in a conductor we
establish a direct current and introduce an external magnetic �eld orthogonal to the current,
then when the electrons interact with the magnetic �eld they start rotating and will be displaced
to the border. A certain amount of charge will be accumulated at the sides of the conductor,
negative where the electrons are accumulated and positive in the opposite side, and a static
di�erence of potential will appear between both sides.

Let us consider a �at conductor lying on the XOY plane, under the in�uence of a magnetic
�eld in the direction of OZ. The motion of the pointlike electrons, of charge −e, moving with
velocity v in an external magnetic �eld is given by the di�erential equation

m
dv

dt
= −ev ×B.

If the motion takes place on the plane XOY , v = (ẋ, ẏ, 0) andB = (0, 0, B) and these equations
reduce to two

mẍ = −eBẏ, mÿ = eBẋ,

and the general solution is

x(t) = X −R sin(ωBt+ ϕ), y(t) = Y −R cos(ωBt+ ϕ).
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These trajectories are circles, of center at the point (X,Y ) with an arbitrary phase ϕ and
radius R. These four parameters are the four constants of integration. The angular frequency
ωB = eB/m, known as cyclotronic frequency, is constant. The electrons move in circles of
di�erent radii, but with the same angular velocity ωB.

The motion of the spinless electrons in an Ohmic conductor under the in�uence of an external
electromagnetic �eld can be described by the Drude model,

m
d(γ(v)v)

dt
= −eE − ev ×B − 1

τ
mv,

where the last term represents a breaking force, opposite to the velocity, which depends on a
phenomenological parameter τ , with dimensions of time, called dispersion time, that can be
interpreted as the average time between consecutive collisions. If this time is large represents
that there is quite a few resitence to the motion. Depends on the internal structure of the
conducting material and on the fermionic character of the charge carriers.

The stationary solutions are those where the velocity v is time independent,

v +
eτ

m
v ×B = −eτ

m
E.

If j = −nev is the current density vector, where n represents the density of conducting electrons
of the material, the above expression gives a linear relationship between j and E, which, in the
particular case of a �at conductor, reduces to

m

ne2τ
jx +

B

ne
jy = Ex,

m

ne2τ
jy −

B

ne
jx = Ey.

Written in matrix form is(
ρxx ρxy
−ρxy ρyy

)
j = E, ρikjk = Ei, ji = σikEk.

It is Ohm's Law, where ρik is the resistivity tensor and its inverse σ = ρ−1, the conductivity
tensor. The resistivity tensor ρ is diagonal when the magnetic �eld vanishes, and the only
essential component is the Ohmic resistivity of the conductor ρ0.

ρ =

(
ρxx ρxy
−ρxy ρyy

)
, ρxx = ρyy ≡ ρ0 =

m

ne2τ
, ρxy =

B

ne
.

If in the stationary situation the current �ows along the OX axis, jy = 0, and although we
have established a di�erence of potential between the end points to produce the current, a
nonvanishing transversal electric �eld Ey, must exist due to the accumulation of charges in the
borders of the conductor. This transversal �eld prevents the existence of a component of the
current vector in the transversal direction.

Ex = ρxx jx, Ey = −ρxyjx, ρxx =
m

ne2τ
, ρxy =

B

ne
.

The ρxx = ρ0 depends on the microscopic structure, of the temperature, through the parameter
τ , while ρxy is a linear function of the external magnetic �eld.

6.7.1 Quantum Hall E�ect

If we represent the components of the resistivity tensor ρxx and ρxy in the stationary situation
as a function of the external magnetic �eld we get the graphics depicted in the �gure 6.25. This
analysis has been done under the assumption of a pointlike structure of the electron. The spin
of the electron has played no role in this analysis.
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Figure 6.25: Variation of the resistivity with the external magnetic �eld in the classical
Hall e�ect, for small magnetic �elds below 1 Tesla.

Figure 6.26: Variation of the resistivity with the external magnetic �eld, ρxx (green), ρxy
(red), in the integer quantum Hall e�ect.
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However, for huge magnetic �elds the above �gure has the form shown on the �gure described
in 6.26 which was determined experimentally by Von Klitzing, Dorda And Pepper26

The component ρxy, on average, varies linearly with B but in some places it makes sudden
jumps while remaining constant in between. The component ρxx begins at the constant value
ρ0, but it starts to oscillate. In those ranges where ρxy is constant, the ρxx component, of green
colour, vanishes, producing a peak when ρxy is no longer constant and starts rising. At the
horizontal gaps the following condition is ful�lled

ρxy =
h

e2
1

ν
, ν = 1, 2, 3, . . . (6.38)

The �ne structure constant is α = e2/2ϵ0hc. If the universal constant c and the permitivity of
the vacuum ϵ0, are known, an accurate measurement of the ρxy in the constant ranges, is an
accurate measurement of this universal constant α.

The average magnetic �eld where these constant gaps are produced takes the value

Bν =
n

ν

h

e
=
n

ν
Φ0,

where Φ0 is known as the �ux quantum and the magnitude h/e2 as the quantum of resistivity.
This is known in the literature as the integer quantum Hall e�ect, to distinguish from the
fractional quantum Hall efect, where in the resitivity (6.38) the parameter ν, instead of an
integer number, is a fractional number, as was shown by using larger magnetic �elds 27 and
which is represented in the �gure 6.27.

Figure 6.27: Variation of the resistivity with the external magnetic �eld in the fractional
quantum Hall e�ect, for very large magnetic �elds.

The Hall e�ect is analyzed for very �at distributions of electrons, con�ned between layers
of di�erent materials. The �rst integer e�ect was discovered in a MOSFET (Metal-Oxide-
Semiconductor-Field-E�ect-Transistor). It is a sandwhich of a three layers transistor (metal-
insulator-semiconductor) with the electrons trapped in a layer of around 30Å of thickness,
between the insulator and the semiconductor. The fractional e�ect was discoverd in the structure
GaAs-GaAlAs of Gallium arseniure. In both cases the surface density of electrons is of the order
of n ≈ 1011− 1012 cm−2. The temperature of the samples is of 4 K for the integer e�ect and of

26K. v. Klitzing, G. Dorda and M. Pepper, New method for high accuracy determination of the �ne structure
constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980)

27D.C. Tsui, H.L. Stormer and A.C. Gossard,Two-dimensional magnetotransport in the extreme quantum limit,
Phys. Rev. Lett. 48, 1559 (1982)
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2 K for the fractional e�ect. Recently, the fractional quantum Hall e�ect has been observed in
the graphene 28, at temperatures around 20 K.

The discrete transversal Hall potential remains constant for magnetic �elds within �nite
ranges. In these situations the longitudinal resistivity goes to zero. The current �ows longitudi-
nally without resistence, because ρxx = 0. As we have seen in previous sections, electrons with
parallel spins can form metastable bound states of spin 1, and behave as bosons, and therefore
the electric current associated to the �ow of these pairs it is in a superconducting phase. This
would mean that in those ranges for the magnetic �eld, the electrons are polarized along the
external magnetic �eld and with their spins parallel a formation of bound pairs of conducting
electrons appears. Some of these pairs would be de�ected to the border thus producing a sud-
den jump in the lateral Hall potential. The remaining bound pairs of electrons would move
forward, without resistence, because they are bosons in the superconducting phase. Once these
electrons are polarized and the bound states are formed, these pairs are not destroyed by the
external electric �eld and its number is increased when a new magnetic �eld is introduced, the
polarization is reinforced and a sudden number of new bound pairs arises.

When the bound pairs of electrons are formed, the electric �eld does not destroy the pair and
both particles move like a single object of spin 1 and charge 2e. If we take the sample pointer of
a tunnel e�ect mycroscope and connect it to the plane surface of the Hall conductor, we can try
to extract electric carriers and see whether they are single electrons or bound pairs of electrons.
The same can be tried when applying the pointer to the negative side of the Hall conductor
and check if the accumulation of charge carriers corresponds to free electrons or bound pairs of
them. These experiments, to our knowledge, have not been performed.

6.7.2 Spin Hall E�ect

The spin Hall e�ect is the accumulation of electrons with opposite spins, at the lateral edges
of a conductor when a current is produced. In this case it is not necessary the presence of an
external magnetic �eld. This was discovered by Mikhail I. Dyakonov and Vladimir I. Perel in
1971 29. It is a transport phenomenon where the conducting electrons with the spin of the same
orientation are moved towards a border of the conductor, while those electrons with their spins
oriented in the opposite direction are moved to the other side. Here there is no accumulation
of electric charge at the border, but rather an accumulation of angular momentum of opposite
direction. In the presence of an external magnetic �eld, the electrons would have the same
spin orientation and therefore the accumulation would be in only one of the sides. This would
produce an accumulation of positive charge in the opposite side, as is con�rmed by the usual
Hall e�ect. However the justi�cation of the Hall e�ect is not related to the existence of the spin
of the electron.

The spin Hall e�ect could be related with the magnetic force, created by the average magnetic
�eld produced by the current, acting on the two possible orientations of the magnetic moment
of the conducting electrons F = −∇(µ ·B). Electrons at the same location, and thus under the
same average magnetic �eld, with their respective magnetic moments in the opposite direction,
would start moving with opposite lateral forces.

In some twodimensional semiconductors where an integer Hall e�ect is observed, when the
external magnetic �eld is not very high, it also has been observed this e�ect of accumulation of
spin at the lateral edges of the conductor.

28X. Du, et al. Nature 462 192 (2009).
29M. I. Dyakonov and V. I. Perel, Possibility of orientating electron spins with current. Sov. Phys. JETP

Lett. 13, 467 (1971)
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6.8 Laser cooling

We are going to consider something which, at �rst glance, seems to be paradoxical. To cool
a gas of free atoms by supplying energy to them. The �nal result is that the set of atoms looses
energy, and then it cools.

When an object with magnetic moment is oriented in an external magnetic �eld, there are
two possible stationary orientations: one, where the magnetic moment is oriented along the
external magnetic �eld and the other where the orientation is the opposite. The �rst stationary
orientation is stable while the second is unstable. Any perturbation alters this stationary state
and the magnetic moment is reversed and the system goes into the stable state, which is a state
of lower potential energy, and thus emitting outside the extra energy during the transition. To
come back to the initial stationary situation of equilibrium it would be necessary to supply
energy to the material system.

To understand the di�erence of these two stationary equilibrium states let us consider the
example of a pencil on the surface of a table: There are only two possible equilibrium situations:
One, the pencil is at rest lying on the table, and the other the pencil is upright, in a static vertical
position. The �rst is a stable equilibrium situation while the second, of greater potential energy,
is unstable. Any perturbation falls down the pencil bringing it to the stable situation and
liberating energy in form of heat. To come back to the previous unstable equilibrium situation
it would require the waste of some extra energy to rise the pencil.

In an atom, the electrons are under the action of the electric �eld of the nucleus, but also
under the magnetic �eld created by the magnetic moment of the nucleus. The electrons of the
di�erent layers become oriented of both ways under this magnetic �eld, and in complete shells
we have as many electrons oriented in one way and in the other. Let us assume an atom with
a single electron at the outer layer, while the remaining layers are complete.

The orientation of the magnetic moment of this electron, if the atom is in the ground state,
would be with the magnetic moment along the resultant magnetic �eld at that place. If we
want to reverse the magnetic moment orientation of this electron we have to supply energy to
the atom, and therefore to the outer electron. This process of inversion of the magnetic moment
of an electron, and therefore of its spin, is known as the hyper�ne transition.

The usual way to supply energy to an atom is by means of a beam of photons. The inner
electrons of the complete shells cannot absorb any photon except to jump to some upper excited
state. In that case the energy of the photons have to be su�cent for this task. The possibility
that a low energy photon could be absorbed and make a hyper�ne transition is also forbiden by
the exclusion principle, because the inner levels are complete and an electron cannot do that
transition because the new level is already ocupied. The energy to produce a transition between
levels is of the order of eV. For the hyper�ne transition is of order of 10−5 eV, in the microwave
range 30.

Let us assume that the energy of the photons of the beam is appropriate to produce a
hyper�ne transition. If a photon of the beam is captured by the atom, the electron of the outer
shell will jump into the new stationary unstable situation by changing its spin orientation.
Later, this electron will come back to the previous stable level by the emission of a photon. It
seems that what we have given to the atom is recovered later.

Since photons are spin 1 particles and electrons are of spin 1/2, the transition is produced
when the electron captures a photon with the spin in the opposite direction to its own spin,
changing the orientation of the spin and therefore of its magnetic moment. In this process
angular momentum and energy are conserved and the electron goes into another state of higher
energy. But in this process the linear momentum is also conserved, so that the linear momentum

30The hyper�ne transition of 133Cs is of a frecuency ν = 9192 631 770 Hz, in the microwave range of wavelength
λ = 3.261 cm, which corresponds to photons of energy hν = 3.801× 10−5 eV.



6.9. THE SPIN OF THE PROTON 291

of the atom is increased in the amount of the linear momentum of the absorbed photon.
The idea of the laser cooling method is to use photons of energy a litle lower than the energy

for the hyper�ne transition in the laboratory reference frame. If the atom gas is not at 0 K,
it means that every atom has a nonvanishing kinetic energy and therefore it is moving with
certain velocity in the laboratory reference frame.

The above photons will not be able to produce the hyper�ne transition on atoms at rest,
but for atoms in motion, due to the Doppler e�ect, the energy of the photon of the beam is a
litle bit greater if the atom velocity is directed to the beam and lower if the atom moves in the
direction of the beam.

If the atom is moving towards the beam and the velocity is the appropriate such that by
the Doppler shift the energy of the photon is su�cient to produce the hyper�ne transition, the
electron will invert its magnetic moment. But at the same time the component of the velocity
of the atom in the direction of the beam will decrease because the absorbed linear momentum
of the photon. Because the other two components of the velocity of the center of mass of the
atom have not changed, the kinetic energy of the atom in the laboratory frame, is lower than
before the transition. But now the atom is in an unstable excited state. Some time later, the
excited electron will come back to the previous stable stationary state, by the emission of the
corresponding photon. But this photon is emitted from a moving atom and therefore, with
respect to the laboratory frame of an energy a litle bit greater than the transition energy.

The net result is that in the absortion process we have lost a photon of energy lower than
the energy of transition and we have recovered another photon of greater energy during the
emission process. The di�erence in energy of both photons is the loss of kinetic energy of the
atom. The atom is cooling.

In 1997, Chu, Cohen-Tanoudji and Phillips were awarded Nobel Prize of physics by the
development of techniques for laser cooling of a gas. The idea is to hold a monoatomic gas in
a cavity at very low temperature, of order of mK, under the action of a system of laser beams
in the three orthogonal spatial directions in both ways. The energy of the photons of the beam
has to be smaller than the energy for the hyper�ne transition. In this way, every transition
produces a decrease of the velocity of the center of mass of the corresponding atom, by the
mentioned procedure. When acting with lasers in opposite directions they will have available
photons of the appropriate energy for each atom in one way or the other.

When the gas is cooling, the average velocity of the atoms decrease and the increase e�ect
in energy by Doppler shift is smaller, so that it is necessary to �ne tunning the laser frequency
by increasing it continuously to reach the corresponding energy of transition. By this cooling
method samples are cooled at temperatures of order of µK.

6.9 The spin of the proton

Let us assume, as suggested by the standard model, that the proton is a bound system of
three quarks that in the ground state every quark has orbital angular momentum L = 0. If
we assume that the quarks are Dirac particles of spin 1/2 and gyromagnetic ratio g = 2, we
can apply to them the same model as the one analyzed for the electron in this formalism and
depicted in the front page.

There is in the literature some controversy with respect to the spin of the proton. If we
add the three Dirac spin operators of the three quarks it is shown experimentally that this sum
does not produce the total angular momentum of the proton. It is known as the proton spin
crisis 31. According to this experiment performed at CERN, the sum of the three quarks spins
only contributes to the expected spin of the proton around between the 4% and the 24%. This

31Ashman, J.; European Muon Collaboration, Phys. Lett. B 206, 364 (1988), A measurement of the spin
asymmetry and determination of the structure function g(1) in deep inelastic muon-proton scattering.
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is considerd as one of the unsolved problem of physics 32. It is argued that we need to include
in the spin of the proton the contribution of the spins of the virtual gluons, but this suggestion
does not give the right answer. We have to take into account that Dirac spin operator represents
the angular momentum of the quark with respect to its center of charge and not with respect
to the center of mass.

Figure 6.28: Model of a proton as a bound system of three quarks as three Dirac particles in
a state of orbital angular momentum L = 0, and in the CM reference frame of the proton.
The motion of the CM of each quark necessarily is a straight trajectory (in blue) passing
through the center of mass of the proton, located at the origin in this frame. Dirac spin
operator of each quark is de�ned (and depicted) with respect to the corresponding center
of charge, such hat the addition of the three Dirac operators ℏσ/2, can never give rise to
the angular momentum of the proton with respect to its center of mass. It is necessary
to add also the three orbital angular momenta of each quark with respect to the common
center of mass.

If the quarks are moving in a state of orbital angular momentum L = 0, this means, literally
that if we make the analysis in the center of mass of the proton, located at the origin of the
reference frame, each quark has always its linear momentum pointing to the location of its
common center of mass. Therefore the center of mass of each quark is moving along a straight
trajectory passing through the center of mass of the proton, and the three trajectories of the
centers of mass of all three quarks are contained on a plane, because the sum

∑
pi = 0, in this

reference frame.

Let us consider that the spin of the proton represents the angular momentum of the system
of these three quarks with respect to the common center of mass at rest, CM . As we see in the
�gure 6.28, the three Dirac spin operators Si of each quark represent the corresponding angular
momenta of each quark with respect to the corresponding center of charge, and not with respect
to the corresponding center of of mass. They have been depicted at the corresponding point.
This means the the sum of the three Dirac spin operators can never give us the total angular
momentum of the proton. We need to consider also for each quark i, the corresponding orbital
angular momentum (ri − qi)× pi, i = 1, 2, 3.

If we take into account that the electric dipole moment of a Dirac particle is de�ned by
d = e(r− q), as we have seen in (6.7), this determines the separation operator between the CC

32https:/ /en.wikipedia.org/wiki/Proton_spin_crisis
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and CM of each quark, and thus this relative position operator is

r − q = − iℏ
2mc

α,

in terms of the α Dirac matrices.
We see that there is a lacking term in the computation of the spin of the proton. In addition

to the sum of the three Dirac spin operators, we also need the sum of the three orbital angular
momentum for each quark

iℏ
2mc

α× p =
iℏ
2mc

α× ℏ
i
∇ =

ℏ2

2mc
α×∇.

These terms are not negligible because when the CM of each quark reaches the common CM
of the proton at the same time, the potential energy is zero but the kinetic energy takes its
maximum value. The average value of the linear momentum of each quark at that moment is
around 325 MeV/c. If q represents the espinor �eld of a quark, the angular momentum of the
proton must contain, at least, the following terms:

3∑
i=1

q†i

(
ℏ
2
σi

)
qi −

3∑
i=1

q†i

(
ℏ2

2mc
αi ×∇i

)
qi,

where q†i represents the hermitian conjugate spinor �eld of qi. We have not considered other
possible contributions coming from the angular momentum of the gluon plasma, which have
been also suggested phenomenologically in other works.

6.10 The kinematical group

Let us assume that to describe the evolution in space of a localized material system it
would be su�cient to describe the evolution of a single point. For an elementary particle
we have seen that this point represents the center of charge, i.e., the point where we locate
the interacting properties of the particle. The most general di�erential equation satis�ed by
a point in three-dimensional space is of fourth order and given in (6). Its general solution
involves 12 integration constants. If this family of solutions corresponds to the evolution of the
point by the di�erent inertial observers, this implies that the kinematical group of spacetime
transformations associated to the Restricted Relativity Principle is a 12-parameter Lie group. If
what we are describing is the center of charge of the elementary particle, we have seen that this
point necessarily moves at the speed c, and this velocity is not changed by any interaction. The
constraint |r(1)| = c, for the physical solutions holds, so that only 11 parameters are necessary
to describe its allowed solutions, so that the family of allowed motions which de�ne the relative
situation of the equivalent observers is a 11-parameter family. The kinematical group also has
to contain the existence of a velocity unreachable for all inertial observers.

This suggests that the 11-parameter group of spacetime transformations between inertial
observers is the Weyl group, which is compound of the 10 transformations of the Poincaré
group (4 translations+3 rotations+3 pure Lorentz transformations or boosts), and the spacetime
dilations which preserve the speed of light. They are the scale transformations of normal or
canonical parameter λ, t′ = eλt, r′ = eλr.

6.10.1 The kinematical space

For the variational description of mechanical arbitrary systems the relevant manifold where
the evolution of the mechanical system is described, is the kinematical space. It is the
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manifold which describes the initial and �nal states of the mechanical system. If what we
want to describe is an elementary particle, the atomic principle requires that this manifold is
necessarily a homogeneous space of the kinematical group associated to the restricted relativity
principle.

If we consider that the kinematical group is the Poincaré group, P, then the kinematical
space have at most dimension 10. But if three of these variables represent the velocity of the
center of charge and this point moves at the speed c, the maximum dimension of the kinematical
space is 9. The nine kinematical variables are: three spatial variables which describe the location
of the CC; a temporal variable and �ve compact dimensionless variables. The interpretation
of these �ve variables is clear: Three represent the orientation of a Cartesian frame linked to
the motion of the CC, which rotates with respect to some arbitrary initial orientation. This
rotation is described by the rotation axis (two compact variables, the zenithal angle θ ∈ [0, π],
and the azimuthal angle ϕ ∈ [0, 2π]) and the third is the total rotated angle α ∈ [0, π], which in
the quantum version is extended to α ∈ [0, 2π], to obtain the simply connected representation
of the rotation group, i.e., the group SU(2).) The remaining two compact variables correspond
to the spatial orientation of the velocity vector of the CC motion. One is the zenithal angle
β ∈ [0, π], and the other is the azimuthal angle ψ ∈ [0, 2π], of the velocity vector of constant
absolute value c.

If we admit as kinematical group the Weyl group, W, we also have an extra, dimensionless
and non compact variable λ, associated to the dimensionless variable of change of scale.

In this way an elementary particle has a kinematical space of dimension 10. It has 7 degrees
of freedom, i.e., the position of a point r, a cartesian frame α, linked to that point, with no
physical reality and that can be chosen arbitrarily at our will at any time, and also a non compact
dimensionless variable λ, which represents an internal gauge or internal phase. Therefore the
symmetry group of the Lagrangian of the free elementary particle is at least the Weyl group,
together with the following commuting groups: the local rotation group SO(3)L or its quantum
counterpart, its simply connected representation SU(2)L, which describes the arbitary local
frame; and �nally the group U(1), the gauge or phase group {R,+}. In the quantum case this
symmetry group is at least W ⊗ SU(2)⊗ U(1).

The Casimir operators of this complete group of symetries are S2
CM , the angular momentum

of the particle with respect to the CM, which is the unique Casimir operator of the Weyl group
W; T 2 which is the absolute value of the angular momentum of the rotative part of the local
cartesian frame linked to the point, which is the Casimir operator of the local rotation group
SO(3)L; �nally, the generator Q of the group U(1), with dimension of action with an unknown
interpretation. All these three commuting Casimir operators have dimension of action.

In string theory it is postulated that an elementary particle is a point of a 10-dimensional
space (or dimension 11 in the M-theory) but that some of the variables have been compacti�ed,
thus remaining as non-compact variables a time varible and three spatial variables. With the
inclusion of the universal constant c these four variables have dimension of length. The meaning
of the remaining compact variables is unknown, but it is suggested that they are spatial variables
that when compacti�ed have become unobservable.

It is not clear if this manifold postulated by string theory represents the con�guration
space, if the number of these variables is restricted or there are some constraints among them.
If this manifold represents the kinematical space of a Lagrangian system it is clear what kind
of variables are compact and what others do not, and even its geometrical meaning.

But even more, the kinematical formalism developed what clari�es is that the kinematical
space is also a Finsler metric space, with a positive de�nite metric tensor for points causally
connected. In this way the variational formalism also contains the Causility Principle. The
dynamical evolution of an elementary particle is always a geodesic on its kinematical space.
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6.10.2 The Weyl Group

The Weyl group is Poincaré group given by the space-time transformations (2.254) and
(2.255) together a space-time scale transformation

t′ = eλt, r′ = eλr. (6.39)

In this way, if t and r are kinematical variables of an elementary particle, their derivatives
transform under the scale transformation:

ṫ′ = eλṫ, ṙ′ = eλṙ,

so that under space-time dilations the velocity transforms as

u′ = u.

It is invariant and therefore the constant velocity c is conserved.
The generators of the Lie algebra of the group in this realization are:

H = ∂/∂t, Pi = ∂/∂ri, Ki = ct∂/∂ri + (ri/c)∂/∂t, Jk = εklirl∂/∂ri, Q = t∂/∂t+ r · ∇.

The generators K, J and Q are dimensionless and the commutation rules are:

[J ,J ] = −J , [J ,P ] = −P , [J ,K] = −K, [J , H] = 0, (6.40)

[H,P ] = 0, [H,K] = cP , [P ,P ] = 0, [K,K] = J , [K,P ] = −H/c, (6.41)

[Q,H] = −H, [Q,P ] = −P , [Q,K] = 0, [Q,J ] = 0. (6.42)

If we call x0 = ct, p0 = H/c, pi = Pi, Ki = J0i = −Ji0 y Jk = −1
2ϵklrJlr, xµ = ηµνx

ν ,
µ = 0, 1, 2, 3 y ∂ν ≡ ∂/∂xν , ∂σxν = ηνσ, ∂σxν = δνσ, then,

Q = xµ∂µ, pµ = ∂µ, Jµν = −Jνµ = xµ∂ν − xν∂µ.

In covariant notation the commutation rules become:

[Q, pν ] = −pν , [Q, Jµν ] = 0,
[pµ, pν ] = 0,

[Jµν , pσ] = −ηµσpν + ηνσpµ,
[Jµν , Jρσ] = −ηµρJνσ − ηνσJµρ + ηνρJµσ + ηµσJνρ.

The Poincaré group has two Casimir operators funcionally independent. One is interpreted
as the mass squared of the particle,

C1 = pµpµ = (H/c)2 − P 2 = m2c2, (6.43)

and the other is the squared of the Pauli-Lubanski four-vector, wµ, de�ned by

wµ =
1

2
εµνσλ pνJσλ ≡ (P · J , HJ/c−K × P ) ≡ (P · SCM , HSCM/c). (6.44)

It is expressed, for the free particle, in terms of the generators which are constants of the motion,
and by construction it is orthogonal to pµ, i.e., wµpµ = 0.

It is related to the spin with respect to the CM, SCM , through the expression:

SCM = J − q × P , HSCM/c = HJ/c−K × P . (6.45)
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We have written K = Hq/c − P t, such that the temporal component w0 = P · S = P · J =
P ·SCM , represents the helicity of the particle, and the spatial part is the vector (6.45). In this
way the other Casimir operator of the Poincaré group is:

−C2 = wµwµ = (P · SCM )2 −H2S2
CM/c

2 = −m2c2S2
CM . (6.46)

It depends on the value S2
CM , the squared absolute value of the spin with respect to the center

of mass of the particle and of the mass m.
The operators wµ satisfy the commutation rules:

[wµ, wν ] = ϵµνσρwσpρ, (6.47)

where the tensor component ϵ0123 = +1, and

[pµ, wν ] = 0, [Jµν , wσ] = −ηµσwν + ηνσwµ. (6.48)

The Weyl group only has a unique Casimir operator

CW = C2C
−1
1 ≡ C2/C1 = S2

CM , (6.49)

which implies that C1 has to be invertible, and therefore necessarily the mass observable m ̸= 0.
The unique Casimir operator of the Weyl group is the angular momentum with respect to
the center of mass, independently of the mass of the particle. If we admit this group as the
kinematical group of our theory, the only intrinsic property of elementary matter is the spin.
According to the standard model quarks and leptons are Dirac particles, i.e., spin 1/2 particles
of arbitary mass.

The Weyl group has no exponents, and therefore the gauge functions on its kinematical
spaces can be taken as zero. The Lagrangians of the elementary particles de�ned under this
kinematical group can be taken strictly invariant.

Since the scale transformation generated by Q does not commute with the generators pµ,
this transformation transforms states of particles of di�erent masses.

6.10.3 Passive and active transformations

Let xi be the kinematical variables of a mechanical system measured by an inertial observer
O. A change to another inertial reference frame, express the kinematical variables x′i in the new
frame O′ in terms of the xj and of the parameters of the kinematical group G

x′i = fi(xj , gα), g : O → O′, g ∈ G.

These variables xi have been transformed among inertial observers and we say we have performed
a passive transformation of the kinematical variables. This denomination is to distinguish that
transformation of the kinematical variables from an active transformation, such that for a �xed
inertial observer we produce a physical modi�cation of the mechanical system. For instance,
when rotating, moving or deforming the material system, its kinematical variables would change
for a �xed inertial observer. If this active transformation corresponds to a transformation of the
kinematical group, the modi�cation of the kinematical variables is expressed in the same way
as the passive transformation, but instead of using the parameters gα of the group element g we
have to use the parameters of the inverse element g−1. For instance to rotate a material system
and express in the same reference frame the kinematical variables after rotation, it is the same
than to rotate the Cartesian frame in the opposite direction, while remaining the mechanical
system unaltered.

When we state as a fundamental principle the Restricted Relativity Principle, we admit the
existence of a kinematical group of space-time transformations among inertial observers. These
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tranformations can always be interpreted in two ways, active and passive. In any of these two
interpretations the material system is not deformed by the transformations. If we include as a
transformation the change to an accelerated frame, from the active point of view we have to
apply a force to the material system, and this would produce necessarily a deformation, except
if the material system were undeformable, a property which cannot be admited for general
material systems. Therefore this kind of transformation in which there is no symmetry between
the active and passive interpretation, have to be discarded. The above passive transformation
does not deform the material system while the active one does. From the passive interpretation
an extended gravitational �eld appears everywhere, which is not present in the original inertial
reference frame. This kind of transformations with a di�erent behaviour between the active and
passive interpretation must be kept outside the kinematical group.

We can displace the material system o we can consider a displaced reference frame with
the axis translated in the opposite direction. The same happens for rotations or pure inertial
transformations with constant velocity. All this kind of transformations have a symmetrical
behaviour in the active and passive interpretation. From the passive point of view to admit the
invariance of the laws of physics under time translations is to assume that these laws are the
same at any time. They are the same in the past and also will be valid in the future.

From the active point of view, a time translation consists in waiting the passing of time to
make the physical analysis later. But we cannot make an active time translation to the past.
There is no symmetry in the active and passive interpretation of time translations. It is only
possible an active time translation to the future. There is the arrow of time. This seems that
from the active point of view we have only one way to proceed. The active generator of this
group has to have not both signs but only one. The energy or temporal momentum associated to
this symmetry is chosen to be positive de�nite. This selection of a sign does not happen to the
other constants of the motion associated to the other transformations of the kinematical group.
They can take any sign, like the di�erent components of the linear or angular momentum.

The same thing happens for the discrete symmetry transformations. A passive space reversal
can be done by simply reversing the unit vectors of the coordinate axis, but it is not possible
to make the active transformation which implies to transform physically the material system
by replacing every portion of matter by the equivalent portion spatially inverted. It is possible
that given some material system its spatial inversion cannot be physically realizable.

This kind of transformations cannot be taken as part of the symmetry group of the theory.
If the physical system seems to be invariant under inversions, this is a property which has to
be checked experimentally, but which cannot be admited as a valid symmetry, a priori.

If that symmetry exists can give rise to a conservation law which does not exist in the
opposite case. Weak interaction is not invariant under space reversal, and therefore parity is
not conserved, while parity is conserved under electromagnetic interactions.

The same can be said about scale transformations. The passive interpetation does not
a�ect the material system. But the active transformation deforms the material system. Since
the scale factor can be interpreted as the separation between the center of mass and center of
charge R = ℏ/2mc, written in terms of two universal constants ℏ and c, and of the observable
mass m, this means that to modify the scale is equivalent to modify the mass of the particle
and the transformed system is an elementary particle of a di�erent mass.

The interaction Lagrangian we found in section 6.10.3 for two Dirac particles is Poincaré
invariant and also invariant under space-time scale transformation. This implies that if it
describes the interaction between two electrons, the same interaction is possible between two
other particles of the same charge and spin, but of di�erent masses. When we make the passive
transformation we are transforming the electron into the muon or tau-particle. The active
change of scale represents to substitute the electrons by the other particles. The same can be
said for quarks when they are replaced by the corresponding ones of the same charge.
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This analysis is suggesting that from the active point of view we have not a complete
kinematical group, as the Poincaré or Weyl group, but as far as the time translations are
concerned we only have a semigroup: the semigroup of time translations to the future. The
generator of these transformations can only have a unique sign.
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