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e If I can’t picture it, I can’t understand it.
You know, it would be sufficient to really understand the electron.

A. Einstein'
e Everything should be as simple as possible, but not simpler.
A. Einstein?, William of Ockham??

e If a spinning particle is not quite a point particle, nor a solid three dimensional top, what
can it be? What is the structure which can appear under probing with electromagnetic
fields as a point charge, yet as far as spin and wave properties are concerned exhibits a
size of the order of the Compton wavelength?

A.O. Barut 3

e The picture on the front page represents the circular motion, at the speed of light, of the
center of charge of the electron in the center of mass frame. This motion is not modified
by any interaction. The center of mass is always a different point that the center of charge.
The radius of this motion is R = h/2mec, half Compton’s wavelength, as is sugggested by
Barut. The frequency of this motion, when the center of mass is at rest, is w = 2mc?/h.
This frecuency, twice the frequency postulated by De Broglie, decreases when the center
of mass moves. The local clock is going slower when moving. In this way, elementary
matter has an internal periodic motion, and thus a frequency, like waves. We can also
associate to matter a wavelength, as the displacement of the center of mass during a
complete turn of this internal motion. The spin S has two parts: one Z associated to this
relative internal motion and another W in the opposite direction related to the rotation
of a local Cartessian frame associated to the center of charge. This frame is not depicted
in the figure. The magnetic moment of the electron is produced by the motion of the
charge and is related to the orbital part Z of the angular momentum but when expressed
in terms of the total spin .S, which is half the orbital Z, is when we obtain the concept of
gyromagnetic ratio g = 2.

e (Classical particle physics, when using so extensively the point particle model to describe

experiments, which are always performed with spinning particles, is making a simplifica-
tion, opposite to the espirit of the above quotations. We have to use spinning particle
models to analyze real experiments, because in nature there are no spinless elementary
particles.
In this sense, General Relativity as a theory of gravitation, also makes a simplification
when assuming that spacetime has a Riemannian metric structure. This assumption is
unnecessary because spacetime has a more general Finslerian metric structure associated
to the variational formalism, as we discuss in section 1.6. To assume that the metric is
Riemannian is equivalent to consider a low velocity limit of a more general gravitational
theory.

'H. Dehmelt, Proc. Natl. Acad. Sci. USA, 86, 8618-19 (1989).

2See the discussion in http://quoteinvestigator.com/2011,/05/13/einstein-simple/#more-2363, about the au-
thorship of this sentence.

3A.0. Barut, Brief History and recent developments in electron theory and Quantumelectrodynamics, in The
electron, New Theory and Experiment, D. Hestenes and A. Weingartshofer (ed.), Kluwer Academic Publishers,
Dordrecht (1991).
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Preface

The present notes contain some basic materials, physical and mathematical, of the general
formalism for analyzing elementary particles, which under the general name of Kinematical
Theory of Elementary Spinning Particles, I have been working during the last years.
The term kinematical makes reference to its close relationship with the kinematical group of
space-time transformations associated to the Restricted Relativity Principle which a theoretical
framework must necessarily satisfy.

In a certain sense it is a revision of the basic fundamentals of the Lagrangian formalism
which leads to Euler-Lagrange equations, Noether’s theorem, etc., but looking for solutions
which go through the postulated initial and final states of the variational formalism. This
produces a classical formalism which is going to be expressed in terms of the set of the two end
point variables of the dynamical evolution. This distinguishes this approach from the usual non-
orthodox variational approach which expresses the solution in terms of the boundary variables
at the initial time. This formalism is, therefore, closer to the quantum mechanical dynamical
theory and it is through Feynman’s path integral approach that we can find the bridge between
them.

These end point variables of the variational formalism, which I propose to call them kine-
matical variables, in the case of elementary particles will necessarilly span a homogeneous
space of the kinematical group. In this way, the kinematical group not only reflects the space-
time symmetries of the system. It also supplies the necessary variables to describe elementary
matter. It is crucial for the description of matter to improve in our knowledge of this kinemat-
ical group. In the present notes we shall deal mainly with the Galilei and Poincaré groups, but
the formalism is so general that it can be accomodated to any further group we consider as the
basic symmetry group of matter.

Another advantage of expressing the orthodox variational formalism in terms of the bound-
ary kinematical variables is that the formalism is equivalent to a geodesic formalism on the
kinematical space. This manifold for any arbitrary Lagrangian system is always a metric
Finsler space. In this sense when we consider the interaction of any mechanical system what
produces, from the mathematical point of view, is a change of the Finsler metric of the kine-
matical space. When we consider the relativistic point particle, the kinematical space is the
spacetime manifold with a constant Minkowski metric. This metric is considered Riemannian
but it is in fact a constant Finslerian metric which is modified by any interaction. The postulate
of General Relativity that gravity produces a pseudo-Riemannian modification of Minkowski
metric is an unnecessary restriction.

The formalism is very general, but at the same time is very restrictive, because once this
kinematical group is fixed the kind of classical variables which define the initial and final states
of an elementary particle in a variational approach, are restricted to belong to homogeneous
spaces of the group. This kinematical group is the fundamental object of the formalism and
must be defined as a preliminary statement.

For the Galilei and Poincaré groups, a general spinning elementary particle is just a localized
and orientable mechanical system. By localized we mean that to analyse its evolution in space
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we have just to describe the evolution of a single point r, where the charge is located and
in terms of which the possible interactions are determined. This point 7 also represents the
centre of mass of the particle for spinless particles, while for spinning ones must necessarily be a
different point than q, the centre of mass, very well defined classically and where we can locate
the mass of the particle. It is the motion of the charge around the centre of mass which gives
rise to a classical interpretation of the zitterbewegung, or trembling motion in Schroedinger’s
words, and also to the dipole structure of the particle. By orientable we mean that in addition
to the description of the evolution of the center of charge we also need to describe the change
of orientation of the system by analyzing the evolution of a local comoving and rotating frame
attached to that point. This local frame has no physical reality such that we can select it in an
arbitrary way at any time, thus supplying an additional symmetry group.

If we consider that the kinematical group is Weyl group W, then an elementary particle
in addition of being a localizable and orientable system, it is also reescalable. It contains
an additional degree of freedom which represents a phase or a change of scale. This means
that the most general spacetime symmetry group of the dynamics must contain additional
transformations, like local rotations and scale changes. It is possible to find a Lagrangian
invariant under the group W ® SU(2) @ U(1).

The notes pretend to be selfcontained and in this way we have included at the end of the
chapters some mathematical appendices which contain not very well spread materials. The
lecture notes are organised as follows. We begin with a Preamble, which could have been
written as late as the end of the XIX-th century, and which suggests that the center of charge
of an elementary particle moves in a helical motion at the speed of light, so that this point
will satisfy, in general, fourth order differential equations. This implies that in a Lagrangian
approach we shall have a Lagrangian depending up to the acceleration of this point. We are in
the framework of generalized Lagrangian systems.

Instead of postulating models of elementary particles with two separate centers we shall an-
alyze what are the basic fundamental principles that a theory of matter should satisfy. Among
these fundamental principles we consider the variational formalism and that is the reason we
shall study in the first chapter the formalism of generalized Lagrangian systems, mainly to en-
hance the role of the kinematical variables in defining a concept of elementary particle. Chapter
two will be devoted to the analysis of several relativistic and nonrelativistic models, to show
how the standard methods of analyzing symmetries leads to the definition of the relevant ob-
servables. In particular, we shall pay attention to the definition of the spin. The spin, as any
other observable, will be defined in the classical case in terms of the degrees of freedom and
their derivatives, and we shall analyze its mathematical structure.

The next two chapters will cover the quantization of the formalism and the analysis of some
relativistic and nonrelativistic examples. The separate fourth chapter is devoted to the model
which satisfies Dirac’s equation. Special attention is paid to the analysis of Dirac’s algebra and
its relationship with the classical observables and to show a geometrical interpretation of the
difference in chirality between matter and antimatter. This chapter ends with the analysis and
enlargement of the spacetime symmetry group of the Dirac particle, going from the Poincaré
group to the eleven parameter Weyl group. We shall find a plausible Weyl-invariant interaction
Lagrangian which describes a short and long range interaction between two Dirac particles,
which has a Coulomb-like behaviour when the spin of the particles is supressed. It also shows
that equal charged spinning particles can form metastable bound states provided some boundary
conditions are fulfilled. The strength of this interaction is independent of the mass of the
particles and is determined by the value of the fine structure constant, when the analysis of this
material system is performed in terms of dimensionless variables.

The electromagnetic structure of the model which satisfies Dirac’s equation when quantized,
is analyzed in a separate fifth chapter. It is not a static electromagnetic field for the center of
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mass observer but its time average value has a Coulomb-like behavior in any direction for the
electric field and the time average magnetic field is the field of a static magnetic dipole at the
origin. The main difference of these fields when compared with the point particle field is that
the fields do not diverge at the origin.

Finally, some physical features which are related to the spin of the elementary particles,
are described. The electron, because it has an internal frequency it can be considered as a
clock. Can we measure this internal frequency? We shall propose to enlarge the energy range
of an experiment to determine indirectly the value of this frequency. We shall analyze the
gyromagnetic ratio and the dipole structure of the electron, which in the quantum case has
a relationship with the Darwin term of Dirac’s Hamiltonian. We shall also see how the spin
structure allows us to justify in a classical framework the tunnel effect, which will be responsible
of the gyant magnetoresistence of several materials. We are entering what in technological terms
is called spintronics. Compton’s effect analyzes the sccatering of photons by free electrons
by using only the energy and linear momentum conservation laws. But the electromagnetic
interaction also conserves the total angular momentum. This additional conservation implies to
consider both spins of either electron and photon. If we are able to control the spin orientation
of the free electrons we can determine the frequency of the sccatered photon. To end this section
we shall consider the possibility from the classical point of view that under certain conditions
two electrons with their spins parallel to each other can form a metastable bound state of spin 1
and charge 2e, and therefore the justification of the formation of a Bose-Einstein condensate at
finite temperature. A consequence of this pairing is the analysis of the quantum Hall effect. As
a final example we shall consider the spin structure of the proton, considered as a bound system
of three Dirac particles, the quarks. We shall see that the proton spin crisis can be related to
the lacking of a term in the spin of the proton, because Dirac spin operator represents the spin
of a Dirac particle with respect to its center of charge and not with respect to the center of
mass.

In some places, the lectures will be complemented with numerical simulations whenever the
theoretical solution is not available or very difficult to interpret because of the mathematical
complexity. A numerical computer program, appropriate for the anaylis of dynamical systems,
is Dynamics Solver, created by Juan Marfa Aguirregabiria 4, which has been very fruitful for
many of the numerical analysis contained in these notes. I am very glad for his kindness to show
me the way to manage it. In the whole text, mathematical expressions which contain greek or
latin characters in bold face, like a or «, they must be undertood as three-dimensional vector
magnitudes, while letters like a or a represent, in general, real numbers.

Things should be done simply but not simpler. Simplification has to be done when analyzing
some problems and according to the values of the physical variables, and not in the preliminary
steps of the formalism. That is why assumptions about that the dynamical equations of physics
are second order differential equations, have to be justified on physical grounds. It works with
spinless point particles but in Nature do not exist spinless elementary particles. We have to
reject the point particle model as a fundamental model for elementary particles and its use to
understand some mechanical effects. We shall see that the center of charge of the electron is a
different point than its center of mass and satisfies fourth order differential equations.

Martin Rivas

Bilbao, March 2022.

*J.M. Aguirregabiria, Dynamics Solver, available through the web page of his autore, at the sever of the
Theoretical Physics Department of the University of the Basque Country, <http://tp.lc.ehu.eus/jma.html>
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Preamble: Helical motion of the center
of charge

In this preliminary chapter we shall give three different kinds of arguments suggesting that
the center of charge and the center of mass of an elementary particle are two different points.
The center of charge moves in a helical motion at the speed of light, and it thus satisfies,
in general, a fourth order differential equation. This analysis selects the relativistic formalism
instead of the nonrelativistic one, and the fact that the dynamical equations of a point are fourth
order differential equations, as differential geometry shows, opposite to the usual suggestion of
second order differential equations of many classical mechanics books.

This means that a Lagrangian formalism for describing elementary particles has to depend,
at least, up to the acceleration of the position of the charge, to properly obtain fourth order
dynamical equations. By this reason, we shall start our formalism by describing in chapter 1,
the way the generalized Lagrangian formalism produces the general results of Euler-Lagrange
equations, the conserved quantities through Noether theorem, and the generalized canonical
formalism.

We shall begin with a physical, and therefore restricted, concept of center of charge of an
elementary particle.

The center of charge

The concept of center of mass of any distribution of matter is well known. If we have n
point particles of masses m; located at the corresponding points 7; the center of mass location
of the system is

Z m;r;

Roy = .
CcM S

If we also assume Newton’s third law, this point describes a trajectory such that the time
variation of the linear momentum is the sum of the external forces.

From the electromagnetic point of view, if we have an arbitrary distribution of charges and
currents, the electromagnetic field they generate can be expressed as the field produced from
a single point where we locate there the total charge and the different electric and magnetic
multipoles defined with respect to this point. If we consider a different point the total charge
is the same but the multipoles are different. If we try to define a center of charge Rcc like the
above definition of the center of mass we have the problem that ), ¢; = 0. We can alternatively
define the center of charge of either the positive and negative charges RE*;C, and the separate
fields they generate with the corresponding multipoles, because Maxwell’s equations are linear
in the sources.

Another question is to calculate the external force produced on a system of charges and
currents. Is it possible to write this external force in terms of the total charge and the different
multipoles located at a single point or at least in two points? In general this will not be possible
for an arbitrary system. But to fix ideas let us consider a simple system of a static and spherical
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positive charge distribution in an inertial reference frame. The field it produces is the Coulomb
field from the symmetry center of the distribution. If now an external field is acting on this
system, and we consider it behaves like a conductor, this will produce in general a modification
of the charge distribution and therefore the appearence of dipole momenta with respect to the
symmetry center. If it behaves like an insulator some electric polarization will arise.

We do not know if an elementary particle behaves like a conductor or like an insulator, if it
is a rigid body or it is not. But in the section devoted to fundamental principles we shall make
the hypothesis that an elementary particle is an undeformable mechanical system (Atomic
Principle). If its charge and current distribution have a spherical symmetry with respect to
some point, such that the electric and magnetic field it produces will be expressed in terms of
the location and velocity of this point and no further multipoles, we shall call this point the
center of charge. If the elementary particle cannot be deformed by any interaction leads us
to postulate that the external force acting on it is just the Lorentz force defined at the center
of charge. We are making the physical hypothesis that, from the electromagnetic point of view,
it behaves like a unique charge located at the center of charge and no other multipoles.

Rigid body arguments

Let us consider that an elementary particle were described as a rigid body. A rigid body
is a mechanical system of six degrees of freedom. Three represent the position of a point and
the other three the orientation of a body frame attached to that point. Usually, it is described
by the location of the center of mass, which is represented by the point g, and the orientation
by the principal axis of inertia located around q. The center of mass satisfies second order
dynamical equations and moves like a point of mass m, the total mass of the system, under the
total external force. In this way a rigid body moves and rotates.

If instead of considering the description of the center of mass we take a different point r, it
will follow a helical trajectory around the center of mass, like the one depicted in the figure.

If an elementary particle is a charged rigid body, it is clear that we also need to know its
electromagnetic structure, which can be reduced to the knowledge of the center of charge and
the different multipoles. If assumed a spherical symmetry for the electric field produced by
the particle we are left with the location of the center of charge to compute the actions of the
external fields. In general, depending how the mass and charge are distributed, these two points
will be different points as we shall assume here. Therefore, if we try to describe the evolution
of the center of mass we have to determine also at any time the location of the center of charge
to compute the external forces. Newton’s dynamical equations for the center of mass will be
written as

2 r
mZTg =e (E(t,r) + Ccth X B(t,r)) = F(t,r,dr/dt). (1)
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The electromagnetic force F' depends, in general, on the electric and magnetic external fields
defined at the charge position r and on the velocity of the charge dr/dt which appears in the
magnetic term.

For the relative motion of the center of charge around the center of mass we have that if
this relative motion between r and q is a kind of circular motion, in particular in the free case,
we can define a unit vector n in the direction of the normal acceleration d?r/dt? of point 7,
and thus

1 d*r
T PR A
where R is the radius of the circular motion and w its angular velocity. Then the center of mass
position can be written as

2
Al )
w= dt
Then, it will be simpler, from a theoretical point of view, just to describe the evolution of a
single point, the center of charge r, instead of the center of mass g, which will be in some
average position of the other, and obtained from (2) once the trajectory of r is computed. The
elimination of the d?q/dt? among equations (1) and (2) will give us, in general, a fourth order
differential equation for the variable r. Because the angular velocity is also orthogonal to the
plane subtended by the velocity and acceleration of point r,

alt) = (1) +

1 dr d*r
Ww=——7 X —%, 3
u? dt - dt? (3)
we have also solved the problem of the rotation of the charged rigid body by analyzing the
evolution of just the center of charge.
The second order differential equations for the center of mass position and the orientation
of the principal axes of inertia o, of the free rigid body become

and they have been replaced by the fourth-order dynamical equations of the center of charge 7,

d*r o d?r

i T g =Y

In this way a rigid body can be interpreted as a system of three degrees of freedom, the center
of charge r, which satisfies fourth order differential equations and therefore in a variational
description, the Lagrangian will depend on the acceleration of the center of charge.

The dynamical equations under interaction are:

m d*r n d?r
o L
w? dtt dt?

=e <E(t,r) + % X B(t,r)> ) (4)

in terms of the three degrees of reedom 7, where the external fields are defined.
A plausible nonrelativistic Lagrangian depending on the acceleration of the point 7, like this

m (dr\? m [ d*r\> dr

will reproduce the above dynamical equations (4), where the rigid body will rotate with a
constant angular velocity w, which in this example represents a constant and unmodified intrinsic

property.
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Invariance arguments

Let us consider the trajectory 7(t), t € [t1, t2] followed by a point of a mechanical system for
an arbitrary inertial observer O. Any other inertial observer O’ is related to the previous one
by a transformation of the kinematical group such that their relative space-time measurements
of any space-time event are given by

=Tt rg1,....90), ™ =R(t,Tg1,...,090),

where the functions T and R define the corresponding transformation of the kinematical group
G, of parameters (g1, ..., Ja), among any two observers. Then the description of the trajectory
of that point for observer O’ is obtained from

t(t) =Tt rt)ig1,. ... 9a), 7'(t)=R(Er(t)igr,.. . 9a), VtE [t1,Lo].

If we eliminate ¢ as a function of ¢’ from the first equation and substitute into the second we
shall get

(") =7t g1, ., ga)- (5)
Since observer O’ is arbitrary, equation (5) represents the complete set of trajectories of the
point for all inertial observers. Elimination of the ¢1,...,9, group parameters among the

function r'(¢') and their time derivatives will give us the differential equation satisfied by all the
trajectories of the point. Let us assume that the trajectory is unrestricted in such a way that
the above group parameters are essential in the sense that no smaller number of them gives the
same family of trajectories. This differential equation is invariant under the transformations of
the kinematical group by construction because it is independent of the group parameters and
therefore independent of any inertial observer. In fact, because (5) is a three-vector expression,
each time we take a time derivative we obtain three equations to eliminate the group parameters.
When we reach the third order derivative we have up to nine equations. If G is either the Galilei
or Poincaré group, it is a ten-parameter group so that we have to work out in general up to the
fourth derivative to obtain sufficient equations to eliminate the group parameters. Therefore
the order of the invariant differential equation is dictated by the number of parameters and the
structure of the kinematical group. If the point r represents the position of the center of charge
of an elementary particle we get again that it satisfies, in general, a fourth order differential
equation.

But at the same time it is telling us that to obtain the invariant differential equation satisfied
by the center of charge of an elementary particle, it is sufficient to obtain its trajectory in an
arbitrary reference frame, for instance in the center of mass frame, and to follow the above
procedure of elimination of the group parameters. We shall use this method to obtain the
invariant differential equation of a spinning electron in section 2.6.

Geometrical arguments

As is well known in differential geometry, a continuous and differentiable curve in three-
dimensional space, r(s), has associated three orthogonal unit vectors, ¢, n and b, called respec-
tively the tangent, normal and binormal. If using the arc length s as the curve parameter, they
satisfy the Frenet-Serret (1847) equations

t=rkrn, n=—xt+r7b, B:—Tn,

where £ is the curvature and 7 the torsion and the overdot means "= d/ds. The knowledge of
the functions of s, the curvature k(s) and torsion 7(s), together the boundary values 7(0), ¢(0),
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n(0) and b(0), completely determine the curve, because the above equations are integrable. If
we define the vector w = 7t 4+ kb, known as Darboux vector, the Frenet-Serret equations can
be rewritten as

t=wxt, n=wxn, b:wxb,

so that, in units of arc length, Darboux vector represents the instantaneous angular velocity of
the local frame of the three orthogonal unit vectors.
If we call r*)(s) = d*r/ds*, and, in particular

rM =t @ =kn, O =in+4 k(—~xt+7b)

and eliminate the three unit vectors ¢, n and b, in terms of the derivatives »®) k= 1,2,3, we
get

2 .
t—r oty _Foo 1 e
’ ko T KT KT
and thus 1
k= |r?), - ?(r(l) x (). pG)

are expressed in terms of the derivatives up to the third order. If we replace the three Frenet-
Serret unit vectors in the next order derivative, one obtains that the most general differential
equation satisfied by the point r, is the fourth order differential system

. . . . .2_ . . .
r@® <2ﬁ + T) r® 4 </<a2 +r2+ g W) r? 4 k2 (R - T) r =0, (6)

K T RT K T

where the coefficients are only functions of the derivatives of r up to fourth order.

This conclussion is easily obtained if we realize that the three-dimensional space is also a
vector space. Any curve in three-space is called regular if at any point it has a tangent vector
r( . If it is also differentiable, they will be also defined the subsequent derivatives r® and
r®), which, in general, will be no collinear. But the next derivative r@ ., will be necessarily a
linear combination of the other three. Every regular curve in three dimensional space satisfies
a fourth order differential equation. This is what equation (6) represents.

Let us consider that an elementary particle, instead of being a rigid body, is just a localized
mechanical system. By localized we mean that, at least, it is described by the evolution of a
single point r. This point could be the center of mass, but, as mentioned before, in order to
determine the external forces to obtain the center of mass evolution, we also need to know the
location of the center of charge to compute the actions of the external fields. Let us assume that
the elementary particle is charged. By the previous arguments, if assumed spherical symmetry
of its electric field, we are reduced to know the evolution just of the center of charge. The
particle will have a center of mass but we make the assumption that the center of mass and the
center of charge are not necessarily the same point.

Then, the center of charge of an elementary particle will satisfy, in general, a fourth order
differential equation of the form (6) where x(s) and 7(s) will depend on the external forces and
torques.

Free motion

Let us assume now that the motion of the particle is free. This means that we cannot
distinguish one instant of the evolution from another, so that the above equations (6) must
be explicitely independent of the parameter s. The Frenet-Serret triad moves and rotates. It
must be desplaced at a velocity of constant absolute value and the Darboux vector has to be
a constant vector in the comoving frame. The velocity ds/dt = u and the value of Darboux

vector w? = K2 + 72 must be constant.
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The curvature and torsion are necessarily constants of the motion. Thus £ =7 = 0, and, in
the free case, these equations are simplified and reduced to

@ 4 (k2 +72)r®@ = & (’r(2) + w2r) =0.
ds?

If the curvature and torsion are constant the curve is a helix, which can be factorized in terms
of a central point

2
1 o da
k24+712 7 ds?

which is moving along a straight trajectory, while the point r satisfies

q=r+ =0,

r® +w?(r—q) =0,

an isotropic harmonic motion of frequency w = v/x2 + 72, around point q. The point q clearly
represents the centre of mass position of the free particle. Going further, let us assume that
the free evolution is analyzed by some inertial observer. Then this observer cannot distinguish
one instant from another, so that, the arc length ds = |u|dt, where u = dr/dt is the velocity
of the charge, must be also independent of the time ¢t. Otherwise, if ds is not the same we can
distinguish one instant of the evolution from another, as far as the displacement of the charge is
concerned. The center of charge of a free elementary particle is describing a helix at a constant
velocity for any inertial observer.

A first conclusion is that the velocity of the center of charge has to be an unreachable velocity
for every inertial observer. The helical motion is an accelerated motion in one frame and thus
it is accelerated in all inertial frames. If one observer is at rest with respect to the charge at
one instant. ¢, it measures v = 0 at this time, but v # 0 at time ¢ 4+ dt, which contradicts that
the velocity has to be constant in this frame. This means that the constant velocity cannot be
zero in any frame and no inertial observer can reach that velocity.

If we make a nonrelativistic analysis, the relationship of the velocity measurements among
two arbitrary inertial observers O and O’, is given by ' = u + v, where v is the constant
velocity of O as measured by O’. Now,

W=+ 0%+ 20w
If ' has to be also constant for observer O’, irrespective of v, this means that the vector u
must be a constant vector. The center of charge necessarily moves along a straight trajectory
at a constant velocity, for every inertial observer, and the above general helix degenerates into a
straight line and ¢ = r. This is the usual description of the spinless or pointlike free elementary
charged particle, whose center of charge and center of mass are represented by the same point.
In the relativistic case we get simmilarly

7 2_ .2
ul:u%—’y(v)v—i—m(v-u)v J2 W _c e
Y1+ wv-u/c?) P2 (1+v-u/c)?

where v = (1 — v?/c?)~%/2, and taking the time derivative we also obtain that v - @ = 0, and
thus v has to be a constant vector, for any time ¢, irrespective of the value of v.

However, in the relativistic analysis, there is one alternative not included in the nonrelativis-
tic approach. The possibility that the charge of an elementary particle will be moving at the
speed of light and, in that case, u = «’ = ¢, for any inertial observer. This means that the center
of the helix is always moving at a velocity |dq/dt| < ¢, and, if it represents the center of mass,
this particle is a massive particle. In a variational description of this system the Lagrangian
should depend up to the acceleration of the point 7 in order to obtain fourth order differential
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equations. We will show that this dependence on the acceleration will give a contribution to
the spin of the particle and there is also another contribution from the rotation of the system,
because the body frame rotates with angular velocity w. The motion of the charge around the
center of mass produces the magnetic moment of the particle.

In summary, there are only two possibilities for a free motion of the center of charge of an
elementary particle. One, the charge is moving along a straight line at any constant velocity,
and the system has no magnetic moment. In the other, the particle has spin and magnetic
moment, and the charge moves along a helix at the speed of light. Because all known elementary
particles, quarks and leptons, are spin 1/2 particles, we are left only with the last possibility.
This is consistent with Dirac’s theory of the electron, because the eigenvalues of the components
of Dirac’s velocity operator are £¢. This means that Dirac’s spinor ¢ (t, ) is expressed in terms
of the position of the charge 7, because the external fields A*(¢,r) are defined and computed
at this point.

This last possiblity is the description of the center of charge of a relativistic spinning el-
ementary particle obtained in the kinematical formalism to be developed in this course, and
which satisfies Dirac’s equation when quantized.

In this formalism Dirac particles are localized and also orientable mechanical systems. By
orientable we mean that we have to attach to the above point 7, a local cartesian frame to
describe its spatial orientation. This frame could be the Frenet-Serret triad. The rotation of
the frame will also contribute to the total spin of the particle. When quantizing the system,
the spin 1/2 is coming from the presence of the orientation variables. Otherwise, if there are
no orientation variables, no spin 1/2 structure is described when quantizing the system. This
twofold structure of the classical spin has produced a pure kinematical interpretation of the
gyromagnetic ratio 5. The dependence of the Lagrangian on the acceleration is necessary for
the particle to have magnetic moment and for the separation between the center of mass and
center of charge.

Two centers, two spins

It is usually called spin to the angular momentum of an elementary particle. But an angular
momentum is a mechanical property which is defined with respect to some definite point. If
an elementary particle has two characteristic points, we can determine the angular momentum
with respect to both of them.

Let us consider an electron which is characterized by the location of its center of mass (CM)
g, and its center of charge (CC) 7, and let k be another point of the electron, different from
the previous ones, in a certain reference inertial frame with origin at the point O (see figure 1).

Let us call S the angular momentum of the particle with respecto to the centre of charge
(CC) r. The angular momentum Scys with respect to the centre of mass (CM) g, will be

SCM:(”'—Q)XP—FSa

where p is the linear momentum of the particle in this frame.

Let us call v = dq/dt and u = dr/dt, to the velocities of CM and CC, respectively. Let Sy
be the angular momentum with respect to the point k. The total angular momentum of the
particle with respect to the origin of the reference frame of any inertial observer, can be written
as

J=rxp+S, o J=qgqxp+Scyu, or J=kxp+ S;.

®M. Rivas, J.M. Aguirregabiria and A. Hernandez, “A pure kinematical explanation of the gyromagnetic ratio
g = 2 of leptons and charged bosons”, Phys. Lett. A 257, 21-25 (1999).
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Figure 1: Different angular momenta S, Scy, Sk and J of the electron with respect to
different points in some inertial reference frame, with origin at the point O. It is also
depicted the external electromagnetic force F' defined at the Center of Charge. The dotted
line suggests some arbitrary, but localized, form or shape of the electron.

If the particle is free, p and also J are conserved. Since dJ/dt = 0, this leads to

1 _ g, 450
a P ’ dt

=0,

because p has the direction of v, but not of u.

The center of mass spin S¢ps is a conserved magnitude for a free particle, but the center
of charge spin S is not. It satisfies a dynamical equation which implies that its time variation
is orthogonal to the linear momentum. It is suggesting that S precess or oscillate around the
constant vector p. Morover, for a free particle w cannot be a constant vector, otherwise the
centre of charge spin S, will rise continuosly.

Let F' be the external electromagnetic force applied at the centre of charge r. Now neither
J nor p are conserved quantities. The force and the torque with respect to the origin satisfy

dp . dJ

= _— = F
ar @ T
and thus
ds dScom dS|, dk
== =(r—q)xF, =r_px=— —k)x F.
o = Pxu 7 (r—q)x F, p” pxdt+(r ) %

We can distinguish between these spins by their different dynamical behavior. The spin dynam-
ics not only supplies information about the spin evolution. It also gives us information about
what is the point where these spins are defined.

It is clear that if » = g, the center of mass spin must always be conserved. Conversely, if
Scar is not conserved, this means that r # g, and therefore the electron has a centre of mass
and center of charge which are different points.

We can find in the literature examples of both spins. Bargmann, Michel and Telegdi spin ©
satisfies a dynamical equation which is a covariant generalization of the dynamics of the Scas.

V. Bargmann,L. Michel y V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous
electromagnetic field, Phys. Rev. Lett. 2, 435 (1959).
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It is linear in the external fields and is conserved for a free particle. The center of charge spin
S, satisfies the same dynamical equation than Dirac’s spin operator in the quantum case, as
we shall see in this lecture course. The existence of these different dynamical equations for the
different spins suggest that the two centers are, necessarily, different points.

In this formalism we are going to find a definition of elementary particle which produces
relativistic and nonrelativistic models of spinning particles, such that one of the main features
is the separation between the center of mass and the center of charge. Finally, the only model
which satisfies Dirac equation when quantized is the model, depicted on the front page, whose
center of charge is moving at the speed of light.

Three in one universal constants

The three universal constants /, ¢ and e represent basic properties of the electron. The first
h, is related to the mechanical property, the unique value of the spin s = i/2 of this particle.
The second c, is the limit velocity that the center of charge of the electron has to be moving, if it
is a different point than the center of mass. Finally the third e, is its interacting electromagnetic
intensity. It is the value of the electric charge which takes a unique value, independent of their
masses, for those particles which only interact in an electromagnetic way. These three universal
constants define a dimensionless universal constant «, named by Arnold Sommerfeld the fine
structure constant, which takes the value

1 e? 1
o= — .
4mreg he 137

It is a characteristic of the charged electromagnetic interacting particles with spin, independent
of their masses. If we show that the value of this constant is unique for these particles, these
three universal constants are not independent. According to Pauli” a theory which is not able
to determine this constant, is an incomplete theory.

Theory of elementary particles

We are going to obtain in these notes a general formalism to describe elementary particles
from the classical and quantum mechanical point of view. Classical mechanics is a formalism
which describes the dynamical laws of material systems in terms of ordinary differential equa-
tions for the variables which represent the different independent degrees of freedom. Today
we know that the different material systems are formed by small indivisible objects which are
called elementary particles. It is thus necessary, that the formalism contains also the possibility
of distinguishing whether a mechanical system is elementary or not. To achive this goal we
shall postulate as one fundamental principle, called the atomic principle, which will establish
the physical distinction, and also its mathematical translation, between elementary systems and
compound systems of elementary particles. This fundamental principle will fix the degrees of
freedom which characterize an elementary particle and its distinction from a non-elementary
system.

In this Preamble we have analized what would happen if the center of charge of an elementary
particle is a different point than its center of mass. We are suggesting that elementary particles
are localizable dynamical systems, localization that is determined by the knowledge of three
degrees of freedom, the position of a point, the center of charge. The arguments given in the
previous sections suggest that the center of charge must satisfy a system of ordinary differential
equations of fourth order. This analysis also implies that if the evolution of the center of charge

"W. Pauli, Nobel Lectures, vol 13, 1942-1962, Elsevier, Amsterdam (1964)
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is known, the evolution of the center of mass is completely determined. Are sufficient these three
degrees of freedom to describe an elementary particle? Certainly not. The different material
systems, elementary or not, are localized in certain spatial regions and also have orientable
properties, such as magnetic moments, angular momenta, etc., i.e., material systems move and
rotate. The have, at least, degrees of freedom which describe their localization and orientation in
three-dimensional space. Elementary particles also have orientable properties and therefore they
also move and rotate, and thus in addition of being localizable objects they are also orientable.
We have to use classical variables to describe its orientation. For example, we shall describe
its orientation by attaching to the center of charge a Cartesian comoving orthogonal sytem of
three unit vectors, which their orientation is changing during the evolution of the particle. This
implies that, at least, an elementary particle will have six degrees of freedom. One question
arises: Do we need more degrees of freedom to describe an elementary particle than the location
of a point and the spatial orientation of a comovil Cartesian frame? The answer will depend
on another of the fundamental principles we are going to state in the next chapter, but in
this preamble what we want to stress is that, at least, an elementary particle is a mechanical
localizable and orientable system.

Predictions

The formalism we are going to introduce in this lecture course is not complete. We have
not been able to determine the value of the fine structure constant. Nevertheless it predicts
several results and phenomena which are consistent with the standard model description of
matter and others which have to be determined experimentally. Most of these predictions do
not appear in the standard description of elementary particles considered as point particles.
They are analyzed along the quoted sections and chapters, and we just ennumerate them here:

1. For a massive elementary particle, with two different CC and CM centers, the velocity of
the CC is unreachable for every inertial observer. Since the CM velocity can never reach
the velocity of the CC, there exists for any massive body a maximum limit of the velocity
of its center of mass. (Preamble)

2. Recently, from an idea of Anibal Hernandez &, we have obtained the Lorentz transforma-
tions with no reference to light or electromagnetic phenomena, with the hypothesis of the
existence of a limit velocity for massive bodies.

3. If an elementary particle were a point particle, there will be no limit to the velocity of its
center of mass which can have any arbitrary velocity. This simple criterion, contradictory
with the experimental fact that material bodies have a limit velocity, rejects the possibility
that an elementary particle could be described as a point particle. (Preamble)

4. The center of charge and center of mass of a massive elementary particle which satisfies
Dirac’s equation (and which we shall call from now on a Dirac particle) are two different
points, separated by a distance Ry = i/2mc, in the center of mass frame. (Sec. 2.5.2)

5. The separation between these two points is not constant for an arbitrary observer, and de-
pends on the velocity of the center of mass with respect to the observer and the orientation
of its spin. (Sec. 2.6.2)

6. Since a Dirac particle has two different characteristic points, the center of mass (CM) g
which moves at the speed v and the center of charge (CC) r moving at velocity u, we can

8J.M Aguirregabiria, A. Hernandez, M. Rivas, Law of inertia, clock synchronization, speed limit and Lorentz
transformations, Eur. J. Phys. 41, 045601 (2020).
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11.

12.

13.

14.

15.

define two spins with respect to both points, Scas and S, respectively, wich are different
mechanical properties, which can be expressed in terms of the kinematics of both points
in the form:

S =Fy(w)m(r —q) xu, Scu =Fyw)m(r—q) x (u—v),

where the sign — is for the particle and + for the antiparticle. Since r —gq has the direction
opposite to the acceleration of the center of charge r, which is always orthogonal to the
velocity w, the spin S has the opposite direction to the binormal of the trayectory of the
CC for the particle and in the direction of the binormal for the antiparticle. (Sec. 2.5.4)

If the elementary particle moves along a straight line at the speed of light, it is a massles
particle, and if it represents an electromagnetic quantum of energy, then necessarily its
spin, which lies along the direction of motion, can take only the values S = +h. It is a
boson from the quantum point of view. (Sec. 3.3)

. A photon rotates. The direction of the spin of the photon has the direction of its angular

velocity but they are functionally independent. The spin of the photon is the same for all
inertial observers while the angular velocity transforms according to the prescriptions of
the Doppler effect. (Sec: 2.5.1)

. Photons are massless particles which rotate with an angular velocity along the direction

of the motion, pointing forward or backwards, and of a frequency which is the same as
the frequency of the corresponding electromagnetic radiation of which they represent the
energy quanta. (Sec: 2.5.1)

The formalism predicts that antiphotons are different particles than photons. (Sec: 2.5.1)
We have made the design of a telescope for focusing antiphotons (Sec: 2.7.1). ?

The relativistic formulation forbids the existence of a spinless massive point particle mov-
ing at the speed of light. Its Lagrangian will vanish identically. If it moves at the speed
of light it has to have more than three degrees of freedom and it has spin. Photons have
orientation and rotate along an axis which has the direction of the linear velocity. The
spin of the photon has the direction of the angular velocity but it is not related to it. (Sec.
3.3)

For a massive elementary particle the center of charge is moving in circles at the speed
of light around the center of mass, with a frequency vo = 2mc?/h, or period Ty = 1/vg =
h/2mc?, in the center of mass frame. There exists a natural clock associated to this
internal motion. (Sec. 2.5.2)

For another inertial observer who sees the center of mass of the electron moving at the
velocity v, the electron clock is going slower, with a greater period T' = (v)Tp, where
y(v) = (1 —v?/?)~12. (Sec. 6.2.1)

The mechanical energy and linear momentum of a Dirac particle, can be expressed in
terms of the center of mass velocity, like in the case of the point particle:

H = +9(0)me?,  p = £y(v)mw,

where the sign + is for the particle and — for the antiparticle. (Sec. 2.5.2)

%M. Rivas, Considerations about photons and antiphotons, Indian J. Phys. 96 583-591 (2022).
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From the classical point of view, the point where the interacting properties of an ele-
mentary particle are localized, is moving with an unreachable velocity for every inertial
observer. The universal constant ¢ represents both, the unreachable velocity of the point
where the photon is localized as much as the velocity of the center of charge of a massive
elementary particle with spin. When we quantize these classical systems implies that the
fermionic matter and the spinning bosons which mediate in their interaction, are moving
at the speed of light. (Sec. 2.5)

For the center of mass observer, an elementary particle has, in addition to charge, a
magnetic moment with respect to the center of mass p, orthogonal to the trajectory
plane of the center of charge and also an electric dipole moment d orthogonal to p. (Sec.
2.5.6)

The magnetic moment of an elementary particle is produced by this relative motion of
the center of charge, which is not modified by any external interaction. (Sec. 2.5.6)

The electron, in addition to the magnetic moment created by the motion of the center of
charge, has an electric dipole moment with respect to the center of mass, already predicted
by Dirac, although he considered irrelevant, and which rotates with the internal frequency
of the electron.(Sec. 2.5.6) It is also related to the Darwin term of Dirac’s Hamiltonian.
(Sec. 6.3.1)

The quantum gyromagnetic ratio g = 2, is related to the double structure of the spin from
the classical and quantum mechanical point of view. The spin has two parts S = W + Z,
one W related to the rotation of the particle and which does not produce magnetic
moment and another Z associated to the relative motion between the center of mass and
center of charge (Zitterbewegung). (Sec. 6.1)

If we assume, like in the standard model, that elementary matter are Dirac particles, then
from the quantum point of view their spin is necessarily S = f/2, independently of its
mass and charge. This means that leptons and quarks are fermions of spin S = h/2.
(Chap.4)

The formalism is independent of the kinematical group of space-time symmetries which
define the relationship among inertial observers. It thus produces models of relativistic
and non-relativistic elementary spinning particles. (Sec. 1.5)

In three-dimensional space, if the center of charge of an elementary particle moves at the
speed of light, the kinematical group of spacetime symmetries has to be a 11-dimensional
group. This extension of the Poincaré group can be the Weyl group W, which in addition
to spacetime translations, rotations and boosts also include spacetime scale transforma-
tions which conserve the speed of light ¢. (Sec. 6.10)

If we admit that the spacetime symmetry group of an elementary particle is the Weyl
group, then every elementary particle has nonvanishing mass and spin /2. In the standard
model, leptons and quarks are massive objects of spin //2. (Sec. 4.4)

If an elementary particle does not interact strongly (leptons), its electric charge is unique
and independent of the value of its mass. This value will be the electron electric charge
e, but this value is not yet predicted. The three leptons electron, muon and tau have
different masses, but the same electric charge and spin. (Sec. 5.1.5)

If an elementary particle interacts also stronlgy (quarks), its electric charge is necessarily
smaller than e. The formalism does not predict that this charge will be a fraction e/3 or
2e/3, as is postulated in the standard model. (Sec. 5.1.5)
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If it would be possible to describe a quark from the classical point of view, its interacting
properties will be associated to two centers: the center of the electric charge and the
center of the color charge. The requirement of the atomic principle that the kinematical
space should be a homogeneous space of the Poincaré group implies that both centers
have to be the same point. In this way a quark will be, from the classical and quantum
mechanical point of view a Dirac particle. The same criterion is aplicable to the electron
if we consider that the weak interaction is a different interaction than the electromagnetic
one, and the location of the weak charge and electric chrage must be the same point. (last
example of Sec. 1.5)

The relative orientation between the spin and magnetic moment of electrically charged
elementary particles is the same for the particle and the antiparticle. It depends on the
sign of the charge of what we consider is the particle. If we consider that the electron,
of negative electric charge, is the particle and the positron its antiparticle, then electrons
and positrons have their spin and magnetic moment in the same direction. This relative
orientation for leptons has never been measured experimentally. (Sec. 4.2.7)

A measurement of the relative orientation between spin and magnetic moment of electrons
bound to atoms could be performed by making the hyperfine transition of atoms of Rb®"
in an external magnetic field, by means of a beam of circularly polarized light. We have
no notice that this experiment has ever been performed. (Sec. 4.2.7)

Tunnel effect is not a pure quantum effect. It can also be produced in a classical framework
for spinning particles, and it is related to the separation between the center of mass and
the center of charge and of the spin orientation. (Sec. 6.5)

By controlling the spin orientation of the electrons we can modify the probability of
crossing of a potential barrier. If the spin is oriented in the direction perpendicular to the
current, the probability increases, while if its orientation is along the current, decreases.
This is called spin polarized tunnel effect. (Sec. 6.5)

Two electrons, from the classical point of view, can form a metastable bound state of
charge 2e and spin 1, i.e., a boson, provided their spins are parallel and the relative
velocity among their center of masses is below to 0.01¢ and the phases of their internal
motions are opposite to each other. This bound state is stable under external electric
fields but not stable under magnetic fields orthogonal to the spins. (Sec. 6.6)

In a conductor, under an external magnetic field, if the number of conducting electrons is
sufficient, and the temperature is not very high, pairings of electrons with parallel spins
can be produced and the paired conducting electrons can be in a superconducting phase.
This is possible classically up to a certain high temperature. This maximal temperature
from the quantum point of view has not been determined yet. (Sec. 6.6)

For magnetic fields of intensity greater than 1 T, the analysis of the integer quantum Hall
effect suggests that the longitudinal conductivity is produced by means of bound pairs
of electrons in a superconducting phase. An experiment to extract charge carriers of the
main current and of the negatively charged region of the transversal Hall potential would
show that these charge carriers correspond to bound states of electrons of charge 2e and
spin 1. We have no notice that this experiment has ever been performed. (Sec. 6.7)

In the same way, if we apply the pointer of a tunnel effect microscope to a superconducting
material, when the temperature is below the critic temperature 7T, it will extract pairs
of bound electrons, while if the temperature is above T, we will only obtain unpaired
electrons. (Sec.6.7)
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The classical electromagnetic field generated by a spinning electron at rest is not static.
The time average value of the retarded electric field, during a turn of the center of charge, is
Coulomb like in any direction and does not diverge at the center of mass. The time average
value of the retarded magnetic field, during a turn of the center of charge, is the same
as the magnetic field produced by a static magnetic dipole located at the center of mass,
with a gyromagnetic ratio g = 2. If we compute the time average of the corresponding
advanced fields, they do not have the above Coulomb behaviour and magnetic dipole
structure, respectively. (Chap. 5)

In the ground state of the Hydrogen atom the electron is in a S-state of orbital angular
momentum [ = 0. This implies, from the classical point of view, that the center of mass of
the electron is going through the center of mass of the proton. This is impossible for the
spinless point particle. Nevertheless this can be justified classically, because the center
of mass and the center of charge of a spinning electrons are different points and their
separation is greater than the estimated size of the proton. Then in the ground state of
the atom the center of mass of the electron describes a straight trajectory passing through
the center of mass of the proton.

The usual analysis of the Compton effect as an interaction of two pointlike particles, a
photon and a point electron, only considers energy and linear momentum conservation.
But the electromagnetic interaction also conserves the total angular momentum. If we
consider, in addition to energy and linear momentum conservation, the conservation of
angular momentum, shows that by controlling the orientation of the spin of the free
electron, the energy and direction of the sccatered photon is uniquelly defined. (Sec. 6.4)

From a theoretical point of view, the Lagrangian of an interacting elementary particle is
written as L = Lo + Ly, where Ly is the free Lagrangian of the particle, which describes
its mechanical properties, and L; = —e¢(t,r)t + eA(t,r)7, is the interacting Lagrangian
which predicts only an electromagnetic interaction. (Sec. 2.5.2)

The analysis of the interaction of two Dirac particles leads to the conclusion that the
interaction Lagrangian can be invariant under a larger group than Poincaré group, which
also contains space-time dilations and local rotations. The whole analysis can be done in
terms of dimensionless variables. The coupling constant is 2 where « is the fine structure
constant. The L; goes like 1/r where r is the instantaneous separation between the centers
of charge of both particles. The free Lagrangian Ly can describe free particles of arbitrary
masses, but the interaction is independent of the masses of the particles. One feature
is that to have an effective interaction between both particles, the velocities u; and wuo
of the centers of charge must be different. Two electrons, if at any time, their velocities
u1 = ug, do not interact, independently of the separation between them. (Sec. 4.5)

If we call kinematical variables z, the boundary variables of any mechanical system in a
variational approach, then the classical Lagrangian of any mechanical system L(z, %) is
always a homogenous function of degree 1 of the derivatives of the kinematical variables
&, with respect to some arbitrary, dimensionless evolution parameter 7. (Sec. 1.3.4)

If we consider that the Hamiltonian is the conjugate momentum of the time variable, then
all kinematical variables x = (¢, ¢, ... ,qgk_l)) have associated a conjugate momentum.
For any Lagrangian system we have as many conjugate pairs of canonical variables as
the number of the kinematical variables. Therefore, the kinematical variables with the
time excluded, represent the generalized coordinates of the canonical formalism. If some

of these variables are the time derivatives of another ones, then the Lagrangian depends
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on higher order derivatives, because the Lagrangian always depends on the kinematical
variables and their next order time derivative. (Secs. 1.4, 1.3.2)

The kinematical space of any mechanical system X is always a metric Finsler space, and
the variational formulation is equivalent to a geodesic problem on the kinematical space
X, where the metric depends on the kind of interaction. For an elementary particle, any
interaction modifies the metric of its kinematical space. (Sec. 1.6)

The metric of the kinematical space can be obtained by differentiation of the Lagrangian
L, by means of (Sec. 1.6)

1 9212
200,010

gij (@, 1) = gji(w, T).

The point particle is a possible model for an elementary particle in this formalism, but
it corresponds to a spinless elementary particle. The extensive use of this model has to
be rejected for the analysis of the behavior of the real elementary matter. It seems that
there are no spinless elementary particles in nature. All physical properties associated to
the spin will be masked with the use of this model. (Sec. 2.1)

The kinematical space of the point particle is Minkowski space time with the constant
metric 7, = diag(1,—1,—1,—1). Gravity, considered as another interaction and in the
spirit of unification of all interactions, when applied to the point particle, would modify the
Minkowski metric and will be rise, in general, to a Finsler metric but not to a Riemannian
metric as is postulated in General Relativity. (Sec. 1.6)

Gravity, considered as another interaction, when applied to the spinning elementary par-
ticle, would modify the metric of its kinematical space and will give rise, in general, to a
Finsler metric of this manifold, and not only of the spacetime submanifold. (Sec. 1.6)

A consequence of postulating a variational formulation of the dynamics, as a geodesic
formulation on the kinematical space, is that this formulation contains a restricted version
of the Causality Principle. When the squared metric distance between between two points
on the kinematical space is definite positive the evolution between these two points is
allowed, while if this is not the case, both points are causally disconected and the evolution
between them is not allowed. (Sec. 1.7)

A consequence, not a prediction, of postulating a variational principle like in this formal-
ism is that it is not equivalent to a canonical formulation. Euler-Lagrange equations are
equivalent to Hamilton’s equations if we try to find solutions by giving boundary con-
ditions at the initial point of the evolution ¢;. But the variational formalism that leads
to Euler-Lagrange equations has been formulated by the requirement that the particular
solution will go from an initial state at time ¢ to a fixed final state at time ¢5. The canon-
ical formalism with boundary conditions at time t; is not equivalent to Euler-Lagrange
equations with boundary values at times ¢; and t2. In fact, the canonical formalism is
unneccesary for the quantization of this kinematical formalism and also for the description
of particles with spin. (Sec. 1.8)

If the center of charge of a spinning particle is moving in circles at the speed of light,
according to the well know theory of radiation of point-like particles, the free spinning
particle should be radiating continuously. This is incompatible with the conservation of
energy. It is necessary to develop the theory of radiation of spinning particles, which will
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produce radiation whenever the center of mass of the spinning particle is accelerating, i.e.,
when the particle is under the action of an external force. In this case part of the energy
obtained by the particle will be trasformed into radiation. This theory of radiation of
spinning particles is not yet done. (Chap. 5)

The requirement that the energy of any material system must be a positive definite ob-
servable, might be related to the difference between the active and passive interpretation
of time translations. Passive time translations are mathematical transformations in which
the zero point of the clock is changed forward or backwards, arbitrarily. From the active
point of view we can only perform active time translations to the future. The conserved
magnitude associated to the invariance of physical laws under active time translations
cannot have both signs. The remaining invariance laws under space translations, rota-
tions and boosts, have not definite sign, because the group transformations have both
directions, form the active and passive point of view, and the conserved momenta can
have both signs. The concept of negative energy in physics is meaningless. ((Sec: 6.10.3)

The above comment implies that the Restricted Relativity Principle is not associated to
a complete symmetry group but, as far as active time translations is concerned, would be
related to the semigroup of time translations to the future. (Sec: 6.10.3)

The Law of Inertia is ussually stated in the form: In any inertial reference frame a free
body is at rest or is moving at a constant velocity. This formulation makes reference to
the motion of the center of mass of a free body. However, elementary matter moves and
rotates, and if it is free it moves with a constant velocity (constant CM velocity) and with
a constant angular momentum Scps. It is necessary to reformulate the Law of Inertia to
include the free rotational motion.
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Appendix: Elementary particles (Standard model)

We list the elementary particles of the standard model, beginning with the intermediate
bosons of spin 1, (gluon g, photon 7 and massive bosons W* and Z), the 6 leptons (electron
e, muon u and tau 7 and the corresponding neutrinos) and the 6 quarks, all fermions of spin
1/2. Several quantum numbers, in addition to the mass and charge, are included. The isospin,
spin, parity, leptonic number L, barionic number B, strangeness S and colour. We do not
include information of the hypothetic graviton, which would be a massless particle of spin 2.
We also include information on the recently measured Higgs boson. The leptonic number is
characteristic of the three leptons, i.e., they exist three different leptonic numbers L., L, and
L,. They exist the antiparticles of all of them, of the same mass and spin, but opposite quantum
numbers.

mass-c’ charge | Isospin | Spin | Par. | L | B | S | Colour | Life

g 0 0 0 1 - 10| O

v | <2x1071%V 0] 0,1 1 - (0] 0

W | 80.398 GeV +e 1 0| O

Z 91.187 GeV 0 1 0| 0O

e 0.511 MeV —e 1/2 110 0 stable
pwo | 105.65 MeV —e 1/2 10 0 1075
7 | 1.777 GeV —e 1/2 110 0 10~ 1%
Ve <0.5 eV 0 1/2 110 0

vy <0.17 MeV 0 1/2 110 0

Vs <18.2 MeV 0 1/2 110 0

u 1.5 ~ 3.3 MeV 2e/3 1/2 1/2 + |0 [1/3]0 1

d 3.5 ~6.0MeV | —e/3 1/2 1/2 + [0 1/3]0 1

c 1.27 GeV 2e/3 0 1/2 + [0 1/3]0 1

s 104 MeV —e/3 0 1/2 + [0 1/3]-1 1

t 171.2 GeV 2e/3 0 1/2 + [0 1/3]0 1

b 4.2 GeV —e/3 0 1/2 + [0 1/3]0 1

Higgs | 125.3 GeV 0 0 0 0| 0 |0
Intensity of the Interactions
Quarks exist in 6 flavours, u,d, ..., b, have colour charge with three possible values, electric

charge and mass and can interact under the four forces: strong, electromagnetic, weak and
gravitational. Leptons have no colour and they do not interact strongly. They can interact
under the other three forces, except neutrinos which do not interact electromagnetically. The
interchange of gluons between quarks implies the change of the colour charge. Ordinary matter,
made of aggregates of quarks and leptons, has no colour and therefore quarks and antiquarks
can only form bound states of neutral colour. This is called confinement.

If the intensity of the strong interaction between quarks is 1 and of a range of order 10~1°m
the electromagnetic interaction, by interchange of photons 7, is of the order of the fine structure
constant a = 1/137 and of infinite range. The weak force is of very short range, around 10~ ¥m
with the interchange of massive bosons W* and Z (m> 80 GeV) and of intensity 1076 while
the gravitational force, of infinite range, is of intensity of 6 x 1073%. Nevertheless, this intensity
depends on the energy of the interacting particles. What it seems to happen is that with
increasing energy all three interactions (gravity excluded) have the same intensity and the
behavior is like if the particle were free. This is called asymptotic freedom. At very high energy
quarks behave like free particles.
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Several observables for the electron
for different velocities

v/c v?/c? v(v) p (MeV/c) E MeV) | T (K)
0 0 1 0 0.511003 | O
0.0001 1078 1. 0.0000511003 | 0.511003 | 8.475
0.001 1076 1. 0.000511004 | 0.511004 | 847.54
0.01 104 1.00005 | 0.00511029 | 0.511029 | 8.47-10%
0.1 0.01 1.00504 | 0.0513578 0.513578 | 8.47-10°
0.5 0.25 1.1547 0.295028 0.590056 | 2.11-10%
0.86603 0.750 2.00003 | 0.885103 1.02202

0.9 0.81 2.29416 | 1.05509 1.17232

0.99 0.9801 7.08881 | 3.58618 3.62241

0.999 0.99800 22.3663 | 11.4178 11.4292

0.9999 0.99980 70.7124 | 36.1307 36.1343

0.99999 0.99998 223.607 | 114.263 114.264

0.999995 | 0.999990 | 316.532 | 161.748 161.749

0.999999 | 0.999998 | 707.107 | 361.334 361.334

0.9999999 | 0.9999998 | 2236.07 | 1142.64 1142.64

The observables of the table are

2

-1/2
62> , p=~)mv, FE= v(v)mc2.

V(v) = <1 -

V(U)%1+lﬁ+§i4+iiﬁ+...

2¢2 8¢t 165

the factor v takes the value 2 for v/c ~0.86603. Please remark that it is necessary to reach

the velocity v/c = 0.99999999999987 (twelve nines) with a factor 4 = 2 - 10°, in order that the

electron energy will be 1.00213 TeV. Today’s accelerators (Tevatron (FermiLab), LHC (Cern))
reach energies of order from 4 to 8 TeV.

The last column corresponds to the temperature in Kelvin of a nonrelativistic electron gas
whose mean velocity is the indicated, and considered a system of seven degrees of freedom. The
dots of some sections imply that for those velocitites the nonrelativistic analysis of statistical
mechanics does not apply.

7 1
§/<;T = Emv2, x =1.38-107%® J/K (Boltzmann’s Constant).

The first coloured boldface line, corresponding to v/c = 0.01, represents the maximal velocity
of the center of masses of two electrons with parallel spins, to form a bound state, as we shall
analyze in section 6.6.

The second coloured boldface line corresponds to the experiment, not of very high energy,
we shall analize in section 6.2 to measure the electron clock.



Chapter 1

Fundamental Principles

1.1 Newtonian formulation

To our knowledge, the first important approach for a theory of matter where all objects
are bound systems of smaller particles is due to Newton. By definition, the simplest material
particle is the point. For Newton, matter is composed of aggregates of points of mass m, of
arbitrary but fixed value. Each elementary point particle satisfies a dynamical equation

d2r

T _F
™z

where 7 is the location of the point and F' is the total external force acting on it. If we also
admit that forces satisfy Newton’s third law, we arrive to the conclusion that any aggregate of
matter has a characteristic point, its center of mass q, defined as

> omr;
1= ZT;L;’ mzzmi

d’q
Z Fext — mW

This is known as the center of mass theorem: The center of mass of any material system behaves
like a point particle of mass the total mass of the system, under the sum of only the external
forces acting on the particles.

Newton postulates that matter atracts each other with the universal gravitation law, which
satisfies Newton’s third law. If we try to sepparate a sheet of paper into two parts, assuming
two pieces of around 1 g each and separated 10 c¢cm, the gravitational force between them is

which satisfies

2
F=G" =6.672x 107! x 0.0012/0.12 = 6.672 x 1015 N,

a2

much much smaller than the actual force we have to do to separate the sheet into two parts.
Cohesion forces of matter are not of gravitational nature. Among material systems another
kind of force should exist to form bound objects. Newtonian theory does not restrict the kind
of forces we can have in Nature. If the point particle has a property called charge, this will be
located at the same point . Then all matter will be built from arbitrary material points of
arbitrary masses and charges, which in addition to the gravitational interaction they attract,
and sometimes repel, each other with another kind of force of higher intensity.

If we can make a time travel, come back to Newton’s time in Cambridge, and ask him:
Sir, we are coming from the future and we know that matter, in addition of having mass, has
another unmodified property called spin. It is possible that Sir Isaac, would think about and

23
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would modify his second law to take into account the dynamics of the angular momentum
in terms of the external torques. The important aspect is that when around 1920 quantum
mechanics enters into the scene, it would produce a different quantization scenario.

Newtonian formalism is not restrictive and for the forces F' among particles many kind of
interactions are allowed. It is the gauge theory in the quantum case, and the atomic principle
in our formalism, which will establish a limit to the allowed interactions. In another context
charges, masses, angular momenta of elementary particles are not resticted and can take any
value. It is quantum theory which should predict these values. Nevertheless, up to now,
quantum theory has only been able to predict the values of the spin, with a total freedom for
the remaining properties, like masses and charges.

Newton was already aware of this possibility of internal forces of short and long range, as
he writes in his dissertation in the book III of Opticks: !

Now the smallest particles of matter may cohere by strongest attractions, and compose bigger
particles of weaker virtue; and many of these may cohere and compose bigger particles whose
virtue 4s still weaker, and so on for diverse successions, until the progression ends in the biggest
particles on which the operations in chemistry, and the colors of natural bodies depend, and
which by cohering compose bodies of a sensible magnitude.

For we must learn from the phenomena of nature what bodies attract one another, and what
are the laws and properties of the attraction, before we inquire the cause by which the attraction
1s perform’d. The attractions of gravity, magnetism, and electricity, reach to very sensible
distances, and so have been observed by vulgar eyes, and there may be others which reach to so
small distances as to escape observation.

1.1.1 Chronology of Mechanics and Lagrangian Mechanics

e 1687. The Principia Mathematica are published by Newton. F' = ma
e 1733. Euler discovers the Variational Formulation.

e 1755. Lagrange states the necessary conditions of the Variational Formulation: Euler-
Lagrange equations.

e 1788. Lagrange writes the Mécanique Analytique: Lagrangian Formulation.

e 1833. Hamilton establishes the canonical formulation: Hamilton’s Equations.

e 1854. Riemann formulates the structure of the metric spaces g;;(x).

e 1915. Einstein postulates gravity as a modification of the Riemannian metric of space-
time.

e 1915. Noether relates continuous symmetries with conservation laws. Noether’s The-
orem.

e 1918. Finsler presents a PhD thesis about general metric spaces g;j(z, &).

e 1934. Cartan publishes: Les Espaces de Finsler.

The playground of the Lagrangian systems is always a metric Finsler space

1. Newton, Opticks, A treatise of the Reflections, Refractions, Inflections and Colours of Light, Dover, NY
1952, p.394.



1.2. FUNDAMENTAL PRINCIPLES 25

1.2 Fundamental Principles

Because all known elementary particles, the quarks and leptons, are spinning particles and
it seems that there are no spinless elementary particles in nature, we take the challenge of
obtaining a classical formalism for describing spin. The interest of a classical description of
spinning matter is not important in itself, because matter, at this level, behaves according
to the laws of quantum mechanics. But finer a classical description of elementary matter a
deeper quantum mechanical formalism, because we will have at hand, when quantizing the
system, more classical variables to deal with, and therefore with a more clear physical and/or
geometrical interpretation. A second feature is that a classical formalism supplies models. Both
goals, in my opinion, have been succesfully achieved.

Feynman, in the first chapter of his Lectures on Physics 2, states that "If, in some cataclysm,
all of scientific knowledge were to be destroyed, and only one sentence passed on to the next gen-
erations of creatures, what statement would contain the most information in the fewest words?
I believe it is the atomic hypothesis (or the atomic fact or whatever you wish to call it) that all
things are made of atoms-little particles that move around in perpetual motion, attracting each
other when they are a little distance apart, but repelling upon being squeezed into one another.”

If the atomic hypothesis is such an important principle, physics has to take advantage of this
fact, and, properly formulated, should be included as a preliminary fundamental principle of
elementary particle physics, as we shall do in what follows. The books of Physics, when dealing
with the subject of atomism, they just mention Leuccipus and Democritus of Abdera, as the
first scientists who proposed the idea that matter is finally a set of discrete undivisible objects
(atoms). Democritus adds that these objects are also immutable. It is difficult to understand
what Democritus would mean around 2500 years ago, about immutability. But this idea what
perhaps means is that a compound system can be modified but an elementary particle cannot.
We can excite a molecule, rotate it with some angular velocity, even deform and modify its
mass, but this is not possible for an electron. We cannot change the electron mass and charge
and we cannot rotate an electron around itself with an arbitrary angular velocity. The most
we can do is to modify its orientation in space. The mass and absolute value of its spin are
immutable. The atomic principle is going to restrict the number and the kind of classical
variables we have to use to describe an elementary particle. These variables are not restricted
for arbitrary material systems, but they are restricted for elementary particles. It is a very
restrictive principle which will suggest a kind of minimal coupling interaction when analyzing
compound systems of elementary particles.

The kinematical formalism for describing elementary spinning particles, previously aimed for
the classical spin description of matter, has proven to be a general framework for the description
of elementary particles, because it supplies a very precise definition of a classical elementary
particle which has, as a quantum counterpart, Wigner’s definition. All elementary systems
described within this formalism have the feature that, when quantized, their Hilbert space of
pure states carries a projective unitary irreducible representation of the kinematical group. It
is through Feynman’s path integral approach that both formalisms complement each other.

The formalism we propose is based upon the four fundamental principles:

e Restricted Relativity Principle,
e Variational Principle,
e Atomic Principle,

e Quantization Principle.

?Feynman RP, Leighton RB and Sands M 1968 The Feynman Lectures on Physics, (NY: Addison Wesley)
Vol 1, Sec 1-2.
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1.2.1 Restricted Relativity Principle

Restricted Relativity Principle: In absence of gravitation, there exists a
class of equivalent observers, to whom the laws of physics must be the same.

When using the same kind of variables the fundamental physical laws have to be written in
the same form in the different equivalent reference frames. One fundamental law is the Law of
inertia which states that a free body in a reference frame can be at rest or moving with constant
velocity. If this law of inertia holds for the class of equivalent observers, then the equivalent
observers are at rest or moving at a constant velocity with respect to each other. We call them
inertial reference frames.

This class of inertial observers is defined by the way they relate the measurement of any
space-time event. The set of inertial observers is endowed with an equivalence law =, i.e.,
it satisfies the properties of an equivalence law: reflexive O = O, symmetric O = O’ implies
O’ = O, and transitive, if O = O’ and O’ = O” then O = O”. In the language of composition
of transformations this means that there exists the unit transformation, the inverse of any
transformation and that the composition of transformations is associative and produces another
transformation. The set of transformations among the inertial observers form a group, the
kinematical group of the formalism.

The equivalent observers are defined with respect to each other by a spacetime transforma-
tion group. They are moving with a constant velocity and thus two possibilities arise: (a) the
relative velocity has no upper limit, or (b) there exists an upper limit velocity unreachable for
all of them. If this velocity exists, we represent it by ¢, and according to this relativity principle
must be the same for all inertial observers.

If we accept that the relative situation among inertial observers contains space-time transla-
tions, static rotations and relative displacements at a constant velocity (boosts), the possibility
(a) implies that if the observer O measures a space-time event given by the values of time and
position ¢ and 7, respectively, and observer O’ measures t' and 7’ for the same event, these
values are related by means of the transformation

t'=t+b, 7 =R(a)r+vt+a,

where the ten real numbers (b, a,v, ) are fixed for these two observers and where by a we
want to represent the three parameters which define the relative orientation between the cor-
responding Cartesian reference frames of both observers. These equations represent the action
of the Galilei group of transformations on the space-time, which is the kinematical group in
the nonrelativistic framework. If instead of these transformations we use those of the Poincaré

group,

v- R(a)r

U2
ﬂzV@)G+'¢ﬁ>+b’7J:R@ﬂT+7@ﬁﬁ+ il

(1 4~(v))e?

which depend on the same 10 parameters (b, a, v, &) and on the universal constant ¢, and where
y(v) = (1 —v%/c?)~1/2. We are in the case (b), but now with the restriction that v < ¢, and
this is called a relativistic formalism.

The kinematical group associated to this fundamental principle has to be fixed once for
ever. This principle is not only a statement about the restricted universality of the physical
laws, but it is also a statement that the relative measurements between inertial observers of
any other observable depends only on this group, i.e., how two inertial observers relate their
relative measurements of space-time events. By restricted universality what we mean is that
the physical laws are not the same for all possible observers, but only for a restricted class of
them, the so called inertial observers, to whom the formalism is restricted.

(v-R(a)r) v+ a,
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If some observer is describing an electromagnetic phenomenon and we change to another ac-
celerated observer, in this frame in addition to the corresponding electromagnetic phenomenon
we shall also describe the presence of an inertial field, which is undistinguishable from a grav-
itational field. These two observers do not describe the same kind of phenomena. They are
not equivalent observers. We are going to restrict the formalism for observers who describe
the same phenomena. It is the General Relativity Principle which admits the invariance of
physical laws under any change of arbitrary observers or the use of any system of coordinates,
but if we include gravity between the phenomena to be described. The reason is that it is not
possible locally to distinguish between a change to an accelerated frame form the presence of
a gravitational field. If we admit this restricted relativity principle we have to exclude in its
framework the possibility of description of gravitational phenomena.

1.2.2 Variational Principle

The Variational Principle states that a property called the action of any mechanical
system during its evolution between some initial and final states must be stationary. The action
is described in terms of a Lagrangian function which is an explicit function of the time ¢, the
independent degrees of freedom and their subsequent time derivatives up to a finite order, which
is what we are going to consider in this formalism. Usually, most mechanical textbooks restrict
the Lagrangian to depend up to the first order time derivative of the independent degrees of
freedom. This is the case for bound systems of spinless or point particles, for instance in
the Newtonian formalism. This implies that dynamical equations for the degrees of freedom
are at most second order differential equations. However, differential geometry shows that,
in general, a point in a three-dimensional vector space, satisfies a fourth order differential
equation. In another context we do not know yet what are the variables we need to describe
spinning matter. Are we able to restrict to these unknown variables to satisfy only second
order differential equations? This is a mathematical restriction which is not justified physically.
Think in the discussion in the Preamble about the motion of the admisible center of charge.
We are not going to restrict Lagrangians to depend only on the first order time derivatives of
the independent degrees of freedom. The atomic principle will only restrict the Lagrangian to
depend on a finite number of degrees of freedom and also of a finite maximum order in their
derivatives.

According to this variational principle, there will be a Lagrangian function L, which will
be an explicit function of the time, of a finite number of degrees of freedom and their time
derivatives up to a finite order, for any mechanical system formed from a finite number of
elementary particles. It is the atomic principle which will limit the maximum number of variables
to describe an elementary particle.

This variational principle is so strong that when we apply it to material systems which satisfy
the atomic principle, we shall arrive to the conclusion that the only allowed interaction for
classical elementary particles is the electromagnetic interaction, either for spinless or spinning
particles. The dynamical equation of an elementary particle of charge e, in the variational

formulation, will be
dp
ik (E+uxB),
where p is the linear momentum of the particle, u is the velocity of the center of charge and E
and B the external electromagnetic field. The expression of the linear momentum depends on
the framework, either relativistic or not relativistic, i.e., of the kinematical group and in terms of
the different degrees of freedom and their derivatives. In the classical variational framework, and
with these three fundamental principles, we have not been able to describe other interactions.
Weak and strong interactions are described in a quantum context under the assumption of local
gauge invariance.
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In this way we shall start in section 1.3 with the generalized Lagrangian formalism to obtain
the main results in general form.

1.2.3 Atomic Principle

The Atomic Principle admits that matter cannot be divided indefinitely. Matter does
not satisfy the hypothesis of the continuum. After a finite number of steps in the division of
matter we can reach an ultimate and indivisible object, an elementary particle. If a theoretical
framework pretends to describe real matter, it must contain in the formalism some statement
or declaration about the existence of these primordial objects and the possibility to distinguish
theoretically between an elementary system and another one which is not elementary.

If we take a piece of matter and we try to break it, the result is that it is first deformed
and if our strength is enough it breaks into two or more pieces. The distinction between an
elementary particle and any other finite mechanical system is that an elementary particle, in
addition of being indivisible, if not destroyed by its antiparticle, it can never be modified. It
can never have excited states, so that all possible states are only kinematical modifications of
any one of them.

Since in the process of breaking matter we need a finite number of steps to reach this ultimate
object, this implies that the states of an elementary can be described by a finite set of variables.
If the state of an elementary particle changes, and we assume this fundamental principle, we
can always find another inertial observer who describes the particle with the same values of all
essential variables as before the change. One electron, if not annihilated, remains always as an
electron under any interaction. This will imply a restriction in the kind of classical variables we
shall use to describe the initial and final states in the variational dynamical description.

It is this explicit distinction between compound systems and elementary particles, consid-
ered as a basic part of the formalism, what makes sense to consider this atomic principle as a
fundamental principle.

These three fundamental principles complete our classical framework. To quantize the for-
malism we have to replace the Variational Principle for the next Quantization Principle.

1.2.4 Quantization Principle

For the quantum description we must substitute this last variational principle by the Quan-
tization Principle, in the form proposed by Feynman 3: All paths of the evolution of any
mechanical system between some initial and final states are equally probable. For each path
a probability amplitude is defined, which is a complex number of the same magnitude but
whose phase is the action of the system between the end points along the corresponding path.
The probability amplitude for finding the system in any classical state, i.e, the quantum wave
function, will be a squared integrable and normalized complex function of the variables which
define the states in the variational approach. In this way, classical and quantum mechanics are
described in terms of exactly the same set of classical variables.

This formalism will determine that these variables for an elementary particle, which define
the initial and final states of the evolution in the variational description, are a finite set of
variables which necessarily span a homogeneous space of the kinematical group. We shall call
them the kinematical variables of the particle. The manifold they span is larger than the
configuration space and in addition to the time and the independent degrees of freedom it
also includes the derivatives of the independent degrees of freedom up to one order less the
highest order they have in the Lagrangian. The Lagrangian for describing these systems will

3R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, MacGraw Hill, N.Y., (1965).
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be thus dependent on these kinematical variables and their next order time derivative. If the
evolution is described in terms of some group invariant evolution parameter 7, then, when
writting the Lagrangian not in terms of the independent degrees of freedom but as a function of
the kinematical variables and their 7—derivatives, it becomes a homogeneous function of first
degree of the 7—derivatives of all kinematical variables.

Feynman’s path integral method seems to be inspired in a Dirac’s paper *. In this article
Dirac states, when comparing the Lagrangian approach with the canonical aproach, that: the
two formulations are, of course, closely related, but there are reasons for believing that the
Lagrangian one is more fundamental. Later, he expresses that we ought to consider the classical
Lagrangian, not as a function of the coordinates and velocities, but rather as a function of the
coordinates at time t and at time t 4+ dt. Here, he is clearly suggesting the use of boundary
variables, i.e, the kinematical variables for the expression of the Lagrangian.

In the Preface of Feynman and Hibbs book, it is mentioned that Feynman, in a private con-
versation with a European colleague, became aware of the mentioned Dirac’s paper, suggesting
that the wave function at time ¢ 4 € would be related to the wave function at time ¢ in the form

D(t+€) ~ ().

What Feynman did was to postulate that the above relation is an identity. There is a quotation
in the book ® that the European colleague was Herbert Jehle, while visiting Princeton in 1941.

We shall analyze several examples of spinning particles. But we shall be surprised that,
for the description of free elementary particles, in particular a Dirac particle, is not necessary
to postulate any Lagrangian. The analysis of Noether’s theorem and conservation laws, and
the group invariants will be sufficient to describe the dynamics of a free spinning elementary
particle.

1.3 Variational Principle: Lagrangian Formalism

The Lagrangian formalism postulated by Lagrange (1788) was generalized for systems de-
pending on higher order derivatives by Ostrogradsky (1850). & The result is that if the La-
grangian depends on time ¢, the n degrees of freedom ¢;(t) and their first order time derivatives
L(t,qi, i), Euler-Lagrange equations are

8—L—i oL =0, =1 n
d¢; dt\og¢) T

But if the Lagrangian depends up to the derivatives of order k-th of the degrees of freedom, the

equations are
oL d (oL ey |

where we use here an exponent between brackets to express the order of the time derivative
of the corresponding variable. We shall arrive to these dynamical equations as a necessary
condition for the action to be stationary. But it is also important to remark that the general
formalism which brings us to equations (1.1), requires that the end points of the evolution, i.e.,
the boundary conditions for the evolution, remain fixed. In addition to obtain FEuler-Lagrange

*P.A.M. Dirac, The Lagrangian in quantum mechanics, Phys. Zeitsch. der Sowjetunion, 3, 64-72 (1933).

SL.M. Brown (editor), Feynman’s thesis: A new approach to quantum theory, (World Scientific 2005)

6 M. Ostrogradsky, Mémoire sur les équations différentielles relatives au probléme des isopérimétres, Mem.
Acad. St. Petersburg, 6(4), 385-517 (1850).
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equations, we are going to see what are these boundary variables which define in an essential
way the initial and final states of the evolution, and which we propose to call them kinematical
variables. In particular, it is the atomic principle which will limit what these variables are for
an elementary particle.

Finally we are going to analyze the geometrical structure of the space spanned by the
kinematical variables. We shall see that for any arbitrary system it is always a metric space,
but not Riemannian but rather a Finsler metric space. In this way, if a mechanical system
of a definite number of kinematical variables is analyzed under two different interactions, the
kinematical space is the same manifold but the Finsler metrics associated to the corresponding
interactions are different. In this way, gravity will be studied as a modification of the Finsler
metric of the manifold which describes free elementary spinning matter, modification produced
by the material content of all objects in the universe, including the analyzed elementary particles.

1.3.1 Euler-Lagrange equations

Let us consider a mechanical system of n degrees of freedom, characterized by a Lagrangian
that depends on time ¢ and on the n essential coordinates ¢;(t), that represent the n indepen-
dent degrees of freedom, and their derivatives up to a finite order k. Because we can have
time derivatives of arbitrary order we use a superindex enclosed in brackets to represent the
corresponding k-th derivative, i.e., qgk) (t) = d*q;(t)/dt*. The action functional is defined by:

to

1 k
Al = [ L0000, (1.2

t1
where ¢ = 1,...,n. For any trajectory ¢;(t) introduced into the integral (1.2), we shall obtain
a real number, the action of the system along that trajectory.

Variational Principle: The trajectory followed by the dynamical system is that
path which passing through the fixed end points defined at times ¢; and t2, respec-
tively, where we fix on them the values of the variables and their time derivatives
qi(s)(tl) and qi(s)(tg), i=1,..,n, s=0,1,....,k — 1, up to the maximum (k — 1) -th
order, makes stationary the action functional (1.2), i.e., the value of the action along
that path is a maximum or a minimum.

Please remark that we need to fix as boundary values of the variational principle some
particular values of time ¢, the n degrees of freedom ¢; and their time derivatives up to order
k — 1, i.e., one order less than the highest derivative of each variable ¢; in the Lagrangian, at
both end points. Although the values we fix as boundary variables correspond to the degrees
of freedom and their derivatives, their fixed values are considered as essential parameters, and
therefore they are selected without constraints. They uniquely define the initial and final state.

Conversely we can say that the Lagrangian of any arbitrary generalized system is in general
an explicit function of the variables we keep fixed as end points of the variational formulation
and also of their next order time derivative.

Once the action functional (1.2) is defined for some particular path g;(¢), to analyze its variation let
us produce an infinitesimal modification of the functions ¢;(t), ¢:(¢t) — ¢:(t) + dqi(¢) while leaving
fixed the end-points of the variational problem, i.e., such that at ¢; and ¢2 the modification of
the generalized coordinates and their derivatives up to order £ — 1 vanish, and thus (5q£s)(t1) =
6q§s)(t2) =0,fort=1,...,nand s =0,1,...,k — 1. Then, the variation of the derivatives of the
qi(t) is given by qgs)(t) — qgs)(t) + 5q55)(t) = qgs)(t) + d®dq;(t)/dt®, since the modification of the
s-th derivative function is just the s-th derivative of the modification of the corresponding function.

This produces a variation in the action functional 6.4 = Alq + dq] — Alqg], given by:

t t
bA= / T L( g (6) + 6¢) (1))t - / Lt 4 (0)dt
tq t
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q'(t)

dq(t)
q(t)

Figure 1.1: Two close paths ¢(¢) and the modified ¢'(t), passing through the same end points
1 and 2

; (1.3)

_ oL e OL ¢ (k)
,/ dtZ{ “0qi + (1)6 +- +8q(k>6q1‘

after expanding to lowest order the first 1ntegral. The term

oL s oy_ 0L do _d (oL .\ _d (L),
aql(l) q; aql(l) dt qi dt 8q1(1) qi dt aqz() qi,

and by integration of this expression between ¢; and t9, it gives:

to aL (1) a a to d 8L
/fl aq(l)(sqi dt = 94 (1) 5Qz(t2) 94 (1> 6%( )7/751 dt aq(l) oqidt

2 d ( oL
= — —- 5q¢ dt,
/n dt <5q§1)>

because the variations d¢;(¢1) and dg;(t2), vanish. Similarly for the next term:

oL . (2 oL d M _ oL (1) oL (1)
50\ = —~ 50 0q; )
8q§2) 4q; 6‘q§2> 0% aqi@) q; 4 (2) 4

to to ty g2
/ aLQ) 5¢Pdt = — / 4 8L2) s¢Vat = / % LLQ) 8q; dt,
t1 6(11( t1 dt 5q§ t1 dt 6(15

because d¢q; and (ngl) vanish at ¢; and t2, and finally for the last term

to oL (k) to dk
—1 ;
/t1 aq““) dt = (—=1)" /1 dt* (k) 0gi dt,

so that each term of (1.3) is written only in terms of the variations of the degrees of freedom dg;
and not of their higher order derivatives. Remark that to reach these final expressions, it has been
necessary to assume the vanishing of all 5ql for s =0,...,k—1, at times ¢; and t2. By collecting
all terms we get

oL wd® [ L
S (a>”d<a>

If the action functional is extremal along the path g¢;(t), its variation must vanish, A = 0. The
variations dg; are arbitrary and therefore all terms between squared brackets cancel out. We obtain
a system of n ordinary differential equations, the Euler-Lagrange equations (1755),

5(]2‘.

oL d [ 0L L db [ oL

- 2| 2= _|_..._A,_(_)7 —— | =0, 2=1,...,n. (1.4)
dq  dt angl) dtk aq(k’)
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1.3.2 Kinematical space

In general, the system (1.4) is a system of n ordinary differential equations of order 2k,
and thus existence and uniqueness theorems guarantee only the existence of a solution of this
system for the 2kn boundary conditions qi(s) (t1),i=1,...,nand s =0,1,...,2k — 1, at the
initial instant t;. However the variational problem has been stated by the requirement that
the solution goes through the two fixed endpoints, a condition that does not guarantee neither
the existence nor the uniqueness of the solution. Nevertheless, let us assume that with the
fixed endpoint conditions of the variational problem, qz-(s) (t1) and qz(s) (t2), i = 1,...,n and
s=0,1,...,k—1, at times ¢; and t9, respectively, there exists a solution of (1.4) perhaps non-
unique. This implies that the 2kn integration constants of the system (1.4), can be expressed
perhaps in a non-uniform way, as functions of the kn conditions at each of the two endpoints.
From now on, we shall consider systems in which this condition is satisfied. It turns out that
a particular solution passing through these points will be expressed as a function of time with

some explicit dependence of the end point values

G(t) = ait; ¢\ (1), 4" (t2)), (1.5)
,5,0l=1,...,n, r=0,1,...k — 1, in terms of these boundary end point conditions.

Definition: The Action Function 7 of the system along a classical path is the
value of the action functional (1.2) when we introduce in the integrand a particular
solution (1.5) of Euler-Lagrange equations (1.4) passing through those endpoints:

/ttQ L(t,G(t)dt = A (tl, q§T>(t1);t2,q§’">(tg)) . (1.6)

1

Once the time integration is performed, we see that it will be an explicit function of the
kn + 1 variables at the initial instant, qj(-r) (t1), 7 =0,...,k—1 including the time ¢, and of the
corresponding kn + 1 variables at final time t2. We write it as

A (tl’ qi(r) (t1); ta, qzm (tz)) = Az, x2).

We thus arrive at the following

Definition: The kinematical variables of the system are the time ¢ and the
n degrees of freedom ¢; and their time derivatives up to order kK — 1. The mani-
fold X they span is the kinematical space or state space of the mechanical system.

The kinematical space for ordinary Lagrangians is just the configuration space spanned by
variables g; enlarged with the time variable ¢. It is usually called the enlarged configuration
space. But for generalized Lagrangians it also includes higher order derivatives up to one order
less than the highest derivative that appears in the Lagrangian. Thus, the action function
of a system becomes a function of the values the kinematical variables take at the
end points of the trajectory, x; and x2. From now on we shall consider systems for which
the action function is defined and is a continuous and differentiable function of the kinematical
variables at the end points of its possible evolution. This function clearly has the property
A(z,x) =0.

"Please remark that we use the same letter A( ) for the action function, followed by normal brackets containing
the variables of which it depends, and for the action functional A[ | which is followed by squared brackets to
enhance that it is not a function but rather a functional over the class of all paths.
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1.3.3 Replacement of time as evolution parameter

The constancy of speed of light in special relativity brings space and time variables on the
same footing and time is relative to every observer. So, the next step is to remove the time
observable as the evolution parameter of the variational formalism and express the evolution as
a function of some arbitrary parameter, the same for all inertial observers. Then, let us assume
that the trajectory of the system can be expressed in parametric form, {¢(7),¢;(7)}, in terms of
some arbitrary evolution parameter 7, the same for all inertial observers. The functional (1.2)
can be rewritten in terms of the kinematical variables and their derivatives and becomes:

(k—=1)

A[t,q]:/WL():(T),%(T),@(T) ...,‘L‘t. (T)>£(T)d7

| t(r)’

T2
_ / L (a(r), (7)) dr, (17)
T1

where the dot means derivative with respect to the evolution variable 7 that without loss of
generality can be taken dimensionless. Therefore L = L(t(7), qgs)/t'(T)) t(7) has dimensions of
action.

1.3.4 Homogeneity of the Lagrangian

We can also see that the integrand Lisa homogeneous function of first degree as a function

(s)

of the T—derivatives of the kinematical variables. In fact, each time derivative function ¢, (t)

has been replaced by the quotient q - ( )/t(T) of two derivatives with respect to 7. Even the
. (k

highest order k-th derivative function qg ) = q; -l /t, is expressed in terms of the derivatives

of the kinematical variables ql-(k_l) and t. Thus the original function L, without tilde, is a
homogeneous function of zero degree of the derivatives of the kinematical variables. Finally,
the last term #(7), gives to the new defined L the character of a homogeneous function of first
degree.

If we replace each @ by y* = \i?, then L(z,y) = L(2(7), \i(7)) = AL(x(7), #(7)). Therefore
Euler’s theorem on homogeneous functlons gives rise, by taking the derivative with respect to
A of both sides, and taking A = 1, to the result

L(z(r Zﬁyi il = @:L‘j ZF x, @)@ (1.8)

A=1

This possibility of expressing the Lagrangian as a homogeneous function of first degree of
the derivatives was already considered in 1933 by Dirac ® on aesthetical grounds. It is this
homogeneity of first degree in terms of the derivatives which will allow us later to transform
the variational formalism into a geodesic problem on the kinematical space X, but where the
metric g;j(x,4) will be direction dependent, and thus the particle trajectory is a geodesic, not
in a Riemannian manifold but rather in a Finsler space.?

The function L is not an explicit function of the evolution parameter 7 and thus we can see
that the variational problem (1.7), is invariant with respect to any arbitrary change of evolution
parameter 7. 10

8 P.A.M. Dirac, Proc. Cam. Phil. Soc. 29, 389 (1933): “a greater elegance is obtained”, “a symmetrical
treatment suitable for relativity.”

°G.S. Asanov, Finsler geometry, Relativity and Gauge theories, Reidel Pub. Co, Dordrecht (1985).

10 R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 1, Interscience, N.Y. (1970); I.M. Gelfand,
S.V. Fomin, Calculus of Variations Prentice Hall, Englewood Cliffs, N.J. (1963).



34 CHAPTER 1. FUNDAMENTAL PRINCIPLES

In fact, if we change the evolution parameter 7 = 7(6), then the derivative {(1) = (dt/d6)(d0/dr)
and ¢\* (1) = (dg!* (9)/d6)(d6/dr) such that the quotients

i(r) (gt (9)/d9) (1) _ ¢ (6)
i)

i(r) (dt(0)/d6) 6(r)

where once again this last dot means derivation with respect to 6. It turns out that (1.7) can be

written as: - o
Alt,q] :/ L(t(&),q,-(@),,,,741(’“*1)(9)/75(0))7(9)616

05
— /9 L(2(0), (6))do. (1.9)

1.3.5 Recovering the Lagrangian from the Action function

The formalism thus stated has the advantage that it is independent of the evolution param-
eter, and if we want to come back to a time evolution description, we just use the time of the
corresponding inertial observer as the evolution parameter and make the replacement 7 = ¢,
and therefore £ = 1. In this case the homogeneity of the Lagrangian disappears. From now on
we shall consider those systems for which the evolution can be described in a parametric form,
and we shall use the symbol ~ over the Lagrangian, which is understood as written in terms
of the kinematical variables and their first order 7—derivative. In this way we shall distinguish
between the Lagrangians L, from the Lagrangians L, without the symbol ~, when we make the
analysis in a time evolution description. To pass from L to L is just to make ¢ = 7, and thus
t=1.

If what we know is the action function of any system A(x1,z2), as a function of the kinemat-
ical variables at the end points we can proceed conversely and recover the Lagrangian L(x, %)

by the limiting process:
- oA A
L(z,4) = lim Mxﬂ (1.10)
y—x Oyl
where the usual addition convention on repeated or dummy index j, extended to the whole set

of kinematical variables, has been assumed.

If in (1.7) we consider two very close points z1 =  and z2 = x + dz, we have that the action

function A(z,z + dz) = A(z,x + ¢dr) = L(x,z)d7 and making a Taylor expansion of the function
A with the condition A(z,z) =0 we get (1.10).

In a certain sense the knowledge of the action function A(z1,r2) characterizes the dynamics
in a global way because by means of (1.10) L is determined and therefore, Euler-Lagrange
equations.

1.3.6 Symmetry of a dynamical system

A symmetry of a dynamical system is defined as that mathematical transformation of
the variables of the dynamical system which leaves invariant the dynamical equa-
tions. Since the composition of symmetries produces new symmetries, and this composition is
associative and there exists the trivial or identity transformation, the set of symmetries of any
dynamical system forms a group. It is the symmetry group of the system. If we admit as a
fundamental principle the Restricted Relativity Principle, then the kinematical group of space-
time transformations, which define the relationship between equivalent observers, is a subgroup
of the general symmetry group.

If a transformation leaves invariant the Lagrangian of a dynamical system, then that trans-
formation represents a symmetry for this mechanical system. The opposite is not true, i.e., there
can be transformations which are symmetries but they do not leave the Lagrangian invariant. If
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the Lagrangian, under a transformation, changes into another Lagrangian which differs from the
previous one in a function which is a total derivative, with respect to the evolution parameter
7 of some arbitrary function A\(z) of the kinematical variables, then that transformation is a
symmetry.

The symmetry transformations can be continuous or discrete. A transformation is discrete
if it is an element of a discrete or finite subgroup, like the transformation ¢’ = —t, which
represents a time reversal. This is a discrete transformation and if it is a symmetry we shall
say that the mechanical system is time reversal invariant. Continuous transformations are
those related to continuous or Lie groups, for instance translations and rotations. In the case
of continuous groups, it is sufficient to make the analysis of the symmetries by considering
only the infinitesimal transformations, i.e., what is called the Lie algebra of the group. In the
appendix 1.10, we make a short introduction to continuous groups to fix the notation and the
representation of the infinitesimal transformations and the generators of the group and its Lie
algebra.

1.3.7 Lagrangian gauge functions

In the variational formulation of classical mechanics

T2

A[q]:/zL(t,qi(s)(t))th/ T(z, 4)dr, (1.11)

t1 1

Alq] is a path functional, i.e., it takes in general different values for the different paths joining
the fixed end points 1 and x2. Then it is necessary that Ld7 be a non-exact differential.
Otherwise, if Ldt = d\, then A[q] = A2 — A1 and the functional does not distinguish between
the different paths and the action function of the system from x to za, A(x1, z2) = A(z2)—A(x1),
is expressed in terms of the function A(x), and is thus, path independent.

If A(z) is a real function defined on the kinematical space X of a Lagrangian system with
action function A(x1,x2), then the function A'(x1,z2) = A(z1,22) + A(x2) — A(x1) is another
action function equivalent to A(x1,x2). In fact it gives rise by (1.10) to the Lagrangian L' that
differs from L in a total 7-derivative. !

Using (1.10), we have
~ ~ X
L'(z,z) = L(z,%) + —, (1.12)
dr
and therefore L and L/ produce the same dynamical equations and A(x1,z2) and A'(x1,z2) are

termed as equivalent action functions.

Let us assume a Lagrangian system of one degree of freedom described by the Lagrangian L(t, q, q)
and we modify this Lagrangian in the form L' = L+ dA(t, q)/dt. The dynamical equations derived

from L’ are:

r=r+ 22, 6L’787L+82)\+@,
TE T 9 T a¢Y ag T g T agot T a2 T

OL' 0L  ON d (OL'\ _d (OL\  d (ON\ _d (OL\ 9\ &\
3¢ 0q "ag dt\ag) dat\aq)  at\aq) at\aq) " otag " ot

and thus
oL _d (oL'\ _oL _d (9L
dq dt \ 98¢ )  9q dt \ 9qg

and therefore L' and L produce the same dynamical equations. This result is completely general

if L depends on more than one degree of freedom or even if the Lagrangian depends on higher
order derivatives. The only condition is that the function A must be a function of the kinematical

variables.

1 J.M. Levy-Leblond, Comm. Math. Phys. 12, 64 (1969).
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Let G be a transformation group of the enlarged configuration space (¢,q;), that can be
extended to a transformation group of the kinematical space X. Let g € G be an arbitrary
element of G and 2/ = gz, the transformation of . Consider a mechanical system characterized
by the action function A(z1,z2) that under the transformation g is changed into A(x},25). If
G is a symmetry group of the system, i.e., the dynamical equations in terms of the variables x’
are the same as those in terms of the variables x, this implies that A(z],2}) and A(z1,22) are
necessarily equivalent action functions, and thus they will be related by:

A(gr1, gra) = A1, 22) + g; 72) — a(g; 21). (1.13)

The function « will be in general a continuous function of g and x. This real function a(g;z)
defined on G x X is called a gauge function of the group G for the kinematical space X.
Because of the continuity of the group it satisfies a(e;x) = 0, e being the neutral element of
G. If the transformation ¢ is infinitesimal, let us represent it by the coordinates d¢%, then
a(dg;x) = 69 As(x) to first order in the group parameters. The transformation of the action
function takes the form

A(0gx1,0912) = A(w1,22) + 697 Ay (w2) — 097 Ay (1),

i.e., in the form required by Noether’s theorem to obtain the corresponding conserved quantities,
as we shall show in the next section. In general, A, functions for gauge-variant Lagrangians are

obtained by
_ Oa(g; )

Ao(T) = s (1.14)

g9=0

Because of the associative property of the group law, any gauge function satisfies the identity

a(g’ g7) + alg;z) — alg'giz) = €(d. 9), (1.15)

where the function £, defined on G x G, is independent of  and is an exponent of the group G.
This can be seen by the mentioned associative property of the group law. From (1.13) we get:

A(g' gz, g gxe) = A(z1,22) + alg g; 22) — alg’'g; 1), (1.16)

and also
A(g'gx1,9'gwa) = Algar, ga2) + a(g's gz2) — alg's gz1)
= A(z1,22) + algiz2) — algiz1) + alg’; gr2) — alg'; g1),
and therefore by identification of this with the above (1.16), when collecting terms with the same
T argument we get

a(g'; gr2) + alg; x2) — alg'g; 2) = alg’; gz1) + a(g; 1) — alg'g; 21),

and since x1 and z2 are two arbitrary points of X, this expression is (1.15) and defines a function
£(q9', g), independent of .

It is shown by Levy-Leblond in the previous reference that if X is a homogeneous space of
G, i.e., if there exists a subgroup H of G such that X = G/H, then, the exponent ¢ is equivalent
to zero on the subgroup H, and the gauge functions for homogeneous spaces become:

a(g;z) = &(9, ha), (1.17)

where h, is any group element of the coset space represented by x € G/H.

For the Poincaré group P all its exponents are equivalent to zero and thus the gauge functions
when X is a homogeneous space of P are identically zero. Lagrangians of relativistic systems
whose kinematical spaces are homogeneous spaces of P can be taken strictly invariant.
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However, the Galilei group G has nontrivial exponents, that are characterized by a parameter
m that is interpreted as the total mass of the system, and thus Galilei Lagrangians for massive
systems are not in general invariant under G. In the quantum formalism, the Hilbert space
of states of a massive nonrelativistic system carries a projective unitary representation of the
Galilei group instead of a true unitary representation. '?

1.4 Generalized Noether’s theorem
Noether’s analysis for generalized Lagrangian systems also states the following

Theorem: To every one-parameter group of continuous transformations that
leaving the dynamical equations invariant, transform the action function of the
system in the form

A(dgx1,dgxe) = A(x1, x2) + Aw2)dg — A(21)dg,

and where A(x) is a function defined on the kinematical space, there is associated a
classical observable N, which is a constant of the motion.

This observable N is written, as we will see in (1.37), in terms of the function
A(z), is linear in the Hamiltonian H and in the canonical momenta p;(,), and depends
on the infinitesimal action of the group on the kinematical variables.

In addition to the function A(z) contains as many terms as kinematical variables.

The requirement of Noether’s theorem for the transformation of the action function is equivalent to the require-

ment for the Lagrangian to transform under the corresponding infinitesimal transformation in the way:

d\(z)
dr

i.e., invariant up to a total 7—derivative of a function of the kinematical variables.

L(6gz,b6g2) = L(z, i) +

dg,

Proof:

Let us assume the existence of a one-parameter continuous group of transformations G, of the
enlarged configuration space (¢, ¢;), that can be extended as a transformation group of the whole
kinematical space X. Let dg be an infinitesimal element of G and its action on these variables
is given by:

t—t = t+6t=t+ Myt q)dg, (1.18)
G(t) > () = a(t)+06at) = at) + MO (¢ q)dg, (1.19)

and its extension on the remaining kinematical variables by

V) = V) +6dV @) =gV t) + MUt q,qM)sg, (1.20)

i
and in general

) =P +6¢7®) = 1)+ MO (t,q,...,¢"N)6g,  s=0,1,... k-1, (1.21)
where My and Mi(o) are functions only of ¢; and ¢ while the functions Mi(s) with s > 1, obtained
in terms of the derivatives of the previous ones, will be functions of the time ¢ and of the
variables ¢; and their time derivatives up to order s.

12 see ref.7 and also J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory

and its applications, Acad. Press, NY (1971), vol. 2, p. 221.
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For instance,
SOy = i) _ dlat) + M20g) dt

dt’ dt dt”’

but up to first order in dg

dt’ dMo(t,q) dt dMo(t,q)

— =1 : —~1l-——"4

@ T a9 w a7
and thus o

/(1 dM; 7 (t,q dMy(t,
¢t =gV () + ( dt( ) o (Zl(t q>> 8g,

and comparing with (1.20) we get

(0)
(1) @y _ dM; (L, q) (1) dMo(t, q)
MW (¢ (
s (g, g ) 7 q; TR

where the total time derivatives
dMo(t, q) 8M0 Z aMO o M (t,q) oM oM

dt ’ dt _8t+jaqj i

The remaining Mis) for s > 1, are obtained in the same way from the previous Mi(kl).

Under dg the change of the action functional of the system is:

!

to to
sAlg) = /‘Lwﬂ?%wwﬂ—/’Luﬂﬁu»ﬁ
2

t1

th t2
= [+ a0 + s @nar — [ Lt g @)
t) t1
By replacing in the first integral the integration range (¢},t5) by (¢1,%2) having in mind the
Jacobian of ¢’ in terms of ¢, this implies that the differential dt’ = (1 + d(dt)/dt)dt, and thus:

2 s s d(6t t2 s
SAlq] = / L(t + 6t ¢ + 6] ))<1+(>>dt_/ L(t, gt

t1 dt t1
_ /tz Ld(5t) 87[/& n oL (5 (s )( 1) at

keeping only for the Lagrangian L(t 4 0t, ¢**) 4+ 6¢(®)), first order terms in its Taylor expansion.

Now, in the total variation of 5qz(s)( t) = q’z(s) (t)— (S)( t) is contained a variation in the form of

(s)

the function ¢, (¢) and a variation in its argument ¢, that is also affected by the transformation

of the group, i.e.,

50 = ¢t +5) — gV 1) = ) — g (1) + (g (t) /)6t
= 3¢ ) + "V ()at,

7

where SqZ(S) (t) is the variation in form of the function qz(s) (t) at the instant of time ¢. Taking
into account that for the variation in form

5q7 (1) = & (5qi(t)) /dt* = d(5q"~ (1)) /dt,

it follows that

5Alq) _/ttz (Ld(ét) oL oL -

(s
(5) 0L dg;
at T ortt T pm0h F 5t> dt

8q(5) dt

)
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Figure 1.2: Transformation of point A into A’, and the curve ¢(t) into ¢'(t') under an
infinitesimal transformation. the variation d¢ = BA’ is the sum of the part BC = ¢(§t and
the part CA’ = §q, which is the variation of the function ¢ at constant ¢, which we call here
the "form variation" of the function.

t2 d(Lot) OL - (s
= + dq; () | dt. (1.22)
/t1 ( dt 3(]2-(5)
Making the replacements

oL - oL -

87(]15% - aqzéq”u
oL < (1 _ oL d(5 ) d d oL \ - ‘
PO 3q<1> i = omn )~ g 9q0 ) %

dq!
_ 4
di

(2
25)4)-5 (2)
)-w >+

oL - d L < (k-1 d [ d
oq; = — o -\ =
aql(k) dt (8%@ Codt \ dt

S dt
oL - 8L _
) 5%'(2) =
0q;
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d (< k-1 | OL
+ +dt 0q; 8q-(k)

(1.26)

The terms between squared brackets [...], (1.24-1.26) are the conjugate momenta p;(s) of the
generalized coordinates, except the first one (1.23), which is the left-hand side of (1.4) and
vanishes identically if the functions ¢; satisfy the dynamical equations. Thus the integrand of
the variation of the action functional, except the first term (1.23), is the time derivative of a
sum of terms.

Generalized coordinates and generalized canonical-conjugate momenta:

In ordinary Lagrangian systems that depend only on first order derivatives of the independent
degrees of freedom, the canonical approach associates to every generalized coordinate g; a dynamical
variable p;, called its canonical conjugate momentum and defined by

0L
pi = P
As a generalization of this, for Lagrangian systems depending on higher order derivatives, the
generalized canonical formalism defines as generalized coordinates the degrees of freedom g;
and their time derivatives qﬁs) up to order k—1, i.e., the generalized coordinates are the kinematical
variables with the time excluded. Then each generalized coordinate has a canonical conjugate
momentum defined according to the mentioned squared brackets terms:

oL d { oL w1 d¥1 [ OL

Pi1) = _ 2 +o 4 (=1) — | —~ 1.27

(1) ang) dt (8%(2)) dtk—1 8q§k) ( )
oL d { oL v d*72 [ OL

Di(z) = < + 4 (=) — [ == (1.28)
DT o @ (aq53>> 42\ 9"

.
Di(k) = W (1.29)

55—1) and, as a general
rule we see that the first term contains the partial derivative of L with respect to qgs), i.e., with

respect to the first time derivative of the corresponding canonical conjugate generalized coordinate

We say that p;(,) is the canonical conjugate momentum of the coordinate g

Es_l). From its definition these canonical momenta satisfy

aL d (s .

Pigs) — S):fp””, i=1,...,n, s=1,....k—1. (1.30)
9q; dt
With this definition of the canonical momenta Euler-Lagrange equations (1.4) are written as:
dpiay 0L

= , i=1,...,n. 1.31
a  og " " (1.31)

In this way if a Lagrangian is not an explicit function of some degree of freedom g¢;, the correspond-
ing conjugate canonical momentum p;(1), is a constant of the motion.

Now if we introduce in the integrand the variables ¢; that satisfy Euler-Lagrange equations,
the variation of the action functional (1.22) is transformed into the variation of the action
function along the classical trajectory, and therefore, the variation of the action function can
be written as,

2 q - - = (b
0A(x1,m2) = / p7 {L5t + (5Qipz'(1) + 8¢ piay + -+ 6q" 1)pz‘(k)> } dt, (1.32)
t1
with p;(s) given in (1.27)-(1.29). If we replace in (1.32) the form variation gqgs) = (5q§s) —qz-(SH)(St,
then
" d (5) (5)
SA(x1, 0) = /t = {L5t+6qi Pifss1) — 4. pi(s)(St} dt (1.33)
1

13 B.T.Whittaker, Analytical Dynamics, Cambridge University Press, Cambridge (1927), p. 265.
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(s)

with the usual addition convention. By substitution of the variations ¢ and dg;”" in terms of

the infinitesimal element of the group dg, (1.19-1.21), we get:

to d 1
SA(z1,w2) = /t A (L= pioal™) Mo+ pio ™} dgat, (1.34)
1
with the following range for repeated indexes for the addition convention, ¢ = 1,...,n, s =

1,...,kbu=0,1,...,k—1,
In the above integral we are using the solution of the dynamical equations, and therefore
the variation of the action function is

6A(z1,2) = A(dgx1, 6g22) — A1, 22).
If it happens to be of first order in the group parameters in the form
6A(z1, 22) = A(w2)d9 — A(21)dg, (1.35)
which is equivalent to the Lagrangian transforming in the way

L(6gx,6g&) = L(x, &) + 59d)6‘l(7x)7

and therefore the dynamical equations are invariant, then equating (1.35) to (1.34) we can
perform the trivial time integral on the right hand side. The group parameter dg cancel out
on both sides, and rearranging terms depending on #; and {2 on the left- and right-hand side,
respectively, we get several observables that take the same values at the two arbitrary times
t1 and t2. They are thus constants of the motion and represent the time conserved physical
quantities,

N = )\(l’) - (L _pz(s)ql(S)) MO - pi(s+1)Mi(S)7 (136)

where the term within brackets H = pi(s)qgs) — L is the generalized Hamiltonian. It is written
as the product of each generalized momentum times the time derivative of the corresponding

conjugate generalized variable minus the Lagrangian, and finally

N = A(z) + HMo(t,q) — piy M V(t,q,...,q). (1.37)

If the symmetry group has r parameters, there exist r constants of the motion related to the cor-
responding infinitesimal transformations (1.35) of the action function under the corresponding
r-parameter Lie group.

Expression (1.37) is a linear function of the Hamiltonian and of the canonical momenta,
where the coefficients, in addition to the function A\(x), are functions of the kinematical variables.
If we consider that the Hamiltonian can be interpreted as the conjugate momentum of the time
variable t, then each term contains the product of each momentum times the infinitesimal
transformation of the corresponding conjugate generalized variable, 6t = dg My, 5q§5) = (5gMi(S),
s=20,1,...,k — 1, from the time t till the kinematical variables qgk_l). The only difference is
that the Hamiltonian is preceeded by a + sign while the remaining momenta are affected by
the — sign.

Since A(x)dg has dimensions of action, all terms in (1.37) have the same physical dimensions
than A(z), and therefore the Noether constants of the motion have the complementary
dimension with respect to the action of the dimension of the corresponding group
parameter dg of the symmetry group.

The Hamiltonian and the momenta are written in terms of the functions Fj(x, %) of the
development (1.8) of the Lagrangian, as we can see in the next example.
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For example, if we have a Lagrangian which depends up to the second derivative of a degree
of freedom r, L(t,r,dr/dt,d*r/dt?) = L(t,r,u,a), and L(t,r,u,t,7,1). The Lagrangian L can be
written as ~

~ 0L . N : . .

L= a—xml = Fi(z,2)2; = Tt + Rr + U4,
where the functions 7', R and U are those partial derivatives F;(z, &) of E, which are homogeneous
functions of zero-th degree of the derivatives #;, and therefore they are functions of (¢,7,u,a). The
kinematical variables are, x = {t,r,u} and the generalized variables are ¢ = {r, u} so that we have
a momentum conjugate of r, p, and another p,, the canonical conjugate of u and thus we have:

OL _ oL/ ok _19L; L o

ou OFr Ou tOr  Or

since 7 = uf. Similarly B B B
oL _o(L/h i _10L; oL _
da  Ou Oa tOu  Ou

U

since @ = at.
The momentum p, is defined according to (1.27-1.29)

_ 9L _d (oL\ _O0L d (0L _p_ WU
Pr=%4 " at\8a )~ 0 " dt\oa ]~ i’

and the momentum p,,

oL
W= =,
b oa
which are finally expressed in terms of the functions F;(z, ) and their time derivatives. The

Lagrangian _
L=L/t=T+ Ru+Ua,

and the generalized Hamiltonian

H:pTqupuafL:Ruf%quUafoRufUa:fo%u.

The functions F;j(z, &) and their time derivatives are homogeneous functions of zero degree

in terms of the derivatives of the kinematical variables #’. Functions A\(z) and Mi(s) () depend
only on the kinematical variables. Consequently, Noether constants of the motion are also
homogeneous functions of zero degree in terms of the derivatives of kinematical variables and
thus invariant under arbitrary changes of evolution parameter. They are only functions of the
time derivatives of the degrees of freedom.

1.5 Atomic Principle: Elementary particles

In Newtonian mechanics the simplest geometrical object is a point of mass m. Starting
from massive points we can construct arbitrary systems of any mass and shape, and thus
any distribution of matter. The massive point can be considered as the elementary particle
of Newtonian mechanics. In the modern view of particle physics it corresponds to a spinless
particle. We know that there exist spinning objects like electrons, muons, photons, neutrinos,
quarks and perhaps many others, that can be considered as elementary particles in the sense that
they cannot be considered as compound systems of other objects. Even more, we do not find
in Nature any spinless elementary particle. It is clear that the Newtonian point does not give
account of the spin structure of elementary particles and the existence of spin is a fundamental
intrinsic attribute, which is lacking in Newtonian mechanics, but it has to be accounted for.

In quantum mechanics, Wigner’s work '* on the representations of the inhomogeneous
Lorentz group provides a very precise mathematical definition of the concept of elementary

YE.P. Wigner, Ann. Math. 40 149 (1939).
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particle. An elementary particle is a quantum mechanical system whose Hilbert space of
pure states is the representation space of a projective unitary irreducible representation of the
Poincaré group. Irreducible representations of the Poincaré group are characterized by two
invariant parameters m and S, the mass and the spin of the system, respectively. By finding
the different irreducible representations, we can obtain the quantum description of massless and
massive elementary particles of any spin.

The very important expression of the above mathematical definition, with physical conse-
quences, lies in the term irreducible. Mathematically it means that the Hilbert space is an
invariant vector space under the group action and that it has no other invariant subspaces. But
it also means that there are no other states for a single elementary particle than those that
can be obtained by just taking any arbitrary vector state, form all its possible images in the
different inertial frames and finally produce the closure of all finite linear combinations of these
vectors.

We see that starting from a single state and by a simple change of inertial observer, we
obtain the state of the particle described in this new frame. Take the orthogonal part of this
vector to the previous one and normalize it. Repeat this operation with another kinematical
transformation acting on the same first state, followed by the corresponding orthonormalization
procedure, as many times as necessary to finally obtain a complete orthonormal basis of the
whole Hilbert space of states. We see here the idea of the atomic principle. There are no more
states than the possible kinematical modifications of any one of them. If the elementary particle
changes its state, it is possible to find another inertial observer who describes the particle in
the same state as before the modification.

In the Lagrangian formulation if we prepare the particle in the initial state z; to evolve to
the final state xa, this final state and any intermediate state can always be obtained by means
of a change of inertial observer, i.e., xo = gz, for some element g of the kinematical group
G. This is not possible for any arbitrary mechanical system. This is what distinguishes an
elementary system from another one which is not elementary. The manifold X, the kinematical
space must fulfill this restriction, that given any two points on it it is always possible to find a
kinematical transformation that links them. We thus arrive at the

Atomic Principle: A classical elementary particle is a Lagrangian system
whose kinematical space X is a homogeneous space of the kinematical group G.

The Galilei and Poincaré groups are ten-parameter Lie groups and therefore the largest
homogeneous space we can find for these groups is a ten-dimensional manifold. The variables
that define the different homogeneous spaces will share the same domains and dimensions as the
corresponding variables we use to parameterize the group. Both groups, as we shall see later,
are parameterized in terms of the following variables (b, a, v, &) with domains and dimensions
respectively like b € R that represents the time parameter of the time translation and @ € R3, the
three spatial coordinates for the space translation. Parameter v € R? are the three components
of the relative velocity between the inertial observers, restricted to v < ¢ in the Poincaré case.
Finally a € SO(3) are three dimensionless variables which characterize the relative orientation
of the corresponding Cartesian frames and whose compact domain is expressed in terms of a
suitable parameterization of the rotation group.

In this way the maximum number of kinematical variables, for a classical elementary particle,
is also ten. We represent them by x = (¢t,7,u,a) with the same domains and dimensions as
above and interpret them respectively as the time ¢, position r, velocity u and orientation
« of the particle.

Because the Lagrangian must also depend on the next order time derivative of the kine-
matical variables, we arrive at the conclusion that L must also depend on the acceleration and
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angular velocity of the particle. The particle is a system of six degrees of freedom, three 7,
represent the position of a point and other three ¢, its orientation in space. We can visualize
this by assuming a system of three orthogonal unit vectors linked to point r as a body frame.
But the Lagrangian will depend up to the second time derivative of =, or acceleration of that
point, and on the first derivative of «, i.e., on the angular velocity. The Galilei and Poincaré
groups lead to generalized Lagrangians depending up to second order derivatives of the position.

By this definition it is the kinematical group G that implements the Restricted Relativity
Principle which completely determines the structure of the kinematical space where the La-
grangians that represent classical elementary particles have to be defined. Point particles are
particular cases of the above definition and their kinematical space is described by the variables
(t,r), time and position. Given any two points (¢1,71) and (t2,72), con to > t1, a spacetime
translation transform one into the other, so that this kinematical space is a homogeneous space
of both Galilei and Poincaré group. In this way, the proposed formalism can be accommodated
to any symmetry group. It is the proper definition of this group which contains the physical
information of the elementary particles, but this group is still unveiled.

Example: Galilei point particle
It is a mechanical system of three degrees of freedom 7, the position of the point. It has four
kinematical variables, © = {t,r}. If we define the initial state by 1 = {t1, 71} and the final state
of the evolution x2 = {t2, 72}, we see that a spacetime translation transform one into the other, and
therefore the kinematical space is a homogeneous space of the Galilei group. It is an elementary
particle according to the above definition. Of course, the spacetime translation subgroup is also a
subgroup of the Poincaré group, and thus this point particle is also an elementary particle from
the relativistic point of view. We shall obtain in the next chapter that, if the evolution is free, the

Lagrangian is )
1 (dr ~ 1 4

L() = §m (E) B L() = imT
in terms of the independent degrees of freedom and also a homogeneous function of first de-
gree in terms of the T—derivatives of the kinematical variables. We see that Lo depends on the
T—derivatives of all kinematical variables. Euler-Lagrange dynamical equations obtained from Lg
are d*r/dt> = 0, and we have to use as boundary conditions that the solution goes through the
initial and final states z1 y x2, respectively,

Ty — T
r(t) =11+ ———(t—t1), tE[t,ta].
ta—t1

In terms of some arbitrary evolution parameter 7, the solution is:
t(T):t1+(t2—t1)(T—T1), T‘(T):T‘1+(T‘2—T1)(T—T1), 7—6[7—1,7'2].
If we redefine the evolution parameter as @ = (7 — 71)/(72 — 71), we can have a dimensionless
evolution parameter such that the initial and final instants correspond to #; = 0 and 02 = 1, and
therefore
t(G) =t + (tQ — t1)0, 7‘(0) =71+ (1’2 — 1"1)9, 0 e [07 1]
The action function, i.e., the integral of the Lagrangian along the classical path is
to 2 2
m re — 71 m (ro —r1)
A = — dt = =327 "1/
(1‘1,332) 2 /t <t27t1> 2 to—1t1 ’

1

which is finally expressed in terms of the end points variables and of the intrinsic characteristic
parameter of this spinless object, the mass m.

The Lagrangian Lo can be obtained from the action function through the limiting process of (1.10)
by taking the derivatives with respect to the variables t2 and 72 and making the limit 2 — 1,

2 g "2 ~
{8A. dA . ]:%lim[ (ra—r)” plr2—m)ei] _mi” 7

b _ _
Oto + Ora; T2 2—1 (t2 — t)2 to —t 2t

Noether’s theorem leads us to find that the energy and linear momentum are expressed in terms
of the partial derivatives of Lo, in the form:
Lo 1 _#* m (dr\* dLo P dr
= = = M- = — s = ——— =M= =Mm—.
ot 2 ¢2 2 or t dt

lim
2—1

dt
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They are homogeneous functions of zero degree in terms of the derivatives of the kinematical
variables, and therefore functions of the time derivatives of the degrees of freedom. These conserved
magnitudes are independent of the evolution parameter 7.
This Lagrangian is a homogeneous function of first degree in the derivatives { and 7, so that we
can write it as a sum of as many terms as kinematical variables:

~ OLo;  OLog . : .

Lo = WtJra—hn =—Ht+p- 7.

Exemple: Poincaré point particle
It is a mechanical system of 3 degrees of freedom, 7, the position of a point. Like in the previous
exemple the space generated by ¢,7 is also a homogeneous space of the Poincaré group. It thus
represents an elementary particle, the relativistic point particle. Let us consider the following free
Lagrangian, which will be obtained in the next chapter,

= : ; d
Lo = —mc®\/1—v2/c2, Lo=—meVc2i2 — 72, v= d—:
in terms of the degrees of freedom and also as a homogeneous function of degree 1 in terms of
the derivatives of the kinematical variables. We can also see that Lo depends on the derivatives
of all kinematical variables in this case. The dynamical equations reduce to d*r/dt*> = 0, and the
solution passing through the end points z1 = (t1,71) and x2 = (f2,72), is, as in the previous case,

Q_TI(

T
'r(t):r1+ m t*tl), te[tl,tz}.

2 —1t1

The action function is

t2
A(z1,22) = / Lodt = —mer/c2(ty — 11)2 — (12 — 71)2,

t1
which is finally expressed in terms of the kinematical variables of the initial and final state, of the
only mechanical parameter of the spinless particle the mass m, and of the universal constant c.
Since the action is a real observable, the above expression is not valid for those end points which
satisfy c?(t2 — t1)? — (r2 — 71)? < 0, because in this case the squared root will be pure imaginary.
The Causality principle requires that the points causally conneted satisfy the condition

02(t27t1)27(r277'1)2>0, oor v<ec.

The Lagrangian Lo can be obtained from the action function through the limit process (1.10) by
taking the derivative with respect to the variables ¢2 and r2 and taking the limit 2 — 1,

2 —_— i —_— . r ~
lim {%t + —8A h} = —mec lim ettt — (r2—m) 7 = Lo.
Ot Ora; 2—1 \/Cz(tz — t1)2 — (7‘2 — 1"1)2 \/62(t2 — t1)2 — (TQ — ’l”’1)2

Noether’s theorem gives rise to the energy and linear momentum which are expressed in terms of
the derivatives in the form:

dLo 2t mc? 9
—— =mec = = v(v)mc”,

ot Veriz — i 102/

8ZO —7 mv ( ) v
= —— = —mc = = = 7y(v)mv.

or vz — 2 T—2/c2
They are homogeneous functions of zero degree in terms of the derivatives of the kinematical
variables, and thus they are functions of the time derivatives of the degrees of freedom. The
conserved magnitudes are independent of the evolution parameter 7, like in the Galilei case.
The Lagrangian is also a homogenenous function of degree 1 in the derivatives ¢ and 7, and therefore
we can express as a sum of as many terms as kinematical variables:

~ 9Ly, Ly, . .
Lo = —t . = —Ht L.
0 EY; + ahr +p-r
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Example: Non-elementary System

Let us assume a material system characterized by the kinematical variables: (¢,71,72), i.e., a time
variable and the position of two points. If we give two sets of values for these variables at the end
points of the evolution z1 = (¢t(71), r1(71), 72(71)) and x2 = (t(72), r1(72), r2(72)), it is not possible
to find a transformation among inertial observers which transform one into the other because if
the time translation brings ¢(71) to t(72) and the space translation takes 71(71) into r1(72), it is
impossible, in general, that this translation also transforms r2(71) into 72(72), except if the two
points are rigidly bounded. The kinematical space is not a homogeneous space of the subgroup of
spatial translations. This system of 6 degrees of freedom cannot be considered as representing an
elementary particle.

Exemple: The quark.
Let us consider that a quark can be described as a classical system. In this case we have to locate
its interacting properties. In the case of the electron which only interacts electromagnetically we
have to locate a single point, the center of the electric charge. In the case of the quark we have to
locate the center of the electric charge and the center of the color charge, and therefore to obtain
the evolution of two points. By the previous example, if we have a system with two characteristic
points 71 and r2 among the kinematical variables, this manifold is no longer a homogeneous space
of the Poincaré group. Then necessarilly if we were able to describe a quark we will only need a
single point, the center of charge, the center of all charges, to describe all the interacting properties.
This argument also holds for the electron if we consider that the weak interaction is different than
the electromagnetic interaction, so that the center of the weak charge must be the same as the
center of the electric charge.

1.5.1 Aplication to some simpler kinematical groups

Let us consider that physical laws are invariant only under spacetime translations. It is
equivalent to assume that the kinematical group of spacetime transformations associated to
the Restricted Relativity Principle is just the group G = {R*, +} the four-parameter group of
spacetime translations:

t'=t+b, =r+a.

In this case the largest homogenous space of this group is the group itself, and therefore the
kinematical variables are (¢,7). We are describing the point particle localized at point r. Be-
cause the only symmetries are translations, Noether’s theorem only produces four conserved
quantities, the observables H and P, energy and linear momentum, respectively, and there-
fore angular momentum conservation is not described in this restricted symmetry group. The
Lagrangian for this system will be a function of (¢, 7, u), being u the velocity of point r.

Let us go further and assume that physical laws are also invariant under spatial rotations.
Then the action of group G on space-time is given by

t'=t+b, 7 =R(@)r+a,

which depends on seven parameters. The largest homogeneous space is the whole group and
we have as kinematical variables (¢, 7, &) and we say that the elementary particle is localized at
point 7, and has an orientation described by the variables a«. The Lagrangian for this particle
will be a function of (f,r,u,a,w), and will depend, in addition to the velocity of point 7,
u = dr/dt, of the velocity of the change of orientation or angular velocity w. For this particle
Noether’s theorem gives us an angular momentum observable. This particle has spin. We are
describing something formally equivalent to a rotating rigid body.
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The next step is to consider that the kinematical group also contains pure inertial transfor-
mations of constant velocity (boosts). We have three new parameters which can enlarge our
kinematical space with three new kinematical variables with physical dimensions of velocity.
The Lagrangian will also depend on the acceleration. We shall analyze in the next chapters this
possibility by assuming that the kinematical group is either the Galilei group G or the Poincaré
group P.

1.6 Metric structure of the kinematical space

The manifold X, the kinematical space of any Lagrangian mechanical system, has always a
metric structure. It is a Finsler space in which the metric is a function not only of the point z,
but also of the derivatives . In fact, since L(z, ) is a homogeneous function of first degree in
terms of the variables i, it implies that L?isa homogeneous function of degree 2 of the variables
@', Then if we replace in L?(z, %) each % by \i® =y, L?(z, A1) = L*(x,y) = \2L?(z,@). If we
derivate twice with respect to A and we make afterwards A =1,

- OL2 S 9212 o
T2 (w, ) = 2@ s of2y 4y = T iy
oy’ 0yt oy? .
we get
=y, . i 1 92L2
Lz, &) = gij(x,2)2'd7,  gij(x,4) = 3 5aiga7 — %

where the functions g;;(z, ) are homogeneous functions of zero-th degree of the i and therefore
they only involve time derivatives. But in addition of being functions of the point x, they are,
in general, functions of the . A metric space whose metric is also a function of the derivatives
of the variables of the manifold is called a Finsler space® 16,

Since £L = +V Z2, the variational problem in the kinematical space X can be rewritten as

T2 _ T2 = T2
/ L(z,z)dr = / \/ L2(z, &)dr = / \/ 9ij(x, &)t EIdr =
T T1 T1

1
To . . To
—/ gij(x, &)dx'dxl —/ ds,
1 1

where we can interpret ds as the arc length of the curve joining two close points in the kine-
matical space, and the above integral as the length between the end points of the path followed
by the system in the kinematical space X.

The variational problem of making extremal the action of the mechanical system is equivalent
to consider that the distance, in the kinematical space X between z; and x2, has to be a
minimum, and our variational formalism is equivalent to a geodesic problem in a metric space.
The evolution of any dynamical system between the initial state 21 yo the final state x2, follows
a geodesic in the state space X. This is independent of whether the system is a free particle or
any interacting arbitrary system. What happens is that the difference between a free particle
and an interacting particle, is that the corresponding Lagrangians, and thus the metrics, are

15@G.S. Asanov, Finsler geometry, Relativity and Gauge theories, (Reidel Pub. Co, Dordrecht 1985); H. Rund,
The Hamilton-Jacobi theory in the calculus of variations, (Krieger Pub. Co., N.Y 1973). H. Rund, The differential
geometry of Finsler spaces, (Springer, Berlin, 1959).

16 Paul Finsler Born in Heilbronn, Neckar, Germany, the 11th of April of 1894 and died in
Zurich, Switzerland, the 29th April of 1970. He devoted mainly to differential geometry and set
theory. It was Elie Cartan in 1934 who published a book entitled Les espaces de Finsler, where
he named Finsler spaces to the metric spaces related to the variational formalism we are going to
consider.
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different. Any interaction modifies the metric of the kinematical space of any free
particle.

Under transformations of the kinematical space which leave the Lagrangian invariant, the
magnitudes g;; transform like the covariant components of a second rank symmetric tensor.

Given the Euler-Lagrange dynamical equations of a mechanical system, the variational for-
malism implies that we have to search for solutions of these equations passing through the
extremal points 1 and x2. Given two arbitrary points it may happen that no solution exists
joining them. If we prepare the system at the initial state z;, we shall say that the state z2
is caussally connected with z1, if the Euler-Lagrange dynamical equations have a solution
between them. Otherwise we shall say that they are caussally disconnected and therefore it is
impossible to bring, by dynamical evolution, the system from state x; to the state z2. Since
L2 > 0, the metric of the space is definite positive between the states caussally connected, and
if it happens that this quadratic form between two close points does not satisfy L? > 0, they
will be caussally disconnected and the evolution between them is physically impossible.

For the free relativistic point particle of mass m, the Lagrangian is written as

Lo = £mey/@2 — 72,z = ct.
If we divide Lo by the constant mc, the Lagrangian has now dimensions of length and the metric
is clearly gfg) = Ny, with 1, = diag(l,—1,—1,—1). Since L? > 0 this implies that at any T it
must hold that any point joining with x1 must satisfy 7,,2"%” > 0. Then the points caussally
connected with it are those of the interior of the forward light cone. The remaining points of the
kinematical space (which for the point particle is the spacetime) are caussally disconnected. These
are the points of the past and those on the light cone and outside it. In these cases [? < 0, and

Euler-Lagrange equations do not fulfill physical solutions.

Given the general structure of any Lagrangian L = Fj(z, )i, with F; = 0L/, is easy to
see that the metric coefficients are written as

1 9212 o (~0L ~ 0°L ~OF;
ot 0L 9 (FOLN  pp 7 9L pp 19 1
9 = 3 piiogi 8;&’( aw) it orion it e (1.38)

coefficients which are symmetric in their indices because OF; /037 = OF;0i".

For the free point particle, the rescaled Lagrangian

_0Lo _ iy OFu _ M duds

“Toan T T, 0 L, I8

~ OF,  dudy o+ (Nu  dpdy
gu:FFu+LO .#: i + Lo ~ = = Nuv
e div 2 Lo L3 g

whether we consider Eo as well as —EO.

In general, the kinematical space will have a metric which depends on z if the Lagrangian
is a function of z, but in any case it will always be a function of #%. In the case of the free
relativistic particle, the metric does not depend on x nor & as it corresponds to a free system on
spacetime where all points and all velocities are equivalent. But if we introduce an interaction
and the intensity of this interaction depends on the velocity, as is the case when we have a
magnetic field, the homogeneity of spacetime is destroyed, the metric is no longer uniform, and
it will be, in general, a function of the velocity of the point.
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1.6.1 Geodesics on a Finsler space

The magnitudes 4 transform as the contravariant componentses of a vector on X. They
are the components of the tangent vector to the trajectory followed by the characteristic point
of the dynamical system on the kinematical space X. If the Lagrangian L is invariant under
the transformation & — 2/, L(2/,4') = L(x, &), then the magnitudes F; = OL/di¢, transform
as the covariant components of a vector on X.

. OL(x,%) OL(«,%')0i7 0
Fi(z, &) = — = — — =
(2,2) ot ox'i o ol

Fj(x/,jc/).

The covariant components of the tangent vector can be defined by means of the metric tensor

as usual
T = gijd’ .
Since
L= 8(.7',4'):1:1’ 2 = La(x'i)xz = giijxJ = g3, =@ = gijfUZ — Léjgi) = LF,

and therefore L2 represents the squared absolute value of the tangent vector, and the vector

_OL@d) & ppi

F; d
! it I

represents the tangent unit vector.
If we take the derivative of &; with respecto to 27, we obtain

O _ 0 (oL _ 0 (10L%) 1 &°L* _
ox 0@ \ o |~ 0ii \204 | T 20404 9

Geodesic equations are Euler-Lagrange’s equations, i.e.,

0L d (0L _,
oxt  dr \ it |

OL 1 0L 1 9(gui’d®)  i7i* dgy,

oxt o Oxt o oxt 9], Oz’
and B
oL T; 1 .
ozt I’ ngm
d (9L 1dL ., ldg;.;, 1
— e D BTl L Y RN
dr (83:’) 12 dr J* + I dr T Eg”x
Also N -
dgij  09ij .x . 09ij..x 1 dL  1d(logL)
= T+ 7. L, = ==,
dr  OxF ik T2dr I dr

so that we can eliminate the L of all denominators. If we take the evolution parameter as the
arc length, L =1 and log L = 0, we arrive to the geodesic equations

g
9ig® 2 Oxt oxk Ok '



20 CHAPTER 1. FUNDAMENTAL PRINCIPLES

The last term vanishes because of the symmetry of the metric tensor,

8gij 1 ( 8322 ) o 89@'19

oik ~ 2\ 0i0I0ik | T 0ii’
and taking the contraction with @7, this gives dg;, /047 @7 = 0, because g;; tensor is a homo-
geneous function of zeroeth degree in terms of the . In the second term the indices j, k are
dummy indices and we can write that term as

99ij ..k L (095  Ogik\ .;.k
0rF " T2 \owh T aa )T

The contravariant components of the metric tensor are defined as usual as g”gij = (55-. By
making use of this tensor, contraction of (1.39) with g%, we arrive to

i+ Tl ik =0, (1.40)

where

2 oxk  OxJ ozt ki

the Finslerian Christoffel symbols are defined in the same way as in a Riemannian space in
terms of the derivatives of the metric tensor with respecto to the varibles . The only difference
with the Riemannian case is that they are also functions of the .

An alternative expression of the geodesic equation is

rt - lg“ <39ij L 99k _ agjk) _
L : :

k- L (Ogi  Ogir  Ogu
9iji = WgaFil, Wiy = 3 (8’;’ - 5;1 - 85;’“ = Wik (1.41)

The kinematical space X is, in general, a Finsler space with torsion. Cartan torsion tensor is

the symmetric tensor
C - 1 8gij - 1 83[/2
UET 995k T 4\ 9ii0pioik |

Riemannian spaces are Cartan torsion free spaces, because the metric is independent of the
derivatives .

General Relativity postulates that gravity modifies the metric of space-time, i.e., the met-
ric of the kinematical space of the test point particle, and this modification produces a new
Riemannian metric, where the coefficients g;;(x) are only functions of the point x. This is a
very strong mathematical restriction because, in general, as far as the metric structure of the
kinematical space of the point particle is concerned, the new modified metric can also be a
function of the derivatives 2.

We consider that this restriction of General Relativity is a kind of low velocity limit of a
more general theory of gravitation. Another restriction is that in Nature it seems that spinless
elementary particles do not exist, and therefore, gravity considered as another interaction,
should modify the metric of the whole kinematical space of any elementary particle, which is
a larger manifold than space-time, as we shall see along this lecture course, and not only the
space-time submanifold.

As a final conclusion we could say that General Relativity seems to be a theory of gravitation
of spinless matter moving at low velocity. 17

""M. Rivas, Is General Relativity o simplified theory? J. Phys:Conference Series 437 (2013) 012008.
(ArXiv:1203.4076); Is General Relativity a v/c -> 0 limit of a Finsler geometry? (Contribution to the Spanish
Relativity Meeting 2012), Progress in Mathematical Relativity, Gravitation and Cosmology Guimaraes, Portugal
Sept 3-7, 2012 Springer ISBN 978-3-642-40156-5.
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1.6.2 Example: Point particle under an electromagnetic field

For example, the point particle of mass m and electric charge e in an external electromagnetic
field, is described by the Lagrangian L = Lo + Ly, where the free Lagrangian Lo = —pulx)it =
—Hi+p-#, and the interaction Lagrangian L; = —eA, (z)&", such that the variational problem,
according to (1.38), is equivalent to a geodesic problem on spacetime with a metric,

o 8pﬂ

a v’
The modification of the metric vanishes when e — 0. Since p,, does not depend explicitely on
the variables x, the dependence of the metric on the point x, is through the dependence of the
external potentials A,(x). But the metric depends on the variables & through the dependence
on p, and its derivatives. In the low velocity limit, when u/c — 0, pg = mc and p; = 0, we

g,“,(x, T) = m2c277;w + 62A/LAV + e(puAu + puA )+ eAsd

(1.42)

get a Riemannian metric, such that if we divide L by a global factor mc and calling k = e/mc,
Lr = —kA,(x)i*, and thus

goo(x) = 1+ Ek2A2 4+ 2kAg = (1 + kAg(2))?,  gi(z) = —1 — kAg(z) + k2 A%(x), i=1,2,3,

g0i(x) = kAi(x) + K Ao(2) Ai(z),  gij(x) = K Ay(x)Aj(z), i#j=1,2,3

In a uniform electric field, Ag = E -r/c, A = 0, and the nonvanishing coefficients of the
Riemannian approach are goo = (1 + eE - r/mc?)?, gii = —(1 4+ eE - r/mc?). If what we have
is a uniform magnetic fielf, Ag = 0, A = (r x B)/2, goo = 1, gis = —1 + (e(r x B)/2mec)?,
goi = e(r x B);/2mc and finally g;; = (e(r x B)/2mc);(e(r x B)/2mc);, with ¢ # j. In some
interaction with only scalar potential, like in the usual gravitational field, mAg = mV(x)/c,
and goo = (1 + V(2)/c?)?, gii = —(1+ V(z)/c?), as we shall see in the examples we are going
to analyze in the coming section.

We have two ways of determining the dynamical equations of any mechanical system. One
is by the usual Euler-Lagrange equations obtained from the Lagrangian L. For the charged
point particle of this example, we have

~ i oL dA oL
L= —p, it — kA, i" — 2 — R 2 kA,
p'u,aj k lu,x 9 p,LL ($ $)1/27 axo_ kaxa_x ) 8x0 p k 3
d [ oL : A,
- = —py — kA, = —p ko F, =0, A, Ay o
dr <8:1'c‘7) Po =k axu u(@) = 05 Ay — Oy Flo (),
Ty (& - &)q

o = kFyu(2)", or — kF,,(z)i"

(x' . x‘)l/2 o ($ . x')?’/Q
If in some inertial frame the observer takes the time as evolution parameter 7 = ¢, the dynamical

equations become:
dH d
EZGE"U/, %ZG(E—FUXB)

The first equation is a consequence of the second and that for an elementary particle H2—p?c? =

m?c*, is invariant. The second equation for the position of the point is transformed into
d*r e
—=——|E4+uxB-— (u E)]
dt2  my(u) c?

Another alternative are the geodesic equations constructed from the metric g;;, given in
(1.42), which is obtained from L? by taking the second order derivatives with respect to /.
The metric is

k(A -i . .V
(CtuAy + j;'yAu) + M (77/.111 - ?ux. >

v = v sz AI/
G = My TR Ap Ay F (@ 3)1/2 & - 2)

_ k-
(x' . ¢)1/2
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goo =1+ kQA(% + 2ky(u)Ag + ky(1 — 72)(A0 —u-Afc),

gii = =1+ kA7 + 2ky(w)u;A; fe — ky(u) (Ao — u - A/e) (1 +~*ui /c?)

goi = k2 AgA; — ky(u)(A; + Agui/c) + kv3(Ag —u - A/c)ui/c,
gij = K> A Aj + ky(u) (wi Ay + ujA;) /e — ky(u)®(Ag — w - A)wu; /2, i # .

The geodesic equations are (1.41), and for space-time become
v Ao
G = W o227,

The difference with the Riemannian case, these coefficients ¥\, are functions of x and z, and
are homogeneous functions of zero degree of the z.
If, as before, we take the evolution parameter as 7 = t, since ¢ = 1, the first equation is
t = 0, and we have to solve the equations:
d’r; - dx? dx”

ri S =0
a2 e a

Cartan torsion tensor of space-time in the presence of an electromagnetic field is,

G dpy Opy Opy s 0%py
20/“’)\ = 8:1:)\ = 614_“83_3)\ + GA,/@ + eA)\aj;V + GAO-LUUW.
For the point particle Lagrangian L = — (i - &:)'/2 — k(A - &), Cartan torsion tensor is linear in
the potentials A,, and take the form:
k(A-z . . .
2Cuu)\ = W(UMAAV + nuuA)\ + 771//\Au) - (;.%’):)’/)2 (n;Mxy + Ny + 771/)\1'#)
_W(m”:@\AV + a, &, Ay + TLENAy) — W Tpdydy.

1.6.3 Another examples of Finsler spaces

In the figure 1.3 we show possible motions of a charged point particle in its kinematical
space, which in this case is spacetime, under four different dynamical situations. '8

The four trajectories are geodesics of spacetime but with respect to four different Finslerian
metrics. In (a) the motion is free, the trajectory is a straight line; in (b) the particle is under
a uniform magnetic field, and the trajectory has curvature and torsion. In this case the Finsler
metric of spacetime is different than Minkowski metric. The presence of a magnetic field has
modified the metric. In (c) it is the same free trajectory but as seen by an accelerated observer.
According to the equivalence principle, it is equivalent to the description in the presence of
a uniform gravitational field. Also in this case the metric has been modified. Finally, in (d)
we analyze the motion a point particle under the Newtonian potential produced by a mass M
located at the origin of the inertial reference frame in which the analysis is done.

In these examples, relative to the motion of a point particle of mass m, we are going to change
the scale of the Lagrangian by dividing by the factor mc, and thus L will have now dimensions
of length. We like to mention that if the evolution is expressed in terms of some dimensionless

8This subject corresponds to a talk lectured by the author at IAC in November 2014,
in Spanish. (http://iactalks.iac.es/talks/view/703) and a videoconference, in English, at VIA,
(http://viavca.in2p3.fr/site.html) in January 2015.
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Figure 1.3: Four possible motions of the point particle in its kinematical space between the
points z; and z2, (a) free case, (b) under a uniform magnetic field B, (c) free motion as seen
by an accelerated observer or motion under a uniform gravitational field g. The example
(d) is the particle under the Newtonian gravitational field of a point mass M located at the
origin of a reference frame. In the four cases the kinematical space is the same, spacetime,
but with four different Finslerian metrics, which produce different geodesics and which in
three-dimensional space are, respectively, (a) a straight line with no curvature and torsion,
(b) a line with curvature and torsion, and in (c) and (d) a flat trajectory with curvarture.

parameter 7, the metric coefficients g, are dimensionless, since spacetime coordinates have
dimension of length.
In the case (a) the Lagrangian of the free particle is:

Lo = +4/d2 —#? = F i, L2 = giti’ =2 —#? >0,

the metric is gy, = 1w with 1, = diag(l, —1,—1,—1). It is constant and corresponds to the
Minkowski metric.

In the case (b), let us assume a uniform magnetic field of intensity B along the direction of
OZ axis. We can take as the vector potential A = (0, Bz, 0) and scalar potencial Ay = 0. The
Lagrangian for the point particle under this field is

5 .o, €B . .
Lp =—\/if - 7"24‘%9@ =F,i", Fo=-po, Fi=-p1, F»=-pat(eB/mec)x, F3=—ps.

which leads to the dynamical equation under the external Lorentz force in a magnetic field:

dp
— =ecu X B.
dt
Zo c —I; —U;
po = = , pi= =
\/:b%—i'Q N \/ab%—i'Q V2 —u?

According to (1.42) with Ag = A; = A3 = 0, Ay = Bz, if we call kK = eB/mc, the variational
formulation implies that spacetime has a Finsler metric:

kxu?u, kxu, (02 Cu 2)
Y

— _ 2
gOO - 1 + (62 o ’11,2)3/2, gll - _1 + (62 o u2)3/2 - uz

Y
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goo = —1+ k2% + (02%6;“’)3/2 (3c* = 3u2 — 2u? — 3u2),
g33=—1+(c2]i$52y)3/2(02—u§—u§),
o =~ g g ), o=
kxugy (2 —u2—u?), giz3= (CQ_sz)g/quuyuz, go3 = (0214_:35;%3/2 (2 —u? -

2= 2 2y

We see that the metric coefficients are functions of the point, i.e, of the variable x, but they
are also functions of the velocity of the particle ug, uy, u., i.e., gu (x,&). If the velocity of the
point is negligible with respect to the speed of light ¢, the coefficientes of the metric become:

goo =1, goa=—kr, gi=-1, ga=—1+k2% g33=—1,

vanishing the remaining ones. The dependence on the velocity of the metric coefficients has dis-
sapeared and the metric is now a Riemannian metric. With this restricted metric the variational
problem is related to the restricted Lagrangian Lp

E% = 2% — i + K22?9? — 2kacty,
which, when compared with the original, it lacks an extra term:

L% = L} — 2kxy) (\/ 22 — 2 — ci) ,

and therefore the force acting on the particle is no longer the Lorentz force. This metric is not a
vacuum solution of Einstein’s equations in General relativity, but it leads to a curvature scalar
and Einstein’s tensor

=k 3k? 3k3x k2

1
R—T, Gtt:Ta th:—T, Gow = —, nyzi(k2+3k4x2), G, = ——,

and the nonvanishing Christoffel symbols are

Piw = k2$/2, chy = k(1+k2$2), fy = _k/2’ sz = ]{Z2.’L‘, Ftyx = k/27 Fzy = —k2$/2

1

2
With the Lorentz force, dynamical equations are

dug eB 1 I duy eB 1 I du,

EE— Uu. = CU 5 —_— = — u = ——KCcu , _

dt— my(uw) Y yw) Y dt my(w) T ()T dt

which lead to uydu,/dt + uydu,/dt + u.du./dt = w - du/dt = 0, and thus the motion is at a

velocity of constant modulus, the factor y(u) is constant and the particle goes along OZ axis

with a constant velocity and also rotates on the plane XOY, with constant angular velocity

w = eB/y(u)m. However the geodesic equations obtained from the restricted metric associated
to Lg are

=0,

du,
dt

duy
dt

= —kcuy(1 — kzuy/c), =0,
which also lead to a motion of velocity of constant modulus u. Because we are taking the low
velocity limit we have to replace in these equations u/c — 0, and y(u) — 1, and in this case

they approximate to the previous ones . For the restricted Lagrangian Lp, the force acting on
the particle becomes the Lorentz force in the low velocity limit.
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In the example (¢) in a uniform gravitational field, the dynamics is described by the La-
grangian
~ ~ g-r .
Lg = L(] + CT Ct,
which leads to the dynamical equations dp/dt = g, with p = v(u)u, independent of the mass
of the particle. This Lagrangian, from the geodesic point of view corresponds to an evolution
on spacetime with a Finsler metric given by:

g-”" 2 g.”’
900:1+(CT> —(3’7—’73)( 2 ),

u2 o '
g¢i=—1+7(1+y20;)(902 ), i=1,2,3

3_7)%(9.27,)7 2217273
C C

goi = —(v

guiuj (g-r) .,

i , =1,2,3

95 =7""3 " 2 #J

The term g - r has dimensions of velocity squared. If the velocity of the point is negligible when
compared with ¢, the nonvanishing coefficients are

P2 ‘
900:1-1'(97) —2(g-r)/¢, gi=-1+(g-7)/F =123

ie.,
mo=(1-20V . gi=—(1-2]) i=123
c c
where the component ggg is the same as that of the Rindler metric, corresponding to an uniformly
accelerated observer, or to the presence of a uniform gravitational field.
The last example (d) represents the point particle under the gravitational Newtonian po-
tential of a point mass M located at the origin of the reference frame. The Lagrangian is

~ ~ GM .
Ly =L+ 5 ct.
c°r

As usual, taking into account (1.38) we get the metric of a point particle under a central
potential. This metric is

GM\? GM
=1 ) -3y =) ==
goo +(C2’l“> (’V 7)62747
_ 1 1 QUZZ GM 19
Gii — — +7( +7 cﬁ)ﬁv =1, a3
u; GM .
QOZ:—(V?)—’Y)J 2. 12152737
c c*r
w;u; GM L
g9ij =75t ——, i#j=123.

2 c2r’
It is a Finsler metric, which in the case of a low velocity with respect to ¢, the only coefficients
which survive are the diagonal components.

2GM  G2M? GM\?
go=\l-—F—+—77)=1- 5

c2r cAr2? c2r
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the last term goes as G?/c* and if it is considered negligible, this metric coefficient is that of
the Schwarzschild’s metric. The remaining terms are

while in the metric of Schwarzschild they will be (1—2GM/c*r)~1. We see that the modification
of the metric coefficients, in the low velocity limit, differ from the Minkowski metric in a term
which is the gravitational potential of the central mass M, divided by c?.

This low velocity limit of the Finsler metric in a Newtonian potential looks

2
dSQ — (1 . GM> CZdtQ _ (1 . GM> (dr2+r2(d92+sin29d¢2))

c2r c2r

which is a rotation invariant, static Riemannian metric. If we call Ry, = 2GM/c? to the
Schwarzschild radius, the curvature scalar and Einstein tensor become:

2
R=_ T
r(2r — Ry)3
o _ 3R o _ (@4 —TRIR, . (R.=30R. (R~ 3r)R,sin®
“T832r =Ry " 422r—Ry?T YT (2r—R)2 T (2r—R.)?

and therefore it is not a vacuum solution of Einstein’s equations of General Relativity.

In the two gravitational examples, the Riemanian approach of the metric has produced
that the Minkowski coefficient goo of the free particle has been transformed into g{, = goo(1 +
V(r)/c*)? and the g;; in the form g, = g;;(1 + V(r)/c?), where in both cases V(r) is the
gravitational potential.

1.7 Causality Principle

Among the fundamental principles analyzed, the Causality Principle has not been in-
cluded. Basically, the contents of this principle is the idea that things do not happen by them-
selves, but rather that any physical effect is the result of a previous cause which determines
it. We shall see that, in a certain sense, this principle is already contained in the Variational
Principle.

We can consider that the Causality Principle is the restriction on the kinematical space X
that the Finsler metric should be definite positive. This condition defines in the kinematical
space X, once a point is fixed, two submanifolds, one causally connected with that point and
another disconnected. If we select an initial point for the variational description, one cannot
arbitrarily select another point as the final state. Only those points belonging to the submanifold
causally connected. First of all we have the arrow of time, so that t(7) > 0, or that t > ¢1, and
another that gijdxidxj = L%dr? > 0. If the Atomic Principle determines that the kinematical
space X, for an elementary particle is necessarily a homogeneous space of the kinematical group,
the Causality Principle restricts this space, once the initial state is fixed, to a submanifold. For
instance, for the point particle, once the state x; is fixed, the evolution takes place inside the
future light cone of point z;. Given two points x1 and x2 of the kinematical space X, there
exists a group element g € G, such that z2 = gz, but this does not imply that they are causally
connected. The two points 1 = (t1,71) and z9 = (t1,72) with the same time, are linked by a
space translation, but we cannot arrive dynamically to zs coming from x1, because the velocity
should be infinite. Between these two points the Minkowski distance [ 7, dz*dz” < 0. Their
separation is space-like.
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This confirms that only between those points where gijdxidasj > 0 is definite positive, the
evolution is possible, while the remaining points will be causally disconected. For a massless
point particle, the connected manifold is the future light cone, where the metric vanishes.

The homogenenity of X means that all points represent physically equivalent states. When
one is fixed, the remaining states represent the description of the particle for all other inertial
observers. Is the definite positive character of the action squared between two points what
justifies that the evolution between those points is allowed.

1.8 Generalized canonical formalism

Euler-Lagrange’s equations for the n degrees of freedom g¢;, (1.4) are a system of n ordinary
differential equations of order 2k, so that to single out a unique solution, according to the
theorems of existance and uniqueness of solutions, we have to give as boundary conditions the
2kn conditions at the initial time t1, qZ-(S)(tl), i=1,...,n,s=0,1,2,...2k — 1.

Nevertheless, by defining some intermediate variables, every differential equation of order
m can be reduced to a system of m ordinary differential equations of first order. In our case
to a system of 2kn equations of first order. Defining as the new intermediate variables ql(s),
s=1,....2k—1:

di 1y da” o dd? g™ ey

? 7 7

a "t e T g TH o o T T

and the last n final equations (1.4), which have the form as in (1.31)

oL d (1 2k—1

To this system of equations we shall suply as boundary conditions the above mentioned 2kn
conditions at time t¢7.

The canonical formalism takes as intermediate variables the kn generalized coordinates qES),
t=1,....,n,s=0,1,2,...,k—1, i.e., the kinematical variables with the time excluded, and the
kn canonical conjugate momenta p;(;). The corresponding set of ordinary differential equations
of first order we are going to obtain are known as Hamilton’s equations.

The generalized Hamiltonian is defined as

k
H = Zpi(s)qfs) — L(t,qi,-..,q). (1.43)

s=1

If from the definition of the momentum of order k, p;) = 0L/ aq§k) we can eliminate the n

derivatives of higher order q(k)

; ~ in terms of the n p;y), the the Lagrangian will be written in

terms of the time ¢, of the kn canonical coordinates qi(s), s=0,...,k—1 and of the n momenta

Pik)- Therefore the Hamiltonian will be a function H(t,q,p), of the time, of the canonical
coordinates and their canonical conjugate momenta. Therefore

k—1
0H | OH
=> — Z dpz (r) + - dt, (1.44)
s=0 aqz( 6

But from its definition (1.43)

= . (s) _ OL SOL ()

s=0 i
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The first term can be written as:

k k (rl

> a dpigs) = Z

s=1 r=1

dpz (r)>

where the coefficients of the dp;() are the time derivatives of their corresponding conjugate

(r=1)

coordinates g, ,7=1,... k. The second term can be rewritten as:

sz (s) dqz Zpl (s) dqz ? + Pi(k) dqz( )
s=1

and in the first sums there are only the differentials dq(S)

,~’ of the generalized coordinates, with
s < k — 1. If we make the same with the last term

k

Z

=0

k—1
oL Z 8L ) oL | (x
" O og, " * 0q'° 8q.(’“) da;”

where we have separated the last term which contains the differential dqgk). This last term
cancels out with the last term of the previous expression, and thus these two expressions together

become
. () <= OL (s) (s)
S meo? 3 Lsan? a3 (o - 205 )
s=1 q; C]

s=0 7

From the definition of the canonical momenta we have the expressions (1.30) and (1.31) and
this last expression takes the form:

k

b d i( 1 s d i(s s
z_;pi(s) dqi(s) B Z 88{;) dqfs) _ P Z +1) _ Z %dqz( ),

s=0 qZ s=1 s=0

(s)

where the differentials dg;”’ are extended to the differentials of all generalized variables. In this

way, by collecting all terms, we have:

dzs (r—1) I
dH:_Z p(+1 S)+Z q dpzr aatdt7 s=0,1,...,k—1
s=0

and by identifying with (1.44) it implies 0H /Ot = —0L/0t, and

OH _ dpi(st

o) dt
(r-1)
OH _dai 4k i=1...m,
Opi(r) dt

so that we arrive to the 2kn equations of first order for the canonical variables ¢’s and p's,

where q-(s)

;  is the canonical conjugate of the p;,11), s=0,1,...,k —1,

dg”  oH dpisy1y _  OH
dt N 8p,~(s+1)’ dt - 8(](8)’

7

=1,...,n, s=0,1,...,k—1. (1.45)

which are known as Hamilton’s canonical equations (1833).
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The time derivative of each canonical variable is the partial derivative of the Hamiltonian
with respect to the corresponding canonical conjugate variable. As far as the variables ¢'s are
concerned the partial derivative of the Hamiltonian is preceded with a + sign, while the time
derivatives of the p’s the partial derivative of the Hamiltonian is affected with a — sign. The
knowledge of the Hamiltonian instead of the knowledge of the Lagrangian, will produce the
dynamical equations of the material system as equations of first order.

The Poisson bracket of two functions A(q,p) and B(q,p) of the conjugate variables, is

defined as
n k-1
Alap qP}—ZZ( OB HA 8B>

i=1 s—0 8pz (s+1) 8pi(s+1) 8%(8)

This bracket operation is antisymmetric {A, B} = —{B, A} and satisfy the distributive prop-
erties

{A,B+C} ={A,B}+{A,C}, {A,BC}={AB}C+ B{A,C}.
For any tree functions A, B, C, Jacobi’s identities are fulfilled:
{A,{B,C}} +{B,{C,A}} + {C,{A,B}} =0.
With this notation, Hamilton’s canonical equations are written as:

dq(S)

)

dt -

dpis s

The dynamical equation of each canonical variable is the Poisson bracket of that variable with
the Hamiltonian. There is no distinction between generalized coordinates and conjugate mo-
menta.

If we have an arbitrary observable which is also an explicit function of time A(t, g, p), its time
derivative is obtained as:

dA _0A A dg”  0A dpisin
dt gl dt T Opispry  dt

_0A oA OH oA OH _0A ., .,
ot 3%(8) Opi(s+1)  OPi(s+1) aqz(s) ot U

The manifold of dimension 2kn generated by the ¢'s and p’s is known as the phase space of
the dynamical system, such that when fixing a point in this space, dynamical equations supply
a unique solution passing through it. In this sense Euler-Lagrange’s equations with boundary
conditions at the initial time ¢; are equivalent to Hamilton’s canonical equations.

Although we have included in these notes the generalized canonical formulation is simply
by consistency. To show that even when the Lagrangians depend on higher order derivatives we
also have the associated Hamiltonian formalism. The system of Euler-Lagrange’s equations can
be reduced to a first order system in the generalized variables ¢’s and p’s. However, in what
follows in our formalism, it is not necessary the use of the canonical formalism, not even for
the quantization. Generalized momenta are used for the construction of the Noether constants
of the motion, but what we want to stress is that we are interested in finding solutions of the
dynamical equations not by giving boundary conditions at time ¢1, but rather to find solutions
passing through the initial and final points of the variational formalism. What we want is to
enhance the role of the kinematical variables as the variables which define at any instant 7, the
state of any dynamical system.
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1.8.1 Hamilton-Jacobi’s equations

Hamilton’s principal function is a function defined on the kinematical space of the
dynamical system. It is defined as the action function of the final point of the evolution.
Usually is represented as S(x), and although we are going to use the character S to represent
the observable spin, we are going to mantain this notation in this complementary section.

According to this definition:
S(z) = A(xq, ),

where the initial point z; is fixed, but arbitrary. Hamilton’s principal function is a function of
time t and of the generalized variables ¢’'s. We are going to obtain Hamilton-Jacobi’s equations
in the case of an ordinary Lagrangian which depends on the first order derivatives of the degrees
of freedom ¢;, L(t,q, q), but the proof can be extended to generalized Lagrangians.

If at the final instant of the evolution ¢ the boundary conditions ¢(¢) are modified in an
infinitesimal way ¢ + d¢, how this change modifies the function S?

2 68q(t) 2’

q(t)+38q(t)

t|

Figure 1.4: Modification of the final point of the evolution at the instant ¢, and also of
the path ¢(t) while remaining fixed the initial point 1. The variation of the dq is its form
variation d¢, at constant t.

The variation of the action functional between the paths ¢(t) and ¢(t) + dq(¢) is

t L L
A(g+0q) — A(q) =6A = [8 oq + 85q]

0 0

t1
but the variation of dq is its variation in form at constant ¢

oL, _oLd . _d (L d (oL,
93" T " agat’ T ar \9g%) " at \ag ) °T

oL d [ OL d (0L
A=, {[aq dt(aq'ﬂd*dt(a@q)}

If the trajectory ¢(t) is the one which makes extremal to the action functional the term between
squared brackets vanishes and the variation of the action functional is reduced to the variation
of the action function

and thus

0L

oL
= 5 () dal)

§A = ~=5q
9q

_9Ls,
¢ 0q

t1
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since dq(t1) = 0. But this is the variation of Hamilton’s principal function S at fixed time ¢,
when we modify the remaining kinematical variables ¢,

05

2 1.46
9 P (1.46)

oL
1
where p; is the conjugate momentum of the variable ¢; at the instant ¢.
What is left is how Hamilton’s principal function is modified when we change the time of
the final point while keeping fixed the remaining variables ¢ at the final instant and, of course,
the initial point 1. The variation of the action functional is

2/
¢ | ot
|
¢
2
q'(t)/ /a(t)
t]
1

Figure 1.5: Modification of the final point of the evolution at instant ¢ to the instant ¢+ dt,
keeping constants at this time the values of the variables q.

t+6t

Ald)— Ag) = A= [ L(t.q )i~ / L(t,q. d)dr.

t1 t1
In some intermediate instant of the evolution dq = 6g+¢ét and 6¢ = 5+ o, where § represents
the variation in form, at constant ¢, of the corresponding function. But
_ d
6¢ = —0dq.
q dt q

The proof follows the same method as the one we used when analyzing Noether’s theorem,
including the change of integration interval from (¢1,¢ 4 dt) to (t1,t) and we finally arrive to
the expression (1.22) which for the indices s = 0,1, becomes:

0A =

t d(Lét)  OL - oL -
+ —25qi(t) + ——dg; (¢ > dt.
If the last term is written as

oL - . oL d - d (0L - d (OL\ -
87%5%@) = ?%ﬁd% = % (8@5(12) - % (8%> 0qi,

t o (d(Lst) - [OL d (0L d (0L -
A= tf“{ t ”ﬁ“[ww(aa)%a(aqﬁqi)}'

we get
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By recovering the total variations d¢; = 0q; — ¢;0t, and if ¢(t) is the path 1 — 2 which makes
extremal the action, the term between squared brackets vanishes, and what remains is the
variation of the action function with the initial point fixed, i.e., the variation of Hamilton’s
principal function:

t o (d(Lét) d (0L oL
5S:5Ax,x:/dt{ +(.5¢_'i6t>}.
(1 ) t dt dt 8q7; 4 8qiq

1

It is the integral of a total derivative, and the result is the value of the integrand evaluated at
time ¢ minus the same at initial time ¢1; but 6¢(t1) = 0, 6t(t) = 6t, dq;(t1) = 0qi(t) = 0, and

thus

as

i
Since the Hamiltonian is a function of the momenta p; which are expresed by (1.46) in terms of
the partial derivatives p; = 95/0q;, Hamilton’s principal function satisfies the partial differential
equation with respect to the kinematical variables:

oS(t,q) as
5 = H (t,q, aqi> : (1.47)

which is known as Hamilton-Jacobi equation (1834).

Hamilton’s principal function satisfies a wave equation, in general non linear, in the kine-
matic space, X, because (1.47) represents how this function S changes with time at the point
x = {t,q}, as a function of its changes in the directions of the generalized variables g;.

S(t+0dt,q) —S(t,q) =6S(t,q) = (L — pigi) 0t = —Hét, = —H.

1.8.2 About the equivalence between the canonical and the variational for-
mulation

Many texts books state that both formulations are equivalent'®. However this is not correct.
Given Euler-Lagrange’s equations the variational formulation tries to find a solution with the
boundary values ¢;(t1) and g¢;(t2), at the times ¢; and ta, respectively, while the canonical
formulation the boundary conditions are ¢;(¢1) and p;(¢1), at the same initial time ¢;. For regular
systems of differential equations, to fix at initial time ¢; a point of the phase space (g;,p;)(t1)
singles out a unique solution passing through it, while fixing two points of the kinematical space
x1 = (t1,¢(t1)) and zo = (t2,qi(t2)) does not guarantee the existence of solution, compatible
with the mentioned causality principle in the section 1.7, and in the case that it exists, the
uniqueness is not guaranteed.

Let us see with some example: the motion of a rigid body. From the variational point of
view we have to fix at time ¢; the center of mass position r; and the orientation a; of the
inertia principal frame and the same magnitudes for the final time t2. From the point of view
of the canonical formalism we have to fix at time ¢; the center of mass position 71 the center
of mass velocity v; = p;/m, the orientation a; and the angular velocity wj. If the motion is
free v1 = (ro — r1)/(t2 — t1), but the angular velocity cannot be expressed in terms of the two
orientations, because we do not know how many turns and about what axis, has rotated the rigid
body. In the canonical formulation the solution is unique, but in the variational formulation we
have infinite solutions, because the angular velocity remains undetermined. It is the presence

19D, A. Wells, Theory and Problems of Lagrangian dynamics, Schaum McGraw Hill, NY (1967) p.1:...the basic
laws of dynamics can be formulated in several ways other than that given by Newton. The most important of
these are referred to as: a)D’Alembert’s principle, b) Lagrange’s equations, ¢) Hamilton’s equations, d) Hamilton’s
principle. All are basically equivalent.
E.C.G. Sudarshan and N. Mukunda, Classical Dynamics: A modern perspective, John Willey NY (1974), p.24
. this completes the demonstration, in the standard case, of the complete equivalence of the Lagrangian and
Hamiltonian forms of dynamics.
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of the compact variables, which determine the orientation in space, which makes that both
boundary conditions and therefore both formalisms are not equivalent.

1.9 Appendix: Summary of the formalism

1.

10.

For a system of n degrees of freedom ¢; whose Lagrangian depends up to the time
derivatives of order k, q(k) = dFq;/dt*, L(t, qi,qm, ... ,ql(k)), the kinematical variables

(2 (2

are r; = {t,qi,qfl),...,qfkfl)}, i.e., the time, the degrees of freedom and their time

derivatives up to order k — 1. The generalized variables are {¢;, qgl), .. ,ql(k_l)}, i.e., the
kinematical variables with the time excluded.

. Each generalized variable has associated a canonical conjugate momentum, defined by

OL d [ oL s 55 [ OL B
Pi(s)—w—ﬁ<w>+”-+(—l) dtks<8q§k))’ s=1,...,k

(1)

Pi(1) is the conjugate momentum of g;, p;(2) is the conjugate momentum of ¢;*” and finally

(k—1)

Pi(k) 1s the conjugate momentum of the g;

. In a parametric description of the evolution, t(7), ¢;(7), the Lagrangian L = Li, where -

represents the derivative with respect to the parameter 7, is a function of the kinematical
variables = and their first order 7-derivative, &, L(z, &).

. The action function is the value of the action functional along the path that satisfies

Euler-Lagrange equations.

. The action function is an explicit function of all kinematical variables x; and xz2 at the

boundary points of the trajectory on the kinematical space X, A(x1,x2).

. The evolution parameter 7 can be taken dimensionless, and therefore L has dimensions

of action.

The Lagrangian L can be obtained from the action function through the limit
0A(z,y) .

L(x,%) = ;1_1% Tyi%'

. The Lagrangian L is not an explicit function of 7, but it is a homogeneous function of

degree 1 of the derivatives &; of all kinematical variables. This allows us to write the
Lagrangian as a sum of as many terms as kinematical variables

~ B OL(z, i) .

. The functions Fj(z, &) are homogeneous functions of zero degree of the &;, and thus they

are functions of the time derivatives of the generalized variables. Since each term Fjz;
has dimensions of action, each F; has the complementary dimension of the corresponding
variable x;.

The definite positive function EZ, can always be written as

~ 1 9212
2 N s .
L7 = gij(w, 2)di25,  gij(w, &) = §M = Gji,
where the coefficients g;; = g;;, are homogeneous functions of degree 0 of the derivatives
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11.

12.

13.

14.
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The kinematical space is always a Finsler metric space. Since
T2 Ty = T2 T2
/ Ldr = :l:/ VI2dr = :l:/ Gij(z, &) T2 dr = :l:/ gijdzidr; = :l:/ds
T1 T1 T1 T1

the variational problem is equivalent to a geodesic problem on the kinematical space X,
with a metric g;j(x, &) which is a function of the point  and of the derivatives ;.

If the mechanical system is an elementary particle, then it is necessary that the kinematical
space X be a homogeneous space of the kinematical group G associated to the Restricted
Relativity Principle.

The kinematical space of the point particle is spacetime. This manifold is always a metric
space with a metric more general than a Riemannian metric. To admit, as is done in Gen-
eral Relativity, that the spacetime manifold of the test particle is a Riemannian manifold,
is a restriction about a more general situation. The kinematical space of the free point
particle is Minkowski spacetime.

The invariance of dynamical equations under a symmetry group of transformations does
not imply that the Lagrangian and the action function are invariant. Noether’s theorem
gives the relationship between the transformation of the action function A(z1,z2), under
a group which leaves invariant the dynamical equations, and the explicit construction of
the constants of the motion. These constants of the motion are written in terms of the
Lagrangian, its partial derivatives F;(x,2), and of the functions M (x) of how the kine-

l(S) = MZ-(S) ()dg, under some infinitesimal

matical variables transform, dt = My(x)dg, dq
transformation of the group of parameter dg.

N = A(.I') - (L _pi(s)q(S))MO - pi(s)Mi(S_l) = )\(.ﬁ) + H My —pi(S)Mi(S_l)’

)

where p;(,) is the canonical conjugate momentum of the generalized variable qgs_l) and

A(z) the function associated to the non-invariance of the Lagrangian under the group.
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1.10 Appendix: Lie groups of transformations

Let us introduce the notation and general features of the action of Lie groups on continuous
manifolds to analyze the transformation properties of the different magnitudes we can work
with in either classical or quantum mechanics. We shall use these features all throughout this
book.

Let us consider the transformation of an n-dimensional manifold X, 2’ = gz given by n
continuous and differentiable functions depending on a set ¢ € G of r continuous parameters of
the form

' = fi(a?;¢°), VreX, Vgedl, i,j=1,....n, o=1,...,r.

This transformation is said to be the action of a Lie group of transformations if it fulfils the
two conditions:

(i) G is a Lie group, i.e., there exists a group composition law ¢ = ¢(a,b) € G, Va,b € G, in
terms of r continuous and differentiable functions ¢°.

(ii) The transformation equations satisfy

o = f(a';b) = f(f(z;a);0) = f(x;¢) = f(2;¢(a,b)).

The group parametrization can be chosen such that the coordinates that characterize the
neutral element e of the group are e = (0,...,0), so that an infinitesimal element of the group
is the one with infinitesimal coordinates d¢g°,0 =1,...,7.

Under the action of an infinitesimal element dg of the group G, the change in the coordinates
2’ of a point & € X is given by

of'(z:9)

'+ da' = fi(z;9) = 2" + o

after a Taylor expansion up to first order in the group parameters and with 2! = f(x;0). There
are nr auxiliary functions of the group that are defined as
Of'(x;9)

up(x) = ——==

37 , (1.48)

g=e

and therefore to first order in the group parameters, dz® = u’ (z)5g°.
The group action on the manifold X can be extended to the action on the set F(X) of
continuous and differentiable functions defined on X by means of:

g:h(z) — b (x) = h(gx). (1.49)
If the group element is infinitesimal, then

M) (o

ort ¢

after a Taylor expansion to first order in the infinitesimal group parameters. The infinitesimal
transformation on F(X) can be represented by the action of a differential operator in the form

B (z) = h(z" 4 dz®) = h(z’ + ul (2)6g°) = h(x) +

; 0
B (z) = (]I +0g° ué(x)&ﬁ) h(z) = (I+3d9° X5) h(xz) = U(dg)h(z),
where I is the identity operator and the linear differential operators

0
oz’

X, = ul () (1.50)
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In particular, when acting with the operator U(8g) = (I+ d¢g° X,,) on the coordinate 27/ we get
w4 dat = 17 + ud(2)dg°.

The operators X, are called the generators of the infinitesimal transformations. They
are r linearly independent operators that span an r-dimensional real vector space such that its
commutator [X,, X,] also belongs to the same vector space, i.e.,

(Xo, Xl =0y Xoy a0 A=1,...,7. (1.51)

The coefficients ¢, are a set of real constant numbers, called the structure constants of
the group, and the vector space spanned by the generators is named the Lie algebra L(G),
associated to the Lie group G. The structure constants are antisymmetric in their lower indexes
c5\ = —c5,, and satisfy Jacobi’s indentitites:

B
po

+c‘§\‘uc§a+cgac§a:0, Yo, \,u, 8=1,...,r.

e
Equations (1.51) are the commutation relations that characterize the structure of the Lie algebra
of the group.
If a finite group transformation of parameters g° can be done in n smaller steps of parameters
9% /n, with n sufficiently large, then a finite transformation U(g)h(z) can be obtained as

U(g)h(z) = lim <]I + 97;7X0>” h(z) = exp(¢9° Xy) h(z).

n—o0

This defines the exponential mapping and in this case the group parameters g° are called
normal or canonical parameters. In the normal parameterization the composition law of one-
parameter subgroups reduces to the addition of the corresponding parameters of the involved
group elements.

Let us consider that F(X) is a Hilbert space of states of a quantum system; (1.49) can be
interpreted as the transformed wave function under the group element g. Then if the operator
U(g) is unitary it is usually written in the explicit form

7 ~
U(g) = exp <h g"XU) :

in terms of the imaginary unit ¢ and Planck’s constant A, such that in this case the new X, above
are self-adjoint operators and therefore represent certain observables of the system. The physical
dimensions of these observables depend on the dimensions of the group parameters g7, since
the argument of the exponential function is dimensionless and because of the introduction of
Planck’s constant A, this implies that g X, has dimensions of action. These observables, taking
into account (1.50), are represented in a unitary representation by the differential operators

(1.52)

However, (1.49) is not the most general form of transformation of the wave function of a quantum
system, as we shall see in Chapter 3, but once we know the way it transforms we shall be able
to obtain the explicit expression of the group generators by a similar procedure as the one
developed so far. In general the wave function transforms under continuous groups with what is
called a projective unitary representation of the group, which involves in general some additional
phase factors.
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1.10.1 Casimir operators

When we have a representation of a Lie group either by linear operators or by matrices
acting on a linear space, we can define there what are called the Casimir operators. They are
operators C' that can be expressed as functions of the generators X, of the Lie algebra with the
property that they commute with all of them, i.e., they satisfy [C, X,] =0, Vo=1,...,7r. In
general they are not expressed as real linear combinations of the X, and therefore they do not
belong to the Lie algebra of the group. They belong to what is called the group algebra, i.e.,
the associative, but in general non-commutative algebra, spanned by the real or complex linear
combinations of products of the X, in the corresponding group representation.

In those representations where the X, are represented by self-adjoint operators as in a
quantum formalism, the Casimir operators may be also self-adjoint and will represent those
observables that remain invariant under the group transformations. In particular, when we
consider later the kinematical groups that relate the space-time measurements between inertial
observers, the Casimir operators of these groups will represent the intrinsic properties of the
system. They are those properties of the physical system whose measured values are independent
of the inertial observers.

For semisimple groups, i.e., for groups that do not have Abelian invariant subgroups like the
rotation group SO(3), the unitary groups SU(n) and many others, it is shown that the Casimir
operators are real homogeneous polynomials of the generators X,, but this is no longer the
case for general Lie groups. Nevertheless, for most of the interesting Lie groups in physics, like
Galilei, Poincaré, De Sitter, SL(4,R), the inhomogeneous ISL(4,R) and Conformal SU(2,2)
groups, the Casimir operators can be taken as real polynomial functions of the generators.

1.10.2 Homogeneous space of a group

A manifold X is called a homogeneous space of a group G, if V1, zo € X there exists at
least one element g € G such that zo = gr;. In that case it is said that G acts on X in a
transitive way. The term homogeneous reminds us that the local properties of the manifold at
a point z are translated to any other point of the manifold by means of the group action, and
therefore all points of X share the same local properties.

The orbit of a point x is the set of points of the form gz, Vg € G, such that if X is a
homogeneous space of GG, then the whole X is the orbit of any of its points.

Given a point zg € X, the stabilizer group (little group) of zg is the subgroup Hy, of G,
that leaves invariant the point g, i.e., Vh € Hy,, hzo = xo.

If H is a subgroup of G, then every element g € G can be written as g = ¢’h, where h € H,
and ¢’ is an element of G/H, the set of left cosets generated by the subgroup H. If X is a
homogeneous space of G, it can be generated by the action of G on an arbitrary point zg € X.
Then Vo € X, x = gzg = ¢'hxo = g'z0, and thus the homogeneous space X is isomorphic to
the manifold G/H,,.

The homogeneous spaces of a group can be constructed as quotient manifolds of the group by
all its possible continuous subgroups. Conversely, it can also be shown that if X a homogeneous
space of a group G, then there exists a subgroup H of G such that X is isomorphic to G/H.
Therefore, the largest homogeneous space of a group is the group itself.

1.10.3 Examples of continuous groups

1. Let us consider the group of translations of the straight line:

:U'::c+a.
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With a = 0 we have the neutral element and —a represents the inverse element. The transfor-
mation is infinitesimal if a is infinitesimal and we write as 2’ = z + da. If f(x) is a function of
x, the infinitesimal action of the group on f is defined as
of (x
f'(z) = f(z +da) = f(z) + 5aj(;;) = (I+ 6aP)f(x).
The operator P = J/0x is called the generator of the infinitesimal transformation and the
infinitesimal element of the group becomes the differential operator dg = I 4+ daP when acting
on the variables and also on functions of these variables. If f(z) is an invariant function under
this group, then Pf = 0f/0x = 0, and f is independent of z. For a finite transformation of
parameter a, the exponential mapping holds e*”, because

aP aP  (aP) (aP)™ a 0 a* 0?
=01+ — o=+ ==+ == +...
S TR T Tor Taaz T
When we apply this operator on the variable
¥ =ePr=2z+a,

and on any function of z

2 92
o= o+ L 2D

because the left hand side is the Taylor expansion of f(z) from the point = to the point = + a.
The parameter a is the canonical parameter of the group.

+...=f(z+a)

2. Let us consider the rotations of the plane
2 =xcosa—ysina, 7y =xsina+ ycosa.

with o = 0 we have the neutral element and —« is the inverse. If « is infinitesimal, of value dc,
to first order in this parameter, the transformation equations are:

¥ =z —yla, vy =y+xda.

If f(z,y) is a function of these variables, it transforms under the group

) = 1)) = fla=ybaytabe) = e, o0 <y +a ) flay) = (Foan)f )

where the differential operator
J 0 + 0
= —UY— Xr—
Y ox oy’
is the generator of the infinitesimal rotations. If f(z,y) is invariant under rotations, then
Jf =0, and f is a solution of the differential equation
0 0 der d
ox oy -y
since the arc element of components (dx, dy) is orthogonal to the gradient of f and therefore f
must be an arbitrary function of the curves z2 + 3?2 =cte, i.e., f(2? + y?).
If what we want is to analyze a finite rotation of value «, the exponential mapping gives us the
corresponding rotation operator

et oy @ (g0 0N (L0 N et (0 0N
=0\ Y Ty ) T Y Ttey) T T \ e Ty
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and when applied to the variable x gives rise to:

aJ . « 0[2 053 o 1 O[z Oé4 « 0[3
e x—x—iy—ixﬁ-?y—i-—x —54‘?4‘ +vy _ﬁ‘i‘y—i‘
ie.,
I ad,, :
r =€ X =TCosx — ysin .

Simmilarly, if we apply to the variable y we obtain
Y = ey =zsina+ ycosa.
and when acting on any function f(x,y) we get
f'(z,y) = e f(x,y) = f(zcosa — ysina, zsina + ycos a).
The parameter « is the canonical parameter of the group.
3. Let us consider a Galilei boost along axis OX,
t=t, o =zx+0t

With v = 0 we have the neutral element and —v represents the inverse element. The infinitesimal
transformation is with dv infinitesimal and it looks:

t'=t, 2 =ux+ vt
The action of the infinitesimal element on the function f(¢,x) is given by

of(t,x)
ox

where K = t0/0x is the generator of the boosts along the axis OX.
To analyze a finite boost the exponential mapping gives rise to the operator

2 2 2
oK v V7 o v [ 0 v 0
S R IRy ' ISR AN (o) DA (A T
¢ M TR TR +1!<8x)+2!(8$) e

flt,z)=f(t',2') = f(t,z) + vt = (I+ ovK) f(t,x),

and when applied to the variable ¢
=Bt =1,

and applied to the variable x

/ K

T =e"x =x+ vt

Acting on any function f(t,z) produces
f(t,x) = "B f(t,x) = f(t,z + vt).

The parameter v is the canonical parameter of the group.
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Chapter 2

Examples of spinning particles

NONRELATIVISTIC PARTICLES

2.1 Nonrelativistic point particle

See the Appendix about the Galilei group G at the end of this chapter for the notation used
through this section.

Let us consider a mechanical system whose kinematical space is the four-dimensional man-
ifold spanned by the variables (t,7) = x, with domains t € R, » € R3, similar to the group
parameters b and a respectively. We assume that they are functions of some evolution parameter
7 and at any instant 7 of the evolution two different inertial observers relate their measurements

by:
t'(r) = t(r)+d, (2.1)
(1) = R(p)r(t) +vt(r) + a. (2.2)

Because of the way they transform, we can interpret them respectively as the time and position
of the particle. If we assume that the evolution parameter 7 is group invariant, by taking the
T—derivative of both sides of the above expressions, it turns out that the derivatives of the
kinematical variables at any instant 7 transform as:

#(r) = i(r), (2.3)
#(r) = R(u)i(r)+vi(r). (2.4)

If we define the velocity of the point as u = dr/dt = +/{, the velocity of the particle transforms
in the way

v/ (1) = R(p)i(r) + v.
We can obtain simmilarly the transformation equations of other derivatives. The Lagrangian
for describing this particle will be a function L(t,7,u), and in the parametric T-description
z(t, r, i) = E(w, %), and homogeneous of degree 1 in terms of the ;. This homogeneity leads
to the general form:

L=Ti+R-7 (2.5)
where T = 82)/85 and R; = 8E/87"i are still some unknown functions of the kinematical
variables and their derivatives, which are homogeneous functions of zero degree in terms of the
derivatives. This homogeneity is independent whether the particle is free or not. The functions
T and R; are not independent. In fact, if in the expression (2.5) we take the derivative of both
members with respect to r;, we get

oL .O0T Ouy
— — ti

oL . '8Rj 8uk oT GRj
- 87"1' - Guj 87"1‘

R — R .
+ z+r]8uk 87'"1' Bui+ z+uj({“)ui7

R;
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because du;/07; = §;;/t, and we thus arrive to

or  OR;

We also know that because T and R; are partial derivatives of L and this is a continuous and
derivable function, the following equality of crossed derivatives holds

*L  *L  OR; OT

otor, 90t i Ory

but these functions depend on these derivatives through the variables variables u; = 7;/{, and
therefore

ORi _OR;0u ORi( i\ _OT 0T 0w 0Th; 0T OR
Bt N 8’&]' 8t N 8uj Iéz N 81."1' N 0u]- 67’3 N Guj t 8u2 J@uj -

which is another relation of the type (2.6), which suggests that OR;/0u; = OR;/0u;.

2.1.1 Free point particle

If the particle is free, dynamical equations must be invariant for the set of equivalent inertial
observers, since a change of reference frame cannot modify its dynamical laws. If it is under
some interaction, the dynamical equations will not be invariant under the kinematical group
because the group transformations affect the kinematical variables and their derivatives, but
not to the mechanisms which produce the interaction, like fields, magnets, etc.

Associated to this manifold X, the gauge function for this system is

algi) = £(g.2) = m (V)2 + v R(p)r) (2.7)

where the parameter m is interpreted as the mass of the system and £(g, ¢’) is the exponent of
G. If the transformation is infinitesimal dg, to first order in the group parameters gives

a(dg; ) = mR(Sp)r - Sv = N\i(x)dv;,

and «(dg;x) is different from zero if the transformation is a Galilei boost, and thus the
Lagrangian is invariant under traslations and rotations. Under Galilei boosts the function
Ai(x) = mr;.

If instead of making that infinitesimal analysis we make the analysis under finite Galilei
transformations the transformation of the free Lagrangian under a general finite transformation
of the Galilei group is

L(«',3") = L(z,%) + m (v*/2 + v - R(u)7) . (2.9)
Then B B B
oL’ oL 1 ot oL o
'=— = +om® | o+ | o . ) on
T = il ((% + 5 > By + (67’”1 +mU]R([L)ﬂ) 50 (2.9)

but from (2.3) and (2.4) we get 0f/0t' = 1 and 97; /0’ = —R™(u);xvg, respectively, and thus
1
T =T — imv2 —v-R(p)R. (2.10)

Similarly
R = R(p)R + mw. (2.11)
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The conjugate momenta of the independent degrees of freedom ¢; = r;, are p; = 85/ Or;, and
consequently Noether’s theorem leads to the following constants of the motion:
a) Under time translations the gauge function (2.7) vanishes, dt = 6b, M = 1, while ér; = 0
and the constant reduces to the following expression R -dr/dt — L/t = —T.
b) Under space translations also a(g;x) = 0, 6t = 0, M = 0, while 0r; = da;, M;; = 6;; and
the conserved observable is R.
c¢) Under pure Galilei transformations 6¢ = db and M = 0, while dr; = tév; and M;; = td;;, but
now the gauge function to first order in the velocity parameters is a(dv;z) = mr - dv, and we
get mr — Pt.
d) Under rotations a(g;z) =0, 6t = 0 and M = 0, while dr; = —ej7mnpda and My, = —egjir;
the conserved quantity is » x R.

Collecting all terms we can give them the following names:

temporal momentum H = -T, (2.12)
linear momentum P = R = p, (2.13)
kinematical momentum K = mr — Pt, (2.14)
angular momentum J = r x P. (2.15)

We reserve for these observables the same symbols in capital letters as the corresponding
group generators which produce the space-time transformations that leave dynamical equa-
tions invariant. Even their names make reference to the corresponding group transformation
parameter.

In general, what we have defined as the temporal momentum, usually takes the name of en-

ergy or Hamiltonian of the system. However, all observables associated to the uniparametric
symmetry groups are never definite positive. All of them can take both signs, but by energy we
understand an observable which is definite positive. Actually, the energy should be defined as
E = |H|. This is important in order to classify the different particles we are going to find, in
particular in the relativistic formulation, where the sign of H, is another intrinsic property, inde-
pendent of the inertial observer. In the relativistic formulation we call particle a mechanical system
for which H > 0 and antiparticle when H < 0. In both cases, if particle and antiparticle have mass
m and they are at rest, H, = mc®> and H, = —mc?, but its energy is E = mc®> = |H|. By abuse of
language and because historically this observable has been denoted by energy, it is possible that
along these notes we shall use the name of energy for this observable H.
For the kinematical momentum we can find in the literature alternative names. Levy-Leblond calls
it Galilet momentum and sometimes it is called static momentum because it has dimensions of
massXxdistance. Being consistent with this notation, we should call it ‘Poincaré or Lorentz momen-
tum’ in a relativistic approach. Nevertheless we shall use the name of kinematical momentum for
this observable K in either the relativistic or non-relativistic formalism.

If we take the 7-derivative in (2.14) of the kinematical momentum K = 0, because it is a
constant of the motion, it implies that P = m#/t = mu = R, where u is the velocity of the
particle. If we take into account the relation (2.6), then
or OR;
ke’
8ui J Oul

where Tp is constant. Now the Lagrangian of the free Galilei point particle is

1
= —ujmé;; = —mu;, = T(u)= —imu2 + T,

~ . 1 72 . 1
Loth+R-1'-:§m%+T0t = Lo=gmu’ + 1.

From the point of view of infinitesimal trasnformations, since Lo(t,,,7) depends on these
variables, they transform according to (2.1-2.4), and the different generators when acting on these
variables are 5

H:a, P=V, J=rxV++xV:, K=tV+iV,.
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If the Lagrangian is invariant under translations, then HLy = 0 and PL, = 0, which imply that
Lo is not a functlon of t and r, respectively. Under rotations JLo = 0, and this implies that it is a
function of #2 and of £ and must be homogeneous of first degree in these derivatives. Finally, if it is
invariant under Galilei boosts KLO =0, and thus 8L0/8'r = 0, and will be independent of 7. Since
this is not possible because the Lagrangian always has to be a function of all derivatives of the
kinematical variables, implies that K Lo = d(f(t,r))/dr, i.e., a total T-derivative, with dimensions
of massxdistance, and thus dynamical equations are invariant. According to the structure of the
gauge function (2.7), we have

~ o~ ~ 1 72 .
KLo=mi= di(mr). iViLo=mir, = Lo= im% + F(i),
T

where F(f) is an arbitrary function of ¢ which has to be homogeneous of degree 1. It has the form

F = —Tyt, with Ty a constant, which can be interpreted as the internal energy.

2.1.2 Center of mass observer

The six conditions P = 0 and K = 0, imply © = 0 and » = 0, such that the particle is at
rest and located at the origin of the observer’s frame. To uniquely define an observer we need
also to fix an arbitrary rotation and time translation. Nevertheless, we shall call to the class of
observers to whom P = 0 and K = 0, the center of mass observer. These six conditions will
also be used to define the center of mass observer in the relativistic case.

From (2.10) and (2.11) we see that the energy and linear momentum transform as:

1
H' = H+v~R(u)P—|—§mv2, (2.16)
P = R(p)P + mo. (2.17)

Then, if Hy and P = 0 are the energy and linear momentum measured by the center of mass
observer, for any arbitrary observer who sees the particle moving with velocity w, it follows
from (2.16) and (2.17) that

1
H = Hy+ imuz = Hy+ P%/2m, P =mu.

The Lagrangian for the point particle is thus

mr2

L=Tt+R-7+=-Ht+P- r——Hot—i—E? (2.18)
with Hg an arbitrary constant which plays no role in the dynamics and can be taken Hy = 0.
It will be related to the mc? term of the relativistic point particle.
If we define the spin of the system, as the angular momentum with respect to the point 7,
which represents the location of the center of mass of the particle, then

1
S=J-—KxP=J—-rxP=0. (2.19)
m
It vanishes, so that the point particle is a spinless system.

2.1.3 Interaction with some external source

The most general Lagrangian of the point particle is of the form L=Ti+R- 7, where the
functions T" and R are functions of ¢, ¢, 7,7 and homogeneous of zero degree of the derivatives ¢
and 7, and therefore they are functions of w = 7 /t. In the free case, the Lagrangian is invariant
under translations and thus independent of ¢ and 7, and take the form in the Galilei case, as

1 2 o

Ty = —imu =—-H,, Ry=mu=P,
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while in the Poincaré case, as we shall see in section 2.3, they are

—ch mu

™ H,, Ry=——% ___p,.
V1—u?/c? " ° V1—u?/c? "

The free Lagrangian either relativistic or nonrelativistic, can be written as f/o =Tot+ Ry -7 =

mt 4+ Py, - . We have denoted all these magnitudes related to the free Lagrangian, which
depend on the mass of the particle, with a subindex ,,, to indicate that they are mechanical
properties.

Ty =

In the general case, if the particle is interacting with some external source, the dynamical
equations are not invariant under translations, because if we translate the particle but not the
external source the dynamics will be different. The general Lagrangian will be a function of ¢
and 7, but the homogeneity of L in terms of £ and # will still hold, and also its difference with LO
We can define this difference of these two homogeneous functions as the interacting Lagrangian
Ly = L — Lo. This homogeneous structure of this function implies that L; = Aot + A -7, where
AQ = 8L1/8£, and A = 8L1/87'~.

The functions Ap and A, which depend on the external source, will be in general, functions
of the variables of the particle ¢, r,u. It is clear that these terms modify the above definitions
of H and P of the free particle, and now H = —9L /0 = —Ag and P = OL/97 = P,, + A.
The function — Ay is the modification of the mechanical temporal momentum H,,, and A is the
modification of the mechanical linear momentum P,,, due to the external interaction. Also the
other observables K and J are modified by the external source.

We are going to see that the dependence on u, of the functions Ay and A, is unnecessary.
Those fields, in general, will be functions of the spacetime variables and independent of the
velocity. Let us consider the Galilei case. The dynamical equations from the Lagrangian

m [dr\?
L = 5 (dt) + Ag(t,T’) + A(t,T) - Uu,

are

0Ay 04; d .
377“1+u]8ri dt(muZ+A) 0, 1=1,2,3

i.e.,

d27"i 8A0 8AZ 8Aj 8142
Ui

A T or ot or; o

where the last term in brackets, is an antisymmetric function in ¢ and j, and thus it can be
written as €;j;Bruj, and therefore the time variation of the mechanical linear momentum of the
point particle is

dP,, d?r
o Moy = E+ux B, (2.20)
with oA
E:VAO—E, B:VXA,

is the Lorentz force associated to the fields E and B which are functions only of ¢ and 7. In the
relativistic case we shall also obtain dP,,/dt = E+wu x B, but the expression of P, = vy(u)mu,
is different, as we shall see.

In the case that Ay and A are functions of u, the dynamical equations are:

DA (L0
or; i or; dt m 8u, i ou; |
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But because of the homogeneity of L;= Aot + Ajr;, if we derivate both sides with respect to
7j, we get:

.0Ap 1 A; 1
Ou;j t Oouj t
so that the additional term of the dynamical equations
04 0A;
811@ + u] 8uz N

0,

vanishes and does not take part in the dynamics, simmilarly as if Ag and A, were independent of
u, as we assumed before. The same argument can be used in the relativistic case, and therefore
the most general force, defined as the time derivative of the linear momentum, is a Lorentz force
with only spacetime fields.

For the time variation of the mechanical energy, only the force related to the field E produces
work. In fact, in the nonrelativistic case,

m (dr\® dH,  dr d*r

Hy, = < > ’

dt at ~ Mat der T

2

In the relativistic case, H,, = ~vy(u)mc?, P, = ~(u)mu, but because it is an elementary
particle, the atomic principle requires that the invariant expression which defines the mass by
H2 /c? — P2 = m?%c?, does not change under the interaction. If we take the time derivative of
this expression, we have:

2m=g = 2Pm- == =0 = =u- ==

In both cases, the time variation of the mechanical energy of the particle is the work done by
the force E along the trajectory of the center of mass of the particle. Because the external
fields are defined at the position 7, this point is also the location of the center of charge of the
particle.

Since B =V x A, satisfies V - B = 0, we have a pseudovector field with no sources and of
null divergence. If we take the curl of E, because the curl of V x (VAp), vanishes, these fields
satisfy the following equations:

=u-FE.

0B
VXE:_E’ V-B =0, (2.21)
evaluated at least in the region where the particle is located, and they are part of Maxwell’s
equations of the electromagnetic field. They are vector fields and therefore we need to know, to
completely define them, V - E and V x B and the corresponding boundary conditions. These
extra equations relate the fields with the external sources. In the case of Maxwell’s equations
they are:

1 1 . 10FE

vV-E= eop’ VxB= 6062'7 c2 Ot

and they do not appear until we establish that part of the total Lagrangian which describes the

sources which generate the interaction, i.e., the free Lagrangian of the external fields and how
they interact with the particle.

In the case of the electromagnetic field p represents the electric charge density and j the

vector current density. If we take the divergence of the second equation and using the first we

arrive to:

(2.22)

. Op

which is the fundamental conservation law of the electric charge.
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For a point particle of charge e, localized at point = at time ¢ these densities are p =
ed®(r —x)6(t—T) and j = ed® (r — 2)5(t — T)u, where x is another point of space and T any
other instant of time and 6(x — a) the usual Dirac’s delta-function. Maxwell’s equations (2.21)
do not depend on the particle, while those of (2.22) show how the presence of the particle, and
therefore the charge and current associated to it modifies locally the fields in the surrounding
area. We have to remark that what appear here are spacetime derivatives of the fields with
respect to the kinematical variables of the particle, and thus they refer to how these fields,
generated by some external sources, are changing in the neibourhood of the particle. The
conservation law of the electric charge shows the existence of a scalar property linked to the
particle, which is carried by the particle along its trajectory, This enhances the interpretation
that the point r is the support or localization of the charge e.

This formalism does not guarantee that the fields Ap and A, or their derived vector fields
E and B, satisfy all Maxwell’s equations, but that the interaction is invariant under the trans-
formation (2.23), as we shall see in a minute. It seems to indicate that the possible interaction
of a point particle can undergone is through a Lorentz type force, in terms of the vector fields
E and B without any restriction on its scope and range.

Gravity, as a possible interaction, is left aside by the definition of the Restricted Relativity
Principle. In this way, without further restrictions, it is not possible to determine classically
the other short range interactions like the weak and strong interactions, which are confined to
regions of order of 107'% to 1078 m, around the particles where the quantum phenomena are
relevant. These other interactions are described usually in a quantum context, through a local
gauge invariance hypothesis and they are not predicted in a classical formalism.

The fields Ag and A, are not uniquelly determined, because what appears in the dynamical
equations are their spacetime derivatives. If we modify them in the form

OA(L,T)
ot

OA(L,T)

Ay — Ag + o

;A= At (2.23)

where A(t, 7) is an arbitrary function of the kinematical variables, the Lagrangian Ly is modified
in the form
(‘?A(t,r)i N 8A(t,r)7_,‘ _dA
ot or, ' dr’

which is a total derivative and can be deleted because do not modify the dynamical equations.
The transformation (2.23), which leaves invariant the dynamical equations, while modifying the
external fields at any point of spacetime, is called a local gauge transformation.

It seems that if we have a transformation that leaves invariant the dynamical equations
we can obtain some conservation law by using Noether’s theorem. But this transformation is
not related to any one-parameter group of transformations but it is a general transformation
generated by an arbitrary function A, which transforms the Lagrangian with the addition of a
total derivative.

2.2 Galilei free spinning particle

The most general nonrelativistic particle ! is the system whose kinematical space X is the
largest homogeneous space of the Galilei group G, i.e., the Galilei group itself. We shall describe
the state of the elementary particle at any instant 7, by the knowledge of the time ¢(7), the
position of a point 7(7), the velocity of this point w(7) = dr/dt and the orientation of a
Cartesian frame of unit vectors e;(7), i = 1,2, 3, linked to that point. These nine components

! M. Rivas, Classical Particle Systems: I. Galilei free particles, .J. Phys. A 18, 1971 (1985).
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(ei); can be expressed in terms of three essential parameters p(7), as we can see in the appendix
2.8 about a parameterization of rotations, which are given by:

(e:); = R(p)ji (1= p®) 8ji + 2pjpi + 2€ik;pr] (2.24)

:71+p2

This selection of the orientation variables in any inertial reference frame is completely arbitrary,
because these unit vectors have no physical reality. This means that the Lagrangian cannot be an
explicit function of them, since any other arbitary selection would produce the same value of the
action. But the important feature is that in the dynamical evolution the orientation changes, the
particle rotates, and therefore the Lagrangian is going to be an explicit function of the angular
velocity of the particle, and this angular velocity is independent of the initial selection of the unit
vectors. This means that any observer who changes at any time the orientation unit vectors, does
not modify the value of the angular velocity in that frame, as we shall see below.

In addition to the kinematical group as a symmetry group we shall have another symmetry group,
the group of rotations of the local frame associated to the particle. We shall call it the local
rotation group and we shall denote by SO(3)r. It commutes with the whole Galilei group and
therefore the spacetime symmetry group is at least G ® SO(3)r. The result is that the Lagrangian
L has to be a function of the orientation variables p and p through its dependence of the angular
velocity w, which is expressed in terms of p and p in the form (2.35), as we shall see.

Then the kinematical variables are the ten real variables z(7) = (t(7),7(7), u(7), p(7)) with
domains ¢t € R, » € R?, u € R? and p € R? similarly as the corresponding group parameters.
The relationship between the values #'(7) and x(7) they take at any instant 7 for two arbitrary
inertial observers, and in the passive representation of rotations, is given by:

t'(r) = t(r)+0b, (2.25)
(1) = R(u)r(t)+vt(r) + a, (2.26)
u' (1) = R(p)u(r)+wv, (2.27)
pry) = B p(r) —pxp(7) (2.28)

1—p-p(1)

Among these kinematical variables there exist the differential constraints u(r) = #(7)/i(7),
that together with the homogeneity condition of the Lagrangian L in terms of the derivatives

of the kinematical variables: B N
L(x,3) = (OL/0;)d, (2.29)

reduce from ten to six the essential degrees of freedom of the system.

These degrees of freedom are the position 7(¢) and the orientation p(¢). The Lagrangian
depends on the second derivative of r(t) and the first derivative of p(t). Expression (2.29) is
explicitly given by:

L=Ti+R-7+U -u+V-p, (2.30)
where the functions T' = OL/0i, R; = 0L/, U; = OL/du’, V; = OL/9p", will be in general
functions of the ten kinematical variables (¢, 7, u, p) and homogeneous functions of zero degree

in terms of the derivatives (£, 7,1, p).
The generalized coordinates are r, u and p, and their canonical cojugate momenta are:

_ oL d( oL \_90L d 0L\ _, dU
Pr= Barjar) ~ @t \o(@r/dt2)) ~ or  dt \ou ) dt’
oL oL

Pu= Sl ~ o
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9L 9L
b= (dp/ar) ~ op ~
As canonical conjugate variables, p,. is the conjugate momentum of r, p,, is that of u anf p, is
the conjugate momentum of the orientation variables p.
By assuming that the evolution parameter 7 is group invariant, the derivatives of the kine-
matical variables transform under G:

t'(r) = (), (2.31)
(1) = R(p)r(r) + vi(r), (2.32)
u'(r) = R(p)u(r), (2.33)
gy (pr) e xp(n)1—p-p(r))
S =ppmr
pop(T)(p+p(7) + 1 x p(7))
C—p p2 234

Instead of the derivative p(7), which transforms in a complicated way, we can define the
angular velocity of the particle w as a linear function of it in the passive representation, in the
form

It is a linear function of p, and transforms as:
W'(1) = R(p)w(7). (2.36)

Two inertial observers measure the same absolute value of the angular velocity. The inverse
transformation of (2.35) is

=t (wpxwtplpw). (2.37)

We interpret the rotation matrix R(p) as the rotation that carries the initial frame linked to
the body at instant 7 = 0 to the frame at instant 7, as in a rigid body. Then, the three columns
of matrix R(p) represent the Cartesian components of the three unit vectors linked to the body
when chosen parallel to the laboratory frame at instant 7 = 0.

Expression of the angular velocity.
If at instant 7 = 0 we have the orientation axes e;(0), which define by columns the rotation matrix
R(p(0)), at any instant 7 they will be

((ex(7))(e2(7))(es(7))) = R(p(7)) R(p(0))

where R(p(7)) is the global rotation experienced by the particle, and the change per unit time 7

((ex())(e2(m))(es(7))) = R(p(7))R(p(0)) = R(p(r) R~ (p())((ex(r))(e2(r))(es(r)))

and thus the velocity of any axis, considered as a vector column, is the action on the vector, at the

instant 7, of the matrix
dei . _
= Rip(r)R™ (p(r)e(r) = Qei(r),

where Q@ = RR™! = RR” is an antisymmetric matrix. In fact, at any instant 7 any rotation matrix
satisfies, R(p(7))R" (p(7)) = I, where the superindex T means the transpose matrix, and I is the
3 x 3 unit matrix. If we take the 7-derivative of this expression, RRT + RRT = Q + Q7 =0, and
thus the three essential components of the antisymmetric matrix €2 define a three-vector w

0 —Ww, Wy
Q= W 0 —wz |,
—Wy Wz 0
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such that we can write the dynamics of any unit vector as
dei
dr

and w is interpreted as the angular velocity of rotation of the local frame associated to the particle.
The components of w, expressed as functions of the variables p and p are given in (2.35).

=w X e;. (2.38)

If any inertial observer changes the matrix of orientation R(7), made of the three unit vectors,
at the instant 7, by any other matrix R'(1) = R(7)M, where M is any orthogonal matrix, then
R'"(7) = MTR”(7), and for this observer ' = R'R'" = RMMTRT = RRT = Q, and thus any
selection of the orientation produces the same expression of the angular velocity in the correspond-
ing reference frame. This justifies that the Lagrangian does not depend explicitely on the variables
p, and depends only on them through its dependence of the angular velocity.

Expression (2.28) corresponds to R(p/(7)) = R(u)R(p(7)). Therefore
2 = R(p'(r)R"(p'(7)) = R(1)R(p(r)) R (p(7))RT (k)
= R(p)QR™(p),

and this leads to the equation (2.36) in terms of the essential components w of the antisymmetric
matrix €. N
In this way the last part of the Lagrangian (OL/0p%)p" can be writen as
L ; OL duw

Vop=—p=— " =W w, 2.39

P=55" = a0i o5 P w (2.39)
due to the linearity of w in terms of p and where W; = oL /Ow'. Thus the most general form
of the Lagrangian of a nonrelativistic particle can also be written instead of (2.30) as:

L=Ti+R-7#+U - u+W -w (2.40)

and where the functions 7', R, U and W are unknown functions of the variables (¢, 7, u, a, ),
to be determined. Here a = w/f = du/dt, is the acceleration of the point (please do not confuse
with the space translation parameter), and the variable Q = w/f is the angular velocity in the
time evolution description. But these observables are not explicit functions of the orientation
variables p. All these features are independent of whether the particle is free or it is under some
interaction.

Because we are ussing an arbitrary evolution parameter 7, the same for all inertial ob-
servers, and we can take it as dimensionless, the Lagrangian L has dimensions of action,
and therefore each one of the terms of its expansion (2.40) also has dimension of action.
This means that every one of the unknown functions F; = Bz/(%‘vi has dimensions of ac-
tion divided by the dimension of the corresponding kinematical variable z;, because if 7 is
dimensionless z; and &;, have the same dimension. Therefore, T will have dimension of (ac-
tion/time)—=energy, R dimension of (action/length)—massxvelocity, i.e., linear momentum, U
that of (action/velocity)=massxdistance or static momentum, and finally W dimension of ac-
tion or angular momentum, because w is dimensionless.

2.2.1 Free spinning particle

Since X is the whole Galilei group G the most general gauge function is just the group
exponent:

a(g;x) = £(9, ha) = m(v*(7)/2 + v - R(p)r(7)), (2.41)

similar to (2.7), and this allows us to interpret the parameter m as the mass of the system.

Under the action of an arbitrary element of the Galilei group, the Lagrangian L transforms

according to: B B
L(gx(r), d(gz(7))/dr) = L(2(7), (1)) + dalg; (7)) /dT. (2.42)
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This leads through some straightforward calculations, similar to the ones performed in (2.9)-
(2.11), to the following form of transformation of the functions:

(1) ( : (2.43)
R'(7) R(p)R(T) + mw, (2.44)
U'(1) R(p)U (1), (2.45)
W'(r) = R(p)W(7). (2.46)

S

) —v - R(p)R(T) — mv?/2,

2.2.2 Noether constants of the motion

Using the action of the Galilei group on the kinematical space given by (2.25)-(2.28),
Noether’s theorem defines the following constants of the motion for the free particle:

a) Under time translation the action function is invariant, A(z) = 0, and as usual we call the
corresponding conserved quantity, the total temporal momentum of the particle H. Since
0t = db and 5q§s) =0, My =1 and MZ-(S) = 0, by applying (1.37) we have:

H = (L= plya”)Mo = ~(L/i = plgaf) = -T— R-u-U-it/i - W -w/i

+HR—dU/dt) - u+U-u/t+V - p/i,
and since W - w =V . p, it turns out that

H=-T—— u. 2.4

T (2.47)
b) Under spatial translations, A(z1, z2) is invariant, A;(x) = 0, and this defines the total linear
momentum of the system. We have now:

5t =0, My =0, or; = daj, M) =&y, du; =0, M} =0,

vy

opi =0, M) =0,

and then p
P=R—-—=p.. 2.48
I D, ( )

¢) Under a pure Galilei transformation of velocity dv, A(x1,x2) is no longer invariant but taking
into account (1.13) and the gauge function (2.41), it transforms as 0A = mry-dv—mr; -dv and
thus, A\j(z) = mr;, and this defines the total kinematical momentum K, in the following
way:

ot = 0, Mo = 0, (S’l“i = 5112'25, Mz(jo) = 5ijt, 5u1 = 5’Ui, MZ(;) = 5ija
6pi =0, My =0,
and thus
K=mr—Pt-U. (2.49)

From K = 0, this leads to P = mu—dU /dt, and thus by identification with (2.48), the function
R = mu irrespective of the particular Lagrangian. The total linear momentum does not lie
along the velocity of the point 7.

d) Finally, under rotations A(xi,z2) remains invariant, B;(x) = 0, and the corresponding
constant of the motion, the total angular momentum of the system, with respect to the
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origin of observer’s frame, comes from the infinitesimal transformation of value du; = da;/2,
i.e., half of the rotated infinitesimal angle, and then

ot = 0, M()i = 0, (57‘2‘ = eikjéajrk, MZ(JT) = €ikjTk,

5ui = eikjéajuk, MZ(]u) = eikjuk,
Opi = 607 (33 + € + pip) /2, MY = (8 + €ingp™ + pip;) /2
Because the constant of the motion is

Jj = —pM{ — puid) — b))

which leads to

—Pi€igjri = €kt b, —Ui€igjur = €jriurUs,
from (2.35)
8wk 2
= — S 4
o 1+ p2( ki + €kiipl)
e OLo Owi ()
because 5
WE 5 r(p) _ ,
op M0 = 0
and therefore, in vector notation
J=rxP+uxU+W=L+Z+W=rxP+38, (2.50)

where all terms have dimension of action or angular momentum. L = r X P represents the
orbital angular momentum, Z = uw X U is the angular momentum associated to the dependence
of the Lagrangian on the acceleration and, as we shall see, comes from the relative orbital motion
of the center of charge around the center of mass (or Zitterbewegung) and W comes from the
dependence of the Lagrangian on the angular velocity and we interpret as the rotative part of
the angular momentum.

Since J represents the angular momentum of the particle with respect to the origin of the
reference frame, S represents the angular momentum of the particle with respect to the point
r. Because dJ/dt = 0, the function S satisfies dS/dt = P x u and it is not a constant of the
motion, even for a free particle. It is the classical angular momentum which satisfies the same
dynamical equation as Dirac’s spin operator in the quantum case.

e) We have mentioned at the beginning of this section, that in addition to the invariance of
dynamical equations under the Galilei group, we also have the invariance of the Lagrangian
under the local rotation group SO(3)r. This group only transforms the kinematical orientation
variables leaving the rest untouched. The kinematical variables transform under this group:

t'=t, r=r, u=u, R()=R(pMa), VMa)ecSOB3),
The transformation of p variables, in the infinitesimal case is

, P+ oa/2—pxda/2
(- pda)2)

1 L
, 5,0@' = 50&j§ (5” + PiPj — Eiljpl) = Mz(] )50tj.
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The conserved magnitudes come from the momenta p, = V', and they are:

85 Ow L
T =~ — 22 Tk (D)
I e
but 9
Wk 2 (L) _ 2\5, . . ,
Op; Mij 11 pg ((1 —-p )616] + 2pkp] + 26kjsps)

and this term is in fact the k-component, of opposite sign, of the unit vector ej,i.e., (e;),, given
in (2.24), and thus these constants of the motion are

the projection, on the particle unit vectors, of the angular momentum W associated
to the rotation.

From a different point of view, the conservation of the linear momentum P comes from the
invariance of L under translations and thus because it is independent of the position variables
r. Then from the dynamical equations with respect to these degrees of freedom, we can obtain:

oL d oL +di oL o A oL d oL o
Or;  dt \ O(dr;/dt) dt2 \ o(d?r;/dt?) ) 7 dt |O(dr;/dt) dt \O(d%r;/dt?) )|

since OL/0r; = 0, and we get again (2.48).

The conservation of the projections T; can be obtained from the dynamical equationes related
to the orientation degrees of freedom. Since L depends on p and p through its dependence on
the angular velocity w, these dynamical equations can be rewritten as

85_& oL —0 gawj_i @&uj —0 ﬁ_w,
8pi dr 8pl - 8&)]‘ api dr 8&)]' 8p, - 8w]' N J7

and they lead to

dWw
— =wx W. 2.52
i (2.52)
For the dynamics of the unit vector e;, we have seen in (2.38) that
de,- %
=w X e
d’r (2

and therefore for T; = W - g;, taking the derivative with respect to 7,

dr;
dr

(wxW)-e,+W:(wxe;)=0.

We shall see the importance of these conserved components of the spin in the quantum case,
to classify the states of the electron.

Exercise: Show that if a Lagrangian depends on the orientation variables p and p in terms of the
angular velocity w(p, p), through (2.35), then the dynamical equations related to the orientation

degrees of freedom,
oL d (0L _,
(9pi dr 8pz -

AW JdT = w x W, where W, =

can be transformed into
oL
awi ’
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2.2.3 Spin with respect to the center of mass

We can also consider the spin for a free particle with respect to its center of mass, once we
accurately identify the center of mass of the particle.

The center of mass observer is defined as that inertial observer for whom P = 0 and K = 0.
These six conditions do not define uniquely an inertial observer but rather a class of them up
to a rotation and an arbitrary time translation. In fact, the condition P = 0 establishes the
class of observers for which the center of mass is at rest, and K = 0 is the additional condition
to locate it at the origin of coordinates, at least for the point particle. We are going to see that
the same happens for the general spinning particle.

This comes from the analysis of (2.49), where k = U /m is an observable with dimensions
of length, and taking the derivative with respect to 7 of both sides, taking into account that
P = 0, we have:

K=0=mi—Pi—mk, ie, P=m—— (2.53)
Then the point ¢ = r — k is moving at constant speed and we say that it represents the position
of the center of mass of the system. Thus, the observable k = r — q is just the relative position
of point r with respect to the center of mass, which is defined as

1
g=r——U. (2.54)
m

Therefore P = 0 and K = 0 give rise to dg/dt = 0, and r = k, i.e., ¢ = 0, as we pointed out.
With this definition, the kinematical momentum can be written as K = mq — Pt, in terms of
the center of mass position g and the total linear momentum P.

The spin of the system, with respect to the center of mass, is defined as the difference
between the total angular momentum J and the orbital angular momentum of the center of
mass motion g X P, and thus

1 dk

SCM:J—qu:J—EKxP:Sﬂ—k:xP:—mk:xE+W. (2.55)
We see that can also be written as the angular momentum S with respecto to the point r, plus
the orbital angular momentum of this point k x P with respecto to the center of mass. The spin
Scour, is expressed in terms of the constants of the motion J, K and P, and is also a constant
of the motion. Alternatively we can describe the spin with respect to the center of mass Scay,
according to the last expression in terms of the rotational part W and the term —k x mdk/dt
which suggests a contribution of (anti)orbital type coming from the motion of point r around
the center of mass. It is related to the zitterbewegung or more precisely to the function U = mk
which reflects the dependence of the Lagrangian on the acceleration. The other term W comes
from the dependence on the other three degrees of freedom p;, and thus on the angular velocity.
This zitterbewegung is the motion of the center of charge around the center of mass. Point 7,
as representing the position of the center of charge, has been also suggested in previous works
for the relativistic electron. 2

Because J = 0, and that dW /dr = w x W and the expression of P, (2.48), this implies
the general relation for a free particle

PXxR4A4xU+wx W =0, (2.56)

which is also valid in the relativistic case and which reflects the fact that velocity, acceleration
and angular velocity are not independent magnitudes. In a certain sense, we can take as the local

2 A.O. Barut and A.J. Bracken, Phys. Rev. D 23, 2454 (1981).
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frame linked to point 7, the Frenet-Serret triad. From the derivatives 7 y #, we can determine
the tangent and normal vector, and their cross product defines the binormal, and therefore the
derivative of this triad will also produce the angular velocity which will be a function of the
other derivatives.

In the nonrelativistic case R and 7 have the same direction, the above relation reduces to

uxU+wx W =0. (2.57)

2.2.4 Spin dynamics

Since the angular momentum is an observable defined with respect to a definite point, and
the elementary particle has two characteristic points r and the center of mass g, we can analyze
the dynamics of the angular momenta with respect to these points, S and S¢yy, respectively.
In any case, if we know the angular momentum with respect to a point, we can compute the
angular momentum with respect to another point. For the free particle, the angular momentum
with respect to the origin of the inertial reference frame, is written alternatively as:

J:qXP+SCM:TXP+S

By taking the time derivative we get,

is dScn
o X a

0.

However, as we mentioned in the Preamble , if an external force F' applied at point 7 is acting
on the particle, the torque of this force with respect to the origin will produce the variation of
the total angular momentum .J,

dJ dP dS
bk F = P bl i
a r X u X +7r X I + i
but dP/dt = F, and therefore the spin S satisfies exactly the same dynamical equation than

in the free case,

dS
> _p
o X u,
but now P is not a constant of the motion. For the other
dJ dP dScm
b F = P il
e R AT
and thus is
dct’M :(’I"—q) XF?

If the spin with respect to the center of mass is not conserved, this means that for an elementary
particle g # r, and thus the center of mass and center of charge will be two different points.

2.2.5 Transformation of several observables

The different functions of the expansion of the Lagrangian E, transform under the Galilei
group according to (2.43)-(2.46). If we derivate the third equation with respect to 7 and divide
by ' = {, it gives

o' dUu AU’ dU dU

g = B e = e o Rp) e
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This implies that the linear momentum P and temporal momentum H, transform between
Galilei observers in the same form (2.16-2.17) as in the case of the free point particle.

1
H = H+v-Ru)P+ §m1)2, (2.58)
P’ = R(p)P+mv. (2.59)

In this way, if Hy and Py = 0, are the values they take for the center of mass observer, then
for any other observer who sees the center of mass moving at the speed v

P2
2m’
Therefore, the magnitude H — P? /2m = Hj is a constant and invariant property, independent
of the inertial observer. It defines an intrinsic property of the particle. The spacetime part of

L, which is related to the gauge variant part which defines the mass, takes the general form

Ti+R-7=—Ht+ P -7.

1
H:Ho—|—§mv2:H0+ P =muv.

In fact 1
~H{+ P -7 =-Hi+P-7+ 5mv%‘ +mwv - R(p)7.

In this way, the second part of the expansion of the Lagrangian U - w4+ W - w, is necessarily
invariant under the Galilei group. The other intrinsic parameter of the elementary particle, the
spin or internal rotation, will be related to that part. If we express the Hamiltonian in terms
of the invariants Hg and m, the first part remain

. 9 2
. . omr 1 /dU\";
—Ht+P-r=—-Hpt+——-——|(—| t
* o0 T om ( dt >
The first term is a total derivative and can be deleted, the second term gives the gauge variation
of the Lagrangian, and the third is necessarily Galilei invariant.
The transformation os the spin with respect to the center of mass Scps defined in (2.55),
comes from the transformation of k = U /m and W,

dk’ dk

E = k., — — =
R(p)k, o R(u)dt,

W' = R(p)W
and this leads to
Sen = R(p)Scm-

Therefore S’ % M= S(QJM, is a constant and invariant property between inertial observers. It is
another intrinsic property of the elementary particle. The Lagrangian of an spinning elementary
particle will depend explicitely of these two invariants mass m and center of mass spin Scy.

We cannot say the same about the spin with respect to the point », S. S =u x U + W
transforms in the way:

S =u xU +W = (R(p)u+v) x R(u)U + R(u)W = R(n)S + v x R(n)U,

and its absolute value depends on the relative velocity v among observers and, therefore, it is
not an intrinsic property.
The center of mass q transforms like the point 7:

q' (1) = R(n)q(7) + vt(7) + a.

This feature does not hold in the relativistic case and the center of mass does not transform like
the position of the point . This is because g and r are considered simultaneously in a reference
frame and therefore their transformed points ¢’ and 7’ are not considered simultaneous in the
other relativistic reference frame. In the relativistic case the definiton of the center of mass q
depends also on the acceleration of the point 7.
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2.2.6 Galilei spinning particle of (anti)orbital spin

To analyze the spin structure of the particle, and therefore the different contributions to the
spin coming from these functions U and W, let us consider the following simpler example.

Consider a Galilei particle whose kinematical space is X = G/S0O(3), so that any point x € X
can be characterized by the seven variables x = (t,7,u), u = dr/dt, which are interpreted as
time, position and velocity of the particle respectively. In this example we have no orientation
variables. The Lagrangian will also depend on the next order derivatives, i.e., on the velocity
which is already considered as a kinematical variable and on the acceleration of the particle.
Rotation and translation invariance implies that L will be a function of only u?, (du/dt)? and
w-du/dt = d(u?/2)/dt, but this last term is a total time derivative and it will not be considered
here.

Since from condition (2.57) U ~ 1, let us assume that our elementary system is represented
by the following Lagrangian, which when written in terms of the three degrees of freedom and
their derivatives is expressed as

2 2 2
m (dr m [(d°r
L=—(=) —535 |33 - (2.60)
2 \ dt 2w= \ dt
Parameter m is the mass of the particle because the first term is gauge variant in terms of the
gauge function (2.41) defined by this constant m, while parameter w of dimensions of time™!
represents an internal frequency. It is the frequency of the internal zitterbewegung.

In terms of the kinematical variables and their derivatives, and in terms of some group
invariant evolution parameter 7, the Lagrangian can also be written as

2 2

~ mr m u
L=———-——— 2.61
2 £ 2w? it (2.61)
where the dot means 7-derivative. If we consider that the evolution parameter is dimensionless,
all terms in the Lagrangian have dimensions of action. Because the Lagrangian is a homogeneous
function of first degree in terms of the derivatives of the kinematical variables, L can also be

written as B
L=Tt+R -7+ U -, (2.62)

where the functions accompanying the derivatives of the kinematical variables are defined and

po_ OL_ m(dr\? om (dr\®
ot 2 \dt 2w2 \ dt2 )’

oL dr

explicitly given by

R = —=m— 2.
or  at (2.63)
oL m d*r
g - 9L _ _mdr 2.64
ou w? dt? (2:64)
Dynamical equations obtained from Lagrangian (2.60) are:
1 dr d*r
T L 2.
car A (2.65)
whose general solution is:
r(t) = A+ Bt + C coswt + Dsinwt, (2.66)

in terms of the 12 integration constants A, B, C' and D.
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When applying Noether’s theorem to the invariance of dynamical equations under the Galilei
group, the corresponding constants of the motion can be written in terms of the above functions
in the form:

daU

temporal momentum H = —-T —wu- e (2.67)
daUu daUu
linear momentum P = R— — =mu— —, (2.68)
dt dt
kinematical momentum K = mr— Pt—U, (2.69)
angular momentum J = rx P+uxU. (2.70)

It is the presence of the U function that distinguishes the features of this system with respect
to the point particle case. We find that the total linear momentum is not lying along the
direction of the velocity w, and the spin structure is directly related to the function U, i.e., to
the dependence of the Lagrangian on the acceleration.

If we substitute the general solution (2.66) in (2.67-2.70) we see in fact that the integration
constants are related to the above conserved quantities

mw2

H::%B%~?4¢+D% (2.71)
P = mB, (2.72)
K = mA, (2.73)
J (2.74)

= AxmB-—mwC x D. 2.74

We see that the kinematical momentum K in (2.69) differs from the point particle case
(2.14) in the term —U, such that if we define the vector k = U /m, with dimensions of length,
then K = 0 leads from (2.69) to the equation:

and ¢ = r — k, defines the position of the center of mass of the particle that is a different point
than r and using (2.64) is given by

1 1 d*r
In terms of it, dynamical equations (2.65) can be separated into the form:
d’q
23— 9 2.
e (2.76)
d*r 9

where (2.76) is just eq. (2.65) after twice differentiating (2.75), and Equation (2.77) is (2.75)
after collecting all terms on the left hand side.

From (2.76) we see that point g moves in a straight trajectory at constant velocity while
the motion of point r, given in (2.77), is an isotropic harmonic motion of angular frequency w
around the point q.

The spin of the system with respect to the center of mass, S¢ps is defined as

1
Sey=J-qxP=J-—K xP, (2.78)
m
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and since it is written in terms of constants of the motion it is clearly a constant of the motion,
and its magnitude S(%M is also a Galilei invariant quantity that characterizes the system. In
terms of the integration constants it is expressed as

Scyv = —mwC x D. (2.79)
From its definition we get
d dk
SCM:uxU+kxP:—m(r—q)xa(r—q):—kxma, (2.80)

which appears as the (anti)orbital angular momentum of the relative motion of point r around
the center of mass position g at rest, so that the total angular momentum can be written as

J=qxP+Scy=L+ Scum. (2.81)

It is the sum of the orbital angular momentum L associated to the motion of the center of
mass and the spin part Scas. For a free particle both L and S¢ps are separately constants of
the motion. We use the term (anti)orbital to suggest that if vector k represents the position
of a point of mass m, the angular momentum of this motion is in the opposite direction as the
obtained spin observable. But as we shall see in a moment, vector k does not represent the
position of the mass m but rather the position of the charge e of the particle.

2.2.7 Interaction with an external electromagnetic field

But if q represents the center of mass position, then what position does point r represent?
Point 7 represents the position of the charge of the particle. This can be seen by considering
some interaction with an external field. The homogeneity condition of the Lagrangian in terms
of the derivatives of the kinematical variables leads us to consider an interaction term of the
form

L; = —ed(t,r)i + eA(t,T) - 7, (2.82)

which is linear in the derivatives of the kinematical variables ¢ and r and where the external
potentials are only functions of £ and . We can also consider more general interaction terms of
the form N (¢,r,u) -4, and also more general terms in which functions ¢ and A also depend on
u and . If the interaction Lagrangian depends on @ this implies that the interaction modifies
the definition of the observable U = mk which defines the spin of the free system. But if the
system is elementary the spin definition cannot be changed, so that (2.82) is the most general
interaction term. See the discussion in section 2.1.3 about the independence of the potentials
¢ and A; of the velocity variables.
Dynamical equations obtained from L + L are

1d» d&r e
ot s = (Bltr) fux B(t,r), (2.83)

where the electric field E and magnetic field B are expressed in terms of the potentials in
the usual form, E = —V¢ — 0A/0t, B = V x A. Dynamical equations (2.83) can again be
separated into the form

d’q e
P (E(t,7) +u x B(t,r)), (2.84)
d*r 9
7l + w(r—q)=0. (2.85)

The center of mass q satisfies Newton’s equations under the action of the total external Lorentz
force, while point 7 still satisfies the isotropic harmonic motion of angular frequency w around
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point g. The external force modifies the motion of the CM but does not modify its internal
relative motion according to the Atomic Principle. But the external force and the fields are
defined at point r and not at point q. It is the velocity w of point r that appears in the
magnetic term of the Lorentz force. Point = clearly represents the position of the charge. In
fact, this minimal coupling we have considered is the coupling of the electromagnetic potentials
with the particle current, that in the relativistic case can be written as j, A", but the current
Ju 1s associated to the motion of a charge e at point 7.

Figure 2.1: Charge motion in the C.M. frame.

This charge has an oscillatory motion of very high frequency w that, in the case of the
relativistic electron is w = 2mc?/h ~ 1.55 x 102's~1. The average position of the charge is the
center of mass, but it is this internal orbital motion, usually known as the zitterbewegung, that
gives rise to the spin structure for this model and also to the magnetic properties of the particle,
as we shall see later.

When analyzed in the center of mass frame (see Fig. 2.1), ¢ = 0, r = k, the system reduces
to a point charge whose motion is in general an ellipse, but if we choose C' = D, and C- D = 0,
it reduces to a circle of radius @ = C' = D, orthogonal to the spin. Then if the particle has

charge e, it has a magnetic moment that according to the usual classical definition is: 3
1 . 3 e dk e
M—Q/TX]dT—Qk:th——mSCMa (2.86)

where j = ed®(r — k)dk/dt is the current associated to the motion of a charge e located at
point k. The magnetic moment is orthogonal to the zitterbewegung plane and opposite to the
spin if e > 0. It also has a non-vanishing oscillating electric dipole d = ek, orthogonal to u
and therefore to Sy in the center of mass frame, such that its time average value vanishes for
times larger than the natural period of this internal motion. Although this is a nonrelativistic
example we see in (2.86) that its gyromangnetic ratio is ¢ = 1. In order to obtain g # 1 it is
necessary another contribution to the spin not related to this relative motion. It is interesting,
nevertheless, to point out and compare with Dirac’s relativistic analysis of the electron, # in
which both momenta p and d appear, giving rise to two possible interacting terms in Dirac’s
Hamiltonian. We shall come back to this analysis later when we study the elementary relativistic
particles.

% J.D. Jackson, Classical Electrodynamics, John Wiley & Sons, NY (1998), 3rd. ed. p.186.
* P.A.M. Dirac, The Principles of Quantum mechanics, Oxford Univ. Press, 4th ed. (1967).
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2.2.8 Spinning particle in a uniform magnetic field

Let us consider in detail the interaction of this model of particle with spin of orbital nature
in an external uniform magnetic field B. It is an exercise that can be solved explicitly. The
advantage of a model defined in terms of a Lagrangian function is that we do not need to state
any dynamical equation for spin, because the spin is a function of the independent degrees of
freedom and therefore its dynamics can be obtained from them. The result is that we shall
obtain as a first order approximation a torque equation of the usual form dScys/dt = p x B,
when the magnetic moment p is properly interpreted in terms of the charge motion.

In this case, the system of equations (2.84-2.85) reduce to

2 2
%:%UXB, %+w2(r—q)20.
With the definition of the variables v = dq/dt, it is equivalent to a linear system of twelve
differential equations of first order for the components of r, u, ¢ and v. If we define a new
dimensionless time variable 7 = wt, then the above system depends only on the dimensionless
parameter a = eB/mw which is the quotient between the cyclotron frequency |w.| = eB/m and
w, the natural frequency of the internal motion.

By taking the direction of the uniform magnetic field along the OZ axis, the external force
is orthogonal to it. Then if we call g3 and 73 the corresponding coordinates along that axis of
the centre of mass and center of charge, they satisfy

d2Q3 d2Q3 2
WZO; o2 v (rs —q3) =0 (2.87)
whose general solution in terms of the initial data ¢3(0), 73(0), v3(0) and ug(0) is
g3(t) = ¢3(0) + v3(0)¢, (2.88)
1
r3(t) = (r3(0) — ¢3(0)) coswt + ;(ug(O) — v3(0)) sinwt + ¢3(0) 4+ v3(0)t. (2.89)
Similarly, the other components of the center of mass in terms of the new time variable are
Pq _ dry P dn
dr?2 T dr’  dr? dr’
and once integrated we get
d d
% =ary + bl, % = —ary + bQ, (290)

where b; and by are two integration constants with dimensions of length. Thus we are left
with the integration of a first order system formed by these two last equations (2.90) and the
equations for the other two components of the center of charge that can be written as

Cl’l“l . d?“g .

E = ui, dr = u2, (291)
duy dug
U (2.92)

The matrix of this linear system in terms of the variables q1, g2, 71, 72, 1 and ug, taken in
this order, is just

00 0 a 00

0 0 —a 0 0O

00 0 0 10
M= 00 0 o0 0 1]}

10 -1 0 0O

01 0 -1 00
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whose characteristic equation is A6 + 2A%* + X2 + a? = 0. It is shown that it has six different
roots, corresponding to the normal modes of the system. If we call A = iz, these new variables
verify 22(1 — 2?)? = a?, and thus by solving the cubic equation z(1 — 22) = a, the six solutions
of the form +iz will be the six eigenvalues of the system. If we define

1
k = - arcsin (3?@)7 (2.93)

3

then the six eigevalues are *iw;, j = 1,2, 3, where:

1 1
wi = ——=sink, wy=—cosk— —sink, w3=cosk— ——sink. 2.94
V3 VER V3 294
If 3v/3]a|/2 < 1 then the six roots are purely imaginary and the motion is three-periodic with
these three frequencies. Otherwise, if there exist real roots, the corresponding solution will be
exponential. In general, for the electron, as we shall see in the next chapter, the zitterbewegung
frequency is w = 2mc?/h, and thus

a/B = e/mw = eh/2m*c* = 1.13 x 10" P Tesla™ !,

so that even with very strong magnetic fields the parameter a is very small and the usual
solution will be oscillatory.

The general solution of the complete system will be a linear combination of these three
oscillations and it will depend on twelve integration constants that will be expressed in terms
of the initial position and velocity of the center of mass and center of charge. The general form
for the evolution of the center of charge is:

ri(t) = AcoswiT 4+ BsinwT + C cosweT + Dsinwet + F coswsT
+ Fsinwst 4 by/a,
ro(T) = BcoswiT — AsinwiT + D coswaer — C'sinwaT

_l’_

F coswsT — E'sinwst — by /a,

(r3(0) — ¢3(0)) coswt

+ %(ug(O) —v3(0)) sinwt + ¢3(0) + v3(0)t,

T3 (t)

where

bi/a=v1(0)/aw —12(0), b2/a =v2(0)/aw + r1(0).

For the center of mass coordinates we get

q(t) = (1—w?)(AcoswiT + Bsinwir)

+ (1 —w3) (Ccoswar + Dsinwsr)

+ (1 —w3) (Ecoswst + Fsinwst) + by /a,
(1) = (1—w?)(BcoswiT — Asinw7)

+ (1 —w3) (D coswy — C'sinwsr)

+ (1 —w?) (Fcoswst — Esinwst) — by /a,
a3(t) = q3(0) +v3(0)t.

The six unknown constants A, B,C, D, E, and F are of dimensions of length and satisfy the
linear system

11 1 A —v2(0)/aw

wp w2 ws C|= —uz(0)/w |,

W w3 W) \E) \n©)-a0
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and
1 1 1 B v1(0)/aw
wp wy w3 D | = u1(0)/w ,
w? Wi wl F r2(0) — q2(0)

where q(0), v(0) and 7(0), u(0), are respectively the position and velocity of the center of mass
and center of charge at time ¢ = 0.
If we call N the inverse of the matrix containing the frequencies of the above equations, it

is:
2 2
wowz(ws —w2) Wi — w5 w3 —wa
2 2
3 wl wl - (,U3 5
2 2
1 — (.UQ w2 - w1

1
N =— | wws(w) —ws)

w
wiwe(we —w1) w

where A = (w1 — w9)(we — w3)(w3 — w1), in such a way that we can obtain the final expression
of the integration constants in terms of the initial conditions.
To lowest order in a, since k = V3a /2, the normal modes are:
a 3a® a 3a®

wi=a+0(a®), wy=-1-— B + 'y +0(a®), wy=1-— 3" 8 +0(a®). (2.95)

In terms of the physical parameters and in the time evolution description, these normal fre-
quencies are to lowest order:

w 3w? w 3w?
w1 = We, wgzw—?c—&j, wgzw—{—?c—&j, (2.96)

where w. = eB/m and w are the cyclotron and zitterbewegung frequency, respectively.

To properly characterize these initial values in terms of physical parameters, like the radius
of the internal motion Ry, the cyclotron radius R., the center of mass velocity v and the
zitterbewegung frequency w, let us consider an electron that is sent with a velocity v orthogonal
to the external uniform magnetic field B. We take the XOY plane such that the initial position
of the center of mass is on the OX axis at the coordinate R. = —vm/eB, and the initial velocity
v along the positive direction of the OY axis. With this convention, the center of mass will have
a precession around the OZ axis with cyclotron angular velocity |w,| in the positive direction
while for a positive charged particle the initial position will be chosen as —|R.| on the OX axis
and the angular velocity will point in the negative OZ axis.

The initial position of the center of charge is characterized by the three parameters ¢, 6
and 1, where 6 and ¢ represent the initial orientation of the internal angular velocity w, and
parameter ¢ is the initial phase position of the center of charge as shown in Figure 2.2. If all
these three parameters are zero, w is pointing along OZ and the initial position of the charge
is at point R. + Ry on the OX axis.

We thus have as initial conditions for our system, written in column matrix form:

Rc Rc RO
q(0) = 0|, =(0)= 0 |+ Roz(‘b)Roy(g)Roz(w) 01,

0 0 0

0 0 0
v0)=(v ], u0)=|v ]|+ Roz(ﬁb)Roy(g)Roz(w) wRy |,

0 0 0

where Roz (o) will represent a rotation in the active sense, of value a around the OZ axis. Since
the spin is opposite to the internal angular velocity, its initial value is

0
SCM(O) = ROZ(¢)R0y(‘9) 0 ’ (2-97)
-5
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Figure 2.2: Initial phase ¢ of the charge and initial orientation (6, ¢) of angular velocity w.

where S = mwR2. Thus the initial conditions to determine the coefficients of the general
solution are:

—v2(0)/aw R. v1(0)/aw 0
—u2(0)/w = | aR.—aRy |, u1(0)/w =|Ro |,
r1(0) — q1(0) BRoy r2(0) — ¢2(0) 0 Ry
where R, = —vm/eB, w. = —eB/m = —aw, as before and the constant parameters:
a = —sin¢gcosfsiny + cos@cosy,
8 = cos¢cosfcosyy —sin¢siny,
v = —cos¢@cosfsiny — sin ¢ cos,
0 = singcosfcosy + cospsin.

To lowest order in a, the frequencies become:

3
wl—w2:1+§a, Wy — w3z = —2, W3—w1:1—§a,
a a
W1+w2:—1+§, w2 +w3 = —a, w3+w1:1+§,

2
W1W2:_a(1+g), WQW3:—<1—(1)7 w3w1:a(1_g),

and thus the inverse matrix N to order O(a?) is

1+ 2a? —a —1—9a%/4
N=| a/2—-a*> -1/2+a/2-3a*/4 1/2—3a/4+ 9a?/8
—a/2—a®> 1/2+a/2+3a%/4 1/2+ 3a/4+ 9a?/8

In this way the coefficients of the general solution, to first order in a, are:

A = R.—BRo+ aRoa,

B = _RO((VY—’_(S)?

R R,
O = Fla+8) - 20 +3p),
D = Ho_ gy 209 ),
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R R

B = JMB-a)+ (36 - 20),
R R,

F o= S20+7)+ (27 +36),

and the coefficients
bl/a=—5R0, bg/a=5R0.

This motion depends on the cyclotron radius R., only through the parameter A, and the
remaining terms depend on the internal radius Ry.
The general solution, neglecting terms of the order a Ry, can be written in a vector form as:

R, Ry
r(t) = Rozg(wet) [ 0 |+ (I—Roz(wet)) R(¢,0,9) | 0
0 0
wel Ro
+ ROZ <_26> R(¢v 97 11[) + Wt) 0 + O((IR()),
0

where I is the 3 x 3 unit matrix and R(¢,0,v) = Roz(¢)Roy(0)Roz(v). The first two terms
represent the center of mass motion to this order of approximation, while the third is precisely
the relative motion of the center of charge around the center of mass. The neglected contribution
of order aRy can be written as

O(CLRQ)
wet 0
= _']Z [ROZ(th)R(¢7 07 ¢) - 7?'OZ <_2C> R(¢7 07 ¢ + wt):| aRO
0
) alRy
g | R (< R0 | 0 )]
0
where
0 -1 0
J,=11 0 0],
0 0 O

is the 3 x 3 generator of rotations around the OZ axis. The first two terms represent the
correction to this order of the center of mass motion and the third is the correction of the internal
relative motion. The presence of the generator J, in this term means that this correction does
not make any contribution to the motion along the OZ axis. The solution along OZ is exactly:

q3(t) =0, r3(t) =—Rosinf cos(wt + 1), (2.98)

i.e., a harmonic motion of amplitude Rysiné, and frequency w.
The relative position of the center of charge with respect to the center of mass verifies:

wet o
k() = Ren (=" ) R(6.0.0+ w0 | 0
0
. aRy
_Jz Sln(20‘)15)7?'0Z <_u)26t> R(¢7 97 lb) 0 9 (299)
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and if we neglect contributions to order aRy, it just reduces to the first term

wet Ro
k(t) = Roy, <—20> R(p,0,v + wt) 0 , (2.100)
0

that represents an oscillation with the natural frequency w of the zitterbewegung around the
initial spin axis, with a backwards precession with an angular velocity w./2.

Figure 2.3: Motion of the center of charge (red) and center of mass of a negative charged
particle in a uniform magnetic field. The spin with respect to the center of mass precess
in the opposite direction to the cyclotronic motion and with half the angular velocity. The
velocity of the center of mass is orthogonal to the field.

The center of charge and center of mass trajectory is depicted in the Figure 2.3, where the
curly trajectory is the motion of the center of charge.
To study the spin dynamics, we just substitute the general solution in its analytical definition

dk(t)
St
where we need to calculate the derivative of (2.100). To calculate this derivative, we have to
take into account that

Sc(t) = —mk(t) (2.101)

Roz(wt) = exp(J wt),

and therefore '
Roz(wt) = exp(J.wt)J,w = Roz(wt)J.w = J,w Reg(wt).

By taking the derivative of (2.100) we get the following terms:

w —ch()/Q
( C>J7€gb,9ﬂ)~l—wt) 0
0
wel 0
+ R0Z< 2) (6,0, +wt) | wRo |, (2.102)
0
where
0 Ry
wRy | =wd. | 0 |. (2.103)

0 0



2.2. GALILEI FREE SPINNING PARTICLE 97

Of these terms, the first is of order w.Ry = vRy/R. = awRy = ac, and thus even with very high
magnetic fields it can be neglected.
The dynamics of the spin with respect to the center of mass is reduced to

0
Scu(t) = Rox <—“2t> Rp.0,0+wt)| 0 | =Ro <—“2t> S(0),  (2.104)
—mwR3

where Sc(0) is given in (2.97). The spin is precessing backwards with half the angular velocity
of the cyclotron motion while its absolute value remains constant at first order. We represent
in Figure 2.4 its evolution during the same time interval as the one depicted in Figure 2.3 with
the initial orientation 6§ = 30° and ¢ = 90°, where we can observe, in addition to the precession
of constant absolute value, a tiny oscillation of the next order contribution.

Figure 2.4: Precession of spin with respect to the center of mass Scj around the OZ axis,
and its projection (in blue) on the XOY plane during the same time than in the figure 2.3.

From another point of view, the relationship between tha spin and magnetic moment is given
by (2.86), and the dynamics of the spin with respect to the center of mass depends on the torque
of the magnetic field B,

dScr B =~ ° o x B =Q x Sour.
dt 2m
The constant angular velocity of precession of the spin, is Larmor’s angular frequency
_eB  w.
“om 20
since w. = —eB/m, i.e., half and of opposite direction to the cyclotronic angular velocity,as can be

seen in the Figure 2.4. This produces the first order contribution, since at this order the absolute
value of spin is conserved. This approach does not contain the additional terms of correction to
the normal modes w;, which can be relevant in high energy processes, and that can be obtained

using the exact general solution.

2.2.9 Dynamics of the spin with respect to the center of charge S

It is interesting to compare the evolution of the center of mass spin Scps with that of the
center of charge spin S = uw x U, which satisfies either in the free case and under interaction
the same dynamcial equation

—_— = X Uu.
a P
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In the figure 2.5 we represent its evolution, as well as its projection on the XOY plane, during
a complete turn of the electron.

Figure 2.5: Motion of the center of charge spin S, and its projection (in green) onto the
plane XOY, during a complete turn of the CM of the electron. Its evolution is always or-
thogonal to the linear momentum p. The dynamics of the center of mass spin S represents
the evolution, in the quantum case, of Dirac’s spin operator, S = hio/2.

Since the center of mass spin is written as
Sov =85+ k xp, (2.105)

where k is the relative position of the CC with respect to the CM. If we consider the average
value of this expression during a complete turn of the center of charge, during this short time
the linear momentum is almost constant and thus and the average value of k is zero, this implies
that < Scop >=< S >. We can show that by depicting the evolution of both spins S¢js and
S, of 2.4 and 2.5, respectively. In the figure 2.6 we see this superposition.

Since Dirac’s spin operator S = %hd satisfies the dynamical equation dS/dt = p x u, it
is the dynamics of the center of charge spin which represents the evolution od Dirac’s spin
operator.

Although this analysis of the average values of the spin has been done with a nonrelativistic
model, this result is completely general since the relationship between both spins (2.105) is the
same in the relativistic case and the average value the relative position k, during a turn, is zero.

2.2.10 Energy of the particle

The energy of the system is

dU
H=-T—-u-— 2.1
u o (2.106)

that can be expressed as:
m (dr\? m (d2r\> mdr &r
H=—|(—] —— | —= —_— = Vi(r,t
2 <dt> 202 (dt2> oz s eVt

and, since the function V' (7,¢) = 0 in the presence of a constant magnetic field, it becomes:

~m (dq 2 om (dk\?  mw? s (P —ecA)?
_2<dt> _2<dt) MWy B eAN (2.107)
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Figure 2.6: Superposition of the dynamics of both spins. The dynamics of the center of
mass spin Scy (in red), is the average value during a turn of the center of charge of the
dynamics of the center of charge spin S. The center of mass spin is the average value
during a turn of the center of charge of Dirac’s spin.

To lowest order the contribution comes from

R, Ry
q(t) = Roz(wet) | 0 | + (I —Roz(wet)) R(4,0,9) | 0
0 0
Thus
dq 0 weRy
df = ROZ (wct) v - ROZ(Wct) J, R(¢, 07 w) 0 5
t 0 0

in such a way that taking into account (2.99) and (2.102)

dq 2 ) weRo
(dt) = v+ | L. R(s,0,v) 0
0
0 chQ
- 2 v JZ,R'(¢7971/}) 0 )
0 0
dk 2 S *cho/Q 2
<dt> =w’Ri+ |J:R(¢,0,¢ + wt) 0
0
—wCRQ/Q 0
+2 [ J, R(¢, 0,9 + wt) 0 | R(¢p, 0,9 + wt) | wRy
0 0
Since
B(t) ~(t) cos ¢sin 6
R(p, 0, + wt) = o(t) a(t) singsinf |,

—sinf cos(wt + 1)  sin b sin(wt + 1) cos 6
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—0(t) —a(t) —singsind
J.R($, 0,9 +wt)=| B() () cosgsing |,
0 0 0

where

= —sin¢gcosfsin(y + wt) + cos ¢ cos(y + wt),
cos ¢ cos 0 cos(y) + wt) — sin ¢psin(y + wt),

— cos ¢ cos Osin(1) + wt) — sin ¢ cos(y + wt),
= sin ¢ cosf cos(y) + wt) + cos psin(y + wt)

then
ch(] —5(t)

J.R(p, 0,19 + wt) 0 =w.Ry | B(t)
0 0

Consequently

2
<C§Z> = v” + wZRG(6(0)% + B(0)*) — 2vw.RoB(0),

2 UJQ 2
(le’tc> = W?R2 + CTRO((S(t)Z + B(t)?) + wweRG(8(1)7(1) — B(t)a(t)).

Because
(1)1 (1) — Bt)alt) = — cosd,
5(0)2 + (0)% = 1 — sin? A cos? ¥,
5(t)? + B(t)? = 1 — sin? § cos? (¢ + wt),

if we write w, in terms of the parameter a, w. = —aw, in the case of the electron wRy = ¢, the
energy of this system to lower order of approximation in a is:

mc? cos

H=Hy—a (2 - mvcﬁ(O))

mC2
ra2 i (307 + 5O = {007 + 507 )

The lowest order of the interaction energy can be expressed as:

1 B mc?
H]:—*CLTI”LCQCOSQZ—L%COSHZ—[,L‘B, (2.108)
2 2m w
and since S = mwR2 = mc?/w, S, = —S cos b, it implies
eScosf eS,
= = — 2.109
pe = —5 5 (2.109)
or .
=—-——=Scum- 2.11
p=—5-Scu (2.110)
The interaction energy can also be written as
= -PLseso— “B.5 el (2.111)
=——=Scosf =—B- = : .
I o o cM 5 CM;

i.e., as the scalar product of the spin with respect to the center of mass and the angular velocity
of precession of this spin.
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2.2.11 Spinning Galilei particle with orientation

Another simple example of a spinning particle is the one in which the spin is related only
to the angular variables which describe orientation.

Let us assume now a dynamical system whose kinematical space is X = G/R2, where
R3 = {R3,+} is the 3-parameter Abelian subgroup of pure Galilei transformations. Then,
the kinematical variables are © = (¢,r, p), which are interpreted as the time, position and
orientation respectively.

The Lagrangian for this model takes the general form

L=Ti+R -7+ W w.

Because of the structure of the exponent (2.247), the gauge function for this system can be
taken the same as before. The general relationship (2.57) leads to W x w = 0, because the
Lagrangian is independent of %4, and therefore W and w must be collinear. According to the
transformation properties of the Lagrangian, the third term W - w is Galilei invariant and since
W and w are collinear, we can take W ~ w and one possible Lagrangian that describes this
model is of the form:

L:@%+—in (2.112)

The different Noether’s constants are

m (dr\% T
H=—|— —Q? P=
2<ﬁ>'+2 ’ m,

K=mr—Pt, J=rxP+W,

where u = dr/dt is the velocity of point r, and Q = w/{ is the time evolution angular velocity.
Point r is moving at a constant speed and it also represents the position of the center of mass.
The spin is just the observable S = W' that satisfies the dynamical equation dS/dt = wx S =0,
and thus the frame linked to the body rotates with a constant angular velocity €2.

The spin takes the constant value S = I€Q, whose absolute value is independent of the
inertial observer and also the angular velocity £ = w/f is constant. The parameter I plays the
role of a principal moment of inertia, suggesting a linear relationship between the spin and the
angular velocity, which corresponds to a particle with spherical symmetry. The particle can
also be considered as an extended object of gyration radius Ry, related to the other particle
parameters by I = mR(Q).

This system corresponds classically to a rigid body with spherical symmetry where the
orientation variables p can describe for instance, the orientation of its principal axes of inertia
in a suitable parameterization of the rotation group. This is a system of six degrees of freedom.
Three represent the position of the center of charge r and the other three p, represent the
orientation of a Cartesian frame linked to that point . Since for this system there is no
dependence on the acceleration, the center of mass and the center of charge will be represented
by the same point.

In the center of mass frame there is no current associated to this particle and therefore it
has neither magnetic nor electric dipole structure. As seen in previous examples, all magnetic
properties seem therefore to be related to the zitterbewegung part of the spin and are absent
in this rigid body-like model.



102 CHAPTER 2. EXAMPLES OF SPINNING PARTICLES
RELATIVISTIC PARTICLES

2.3 Relativistic point particle

See the Appendix about the Poincaré group at the end of this chapter for the group notation
used throughout this section.

The kinematical space is the quotient structure X = P/L, where P is the Poincaré group
and the subgroup L is the Lorentz group. Then every point € X is characterized by the
variables z = (¢(7),7(7)), with domains ¢t € R, r € R? as the corresponding group parameters,
b and a, respectively, in such a way that under the action of a group element g = (b, @, v, ) of
P they transform as:

{(r) = At(r) + A Rlur(r)/e + . (2.113)
2
r(r) = Rur(r)+79tn) + 50 Riur(n)v + a (2.114)

and are interpreted as the time and position of the system. If, as usual, we assume that the
evolution parameter 7 is invariant under the group, taking the 7-derivative of (2.113) and (2.114)
we get

t'(r) = ~i(r) + (v R(p)i(r))/c, (2.115)
./ . ; 72 .
(1) = R(u)r(T)—i-’th(T)+W(U-R(u)r(7))v. (2.116)

The velociof the point w = dr/dt transforms between inertial observers as

2
L R 4w+ L (0 Ruu(r)w
u () = r_ (1+9)c
=3 0+ v Rl u(@))) ' (2.117)

In this way we should obtain the transformation laws of the different time derivatives, like
acceleration and so on.
If from (2.117) we calculate the absolute value of the velocity, this gives rise to:

2 2
9 uc —c
g 2+02.

V(1 +v- R(p)u(r)/c?)

(2.118)

In principle, the value of the velocity of a point is unrestricted, but if v < ¢ then v’ < ¢ for
every inertial observer, and the same if u > ¢, v/ > ¢ and also if v = ¢ it implies that v’ = c.
The relativistic description produces three different kinds of pointlike particles, according to
the value of its velocity, whether the velocity u will be v < ¢, u = ¢ or u > ¢, for every inertial
observer. For the cases © = ¢ and u > c it is not possible to find an observer at rest with
respecto to the particles, because the group parameter v of the Poincaré grup is restricted to
v < c.

The homogeneity condition of the Lagrangian, in terms of the derivatives of the kinematical
variables, reduces to three the number of degrees of freedom of the system. This leads to the
general expression

L=Ti+R-7 (2.119)

where T = 9L/t and R; = L /87, will be functions of ¢ and r and homogeneous functions of
zero degree of £(7) and 7(7).
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2.3.1 Free point particle

If the particle is free, the dynamical equations will be invariant under P, and the Lagrangian
will also be invariant because the Poincaré group has no non trivial exponents and the possible
gauge functions associated to this group can be reduced to zero.

From the infinitesimal point of view, since Lo(t, 7, i,7) depends on these variables which trans-
form according to (2.113-2.116), the different generators of the Poincaré group, when acting on
functions of these variables, are:

1o} r 0 P 0 .
H_—i P_— == § /’;'7 K_— P T 1;'7
9t c7 J rXV+4+7rxV 2 t+tc+c2 t—f-tv

like the Galilei case, except the generator of the Lorentz boosts K, which has a different structure
because the infinitesimal transformation of velocity dv affects, not only to the space variables r
and 7 like the Galilei case, but also to the time variables ¢ and t. _

If HLo = 0 and PLo = 0, implies that Lo is not a function of ¢ and ». If JLo = 0 implies
that it is a function #2 and also of ¢ and has to be homogeneous of degree 1 in these derivatives.
Finally, if it is invariant under the Lorentz boosts K Lo = 0, and therefore

r 0 . ~
(07& +th> LO =5 O,

which implies that Lo is an arbitrary function of ¢*#2 —#2. The condition of homogeneity of degree
1 in these derivatives and that it has dimension of action implies that a possibility is sv/c2{2 — 72,

with s a parameter of dimensions of massXvelocity, for instance mc.

Because the Lagrangian is invariant under P, the functions 7" and R transform under the
group P in the form:

T = AT —~(v-R(p)R), (2.120)

42
I+~

R = R(uwR—~vT/c+ (v-R(pn)R)v/c?. (2.121)
We thus see that 7" and R are invariant under translations and therefore they must be functions
independent of ¢ and .

The conjugate momenta of the generalized variables ¢; = r; are p; = 35/ Or;, and conse-
quently Noether’s theorem leads to the following constants of the motion, that are calculated
similarly as in the Galilei case except for the invariance under pure Lorentz transformations.
We have now no gauge function and the variations are 6t = - év/c?, M; = r;/c* and ér = tdv,
M;; = td;; and thus we get:

temporal momentum H = -T, (2.122)
linear momentum P = R =p, (2.123)
kinematical momentum K = Hr/c® — Pt, (2.124)
angular momentum J = 7 x P. (2.125)
The energy (temporal momentum) and the linear momentum transform as:
H'(1) = ~H(r)+~(v- R(p)P(7)), (2.126)
2
' v i

They transform like the contravariant components of a four-vector P* = (H/c, P). The
observables cK and J are the essential components of the antisymmetric tensor J** = —J"* =
oHPY — gV P* cK; = J° and Jy, = epy /2.
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Taking the 7 derivative of the kinematical momentum, K = 0, we get P = H7/c* = Hu/c?,
where u = 7/ is the velocity of the particle and the point r represents both the center of mass
and center of charge position of the particle.

The six conditions P = 0 and K = 0, imply v = 0 and r = 0, so that the system is at
rest and placed at the origin of the reference frame, similarly as in the nonrelativistic case. We
again call this class of observers the center of mass observer.

From (2.126) and (2.127) we see that the magnitude (H/c)2 — P2 = (H'/c)2 — P? is a
Poincaré invariant and a constant of the motion of dimensions (massxvelocity)?. Since P? =
(H/c)*u?/c* < (H/c)?, if u < ¢, and it is definite positive. We write this magnitude as m?c?
in terms of a positive number m, the rest mass of the particle. By using the expression of
P = Hu/c?, we get

H = +mc*(1 —u?/c?) Y2 = £y (u)me.

We are going to see that the sign of H, is another Poincaré invariant property of the particle

For the center of mass observer, P = 0, and thus H = mc®. If H > 0 for the center of mass
observer, then from (2.126) we get that for any other observer, H' = ~yH > H > 0, since v > 1. If
H < 0, also in this case H' = vH < H < 0. The sign of H is another invariant between observers
and therefore an intrinsic property of the particle. If H > 0 the system is called a particle, and
antiparticle if H < 0.

The velocity u < ¢, otherwise H will be imaginary. If u > ¢ the invariant (H/c)? — P? <0
and it is not possible to define the rest mass of the system. By substitution of the found
expressions for 7" and R in (2.119), there are two possible Lagrangians for a point particle of
mass m, characterized by the sign of H

L = FmeV 22 — 2. (2.128)

The system described by the Lagrangian (2.128) with the sign +, has a temporal momentum
H < 0, and represents an antiparticle, while that of sign —, H > 0. Particles and antiparticles
appear more symmetrically in the relativistic formulation.

Expansion of this Lagrangian to lowest order in u/c, in the case of positive H, we get

2

= . mr
2

L=—-mc*+ ,
where the first term —mc?¢ that can be withdrawn is just the equivalent to the Galilei internal
energy term — Hof of (2.18). The Lagrangian with H < 0 has as nonrelativistic limit —(m/2)#2 /1
which is not obtained in the Galilei case. See section 2.7 to analyze the difference between
particles and antiparticles, as far as its interaction properties are concerned.

The spin of this system, defined as the angular momentum with respect to the point r, is

2
SEJ—qu:J—CEKxon, (2.129)

vanishes, so that the relativistic point particle is also a spinless system.

2.4 Relativistic spinning particles

There are three maximal homogeneous spaces of P, all of them at first parameterized by
the variables (¢, r,u, p), where the velocity variable u can be either u < ¢, u = c or u > c. We
shall call these kinds of particles by the following names: The first one, since the motion of the
position of the charge r satisfies u < ¢, we call a Bradyon, from the Greek term Spadvs = slow.
Bradyons are thus particles for which point r never reaches the speed of light. The second class
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of particles (u = ¢) will be called Luxons because point r is always moving at the speed of light
for every observer, and finally those of the third group, because u > ¢, are called Tachyons,
from the Greek Tayvs = fast.

For the second class we use the Latin denomination Luxons in spite of the Greek one of
photons, because this class of particles will supply the description not only of classical photons
but also a classical model of the electron. This class of models is very important and it has
no nonrelativistic limit. Therefore the models this manifold produce have no nonrelativistic
equivalent.

The first class corresponds to a kinematical space that is the Poincaré group itself and
produces models equivalent to the ones analyzed in the non-relativistic case. Readers interested
on these models should go through the book by the author. To describe the classical electron
and the photon we shall consider next the case of luxons.

2.5 Luxons

Let us consider those elementary particles whose kinematical space is the manifold X gen-
erated by the variables (,7,u, p) with domains t € R, r € R?, p € R3 as in the previous case,
and u € R? but now with u = ¢. Since u = ¢ we shall call this kind of particles Luxons. This
manifold is in fact a homogeneous space of the Poincaré group P, and therefore, according to
our definition of elementary particle has to be considered as a possible candidate for describing
the kinematical space of an elementary system. In fact, if we consider the point in this manifold
xz = (0,0,u,0), the little group that leaves = invariant is the one-parameter subgroup V,, of pure
Lorentz transformations in the direction of the vector u. Then X ~ P/V,, is a nine-dimensional
homogeneous space.

For this kind of systems the variables ¢, = transform according to (2.113) and (2.114),
respectively and the derivatives as in (2.115) and (2.116). For the velocity u the transformation
is obtained from the quotient of (2.116) by (2.115) and is

ROuyu(r) + 70 + 7 (0 RGuu(r)o

w(r) = Y1+ R(p)u(r)/c?)

(2.130)

From here we obtain that

— + 2,
v(1+4wv- RU/C2)2

and thus if u = ¢ for some observer, this implies v’ = ¢, for any other one, so that the manifold
is a homogeneous space of P.

The general transformation of the orientation variables p are obtained from (2.259) but now
the functions F' and G, which involve some 7y (u) factors, become infinite and in the limit u — ¢
they take the form

() — B P(T) +x plr) ¢ Fofo, (),
= p(r) + Gelo, piu(r), p(7)

5’(7)), (2.131)

where the functions F, and G. are given now by:

v(v)
(1+7(v))e?
+ ux(xp)+(uxp)xv +(u-p)(vxp)
+ (uxp)(v-p)+(uxp)x(vxp), (2.132)

F.(v, 4, p) fu x v+ u(v- ) +v(u - p)
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Golv, i p) = m[u-vw‘(vxmw-(uxm
© (up)o )+ (ux p) - (v x )] (2.133)

Since u' = u = ¢, the absolute value of the velocity vector is conserved and it means that u’
can be obtained from u by an orthogonal transformation, so that the transformation equations
of the velocity under P, (2.130) can be expressed as:

u = R(¢)u, (2.134)

where the kinematical rotation of parameter ¢ is

5 BEFelvpiu(n).0) P et X vt u(vop) +ux (v x p)] (2.135)
1+Gc('v7p’;u(7—)’0) 1+W[uv+u(vxﬂ)] '
In this case there also exist among the kinematical variables the constraints u = 7 /7.
Equation (2.131) also corresponds to
p+tp—@Pxp
R(p') = R(9)R(p), p' = (2.136)

l—¢-p
with so that the three unit vectors e which define by columns the rotation matrix R(p’), and
e; those which corresponds to the rotation matrix R(p), transform with the same rotation as

the velocity u,
€, =R(¢)ei, i=123,

with the same ¢ in both cases, as in (2.135).

Since the variable u(7) = ¢, during the whole evolution, we can distinguish two different kinds
of systems, because, by taking the derivative with respect to 7 of this expression @ (7)-u(7) = 0,
i.e., systems for which w = 0 or massless systems as we shall see, and systems where @ # 0
but always orthogonal to w. These systems will correspond to massive particles whose charge
internal motion occurs at the constant velocity ¢, although their center of mass moves with
velocity below c. This kind of particles are consistent with the analysis performed in the
preamble for elementary objects whose center of charge and center of mass are two different
points.

2.5.1 Massless particles. (The photon)

If w = 0, u is constant and the system follows a straight trajectory with constant velocity,
and therefore the kinematical variables reduce simply to (¢,7,p) with domains and physical
meaning as usual as, time, position and orientation, respectively. The derivatives ¢ and 7
transform like (2.115) and (2.116) and instead of the variable p we shall consider the linear
function w defined in (2.35) that transforms under P:

W' (1) = R(p)w(1), (2.137)
where, again, ¢ is given by (2.135).

In fact, from (2.136), since @ = 0, taking the 7-derivative,
R(p') = R(¢)R(p),

the antisymmetric matrix Q = R(p)R” (p) has as essential components the angular velocity w,

0 —w. Wy
Q=1 w. 0 —ws . (2.138)

—Wy Wz 0
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It transforms as
Q' = R(p)R"(p") = R(¢)R(p)R" (p)R" (¢) = R($)QR" (),

and this matrix transformation leads for its essential components to (2.137).

For this system there are no constraints among the kinematical variables, and, since @ = 0,
the general form of its Lagrangian is

L=Ti+R-7+W -w. (2.139)

Funtions T' = 8L /8%, R; = OL/0#, W; = OL/0w", will depend on the variables (¢,7, p) and are
homogeneous functions of zero degree in terms of the derivatives of the kinematical variables
(f,7,w). Since ¢ # 0 they will be expressed in terms of u = 7/ and € = w/{, which are the
true velocity and angular velocity of the particle respectively.

Invariance of the Lagrangian under P leads to the following transformation form of these
functions under the group P:

T' =+T —v(v- R(n)R), (2.140)

2
R = R(p)R — 1ol /2 + (H’VW(U -R(p)R)v, (2.141)
W' = R(p)W. (2.142)

They are translation invariant and therefore independent of ¢ and r. They will be functions
of only (p,u,€2), with the constraint u = ¢. Invariance under rotations forbids the explicit
dependence on p, so that the dependence of these functions on p and p variables is only
through the angular velocity w.

Noether’s theorem gives rise, as before, to the following constants of the motion:

temporal momentum H = -T, (2.143)
linear momentum P = R, (2.144)
kinematical momentum K = Hr/c? —Pt—W xu/c? (2.145)
angular momentum J = rx P+ W, (2.146)

In this case the system has no zitterbewegung term w x U, because the Lagrangian does not
depend on @ and U vanishes. The particle, located at point =, is moving in a straight trajectory
at the speed of light and therefore it is not possible to find an inertial rest frame observer.
Although we have no center of mass observer, we define the spin as the angular momentum
with respect to the point r by S=J —rx P=W,

If we take in (2.146) the 7-derivative we get dS/dt = P x u. Since P and u are two
non-vanishing constant vectors, then the spin has a constant time derivative. It represents a
particle with a continuously increasing angular momentum. This is not what we understand by
an elementary particle except if this constant dS/dt = 0. Therefore for this system the spin is
a constant of the motion and P and w must be collinear vectors.

Energy (temporal momentum) and linear momentum are in fact the components of a four-
vector and with the spin they transform as

H =~H +~(v - R(p)P), (2.147)
2
P' = R(u)P +~yvH/c* + (1—:77)02(0 - R(p)P)v, (2.148)

S’ = R(¢)S. (2.149)



108 CHAPTER 2. EXAMPLES OF SPINNING PARTICLES

The relation between P and u can be obtained from (2.145), taking the 7-derivative and the
condition that the spin W is constant, K = 0 = —H7/c*> + Pi, i.e., P = Hu/c?. If we take
the scalar product of this expression with u we also get H = P - u.

Then, from (2.147) and (2.148), an invariant and constant of the motion, which vanishes, is
(H/c)?> — P2. The mass of this system is zero. It turns out that for this particle both H and
P are non-vanishing for every inertial observer. Otherwise, if one of them vanishes for a single
observer they vanish for all of them. By (2.149), S? is another Poincaré invariant property of
the system that is also a constant of the motion.

The first part of the Lagrangian T¢ + R - = —Ht + P - #, which can be written as
—(H — P -u)t = 0, also vanishes. Then the Lagrangian is reduced to the third term §-w. A
massles particle moving along a straight line at the speed of light, necessarily has to depend on
extra orientation variables, otherwise L= 0, i.e., photons necessarily rotate. The relativistic
formulation forbids the existence of massive point particles moving along a straight line at the
speed of light.

We see from (2.134) and (2.149) that the dimensionless magnitude € = S - u/Sc is another
invariant and constant of the motion, and we thus expect that the Lagrangian will be explicitly
dependent on both constant parameters S and e. Taking into account the transformation
properties under P of u, w and S, given in (2.134), (2.137) and (2.149) respectively, it turns
out that the spin must necessarily be a vector function of w and w.

If the spin is not transversal, as it happens for real photons, then S = ¢ Su/c where € = +1,
and thus the free Lagrangian finally becomes:

L= <€5> rw. (2.150)

c t

From this Lagrangian the temporal momentum is H = —9L/di = S - Q, where Q = w/i
is the angular velocity of the particle. The linear momentum is P = 9L/07 = ¢S Q/c, and,
since P and u are parallel vectors, 2 and « must also be parallel, and if the energy is definite
positive, then @ = eQu/c.

This means that the energy H = S€). For photons we know that S = h, and thus H = i) =
hv. In this way the frequency of a photon is the frequency of its rotational motion around the
direction of its trajectory. We thus see that the spin and angular velocity for H > 0 particles
have the same direction, although they are not analytically related, because S is invariant under
P while € is not. When we change of inertial observer the spin remains the same while the
frequency experiences the Doppler effect.

If the laboratory observer Or sees another inertial observer O moving with velocity v both with
the axes parallel, the relationship between them os given by a boost L(v) and perhaps some space
and time translation. For the relationship between the energy and linear momentum measurements
of a photon only involves the boost L(v), which is the Jacobian of the transformation. If observer
O emits photons of frequency v, the measurements performed by Oy, are given by

2

Hr —~H . — Ho/ 4+ —
r=7H+~v-p, p,=p+~Hv/c +(1+7)62(

v - p)v.
Since H = hv, p = Hu/c?, for the frequency mesaured in Oy, we get

ve =w(l +v-u/c?)

where u is the velocity of the del photon measured by O. Let us assume that the origin of O
departs from Or. The photons which arrive to Or are those such that v - u = —wve, and the
detected frequency is

vp =yl —v/c)=v
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However if Op, sees O approaching, the photons which measures are those for which v-u = vc, and
the detected frequency is larger:

ve =qv(l+v/e) =v,y| 11—Z§z, v > v

We say that the Lagrangian (2.150) represents a photon of spin S and polarization €. A set of
photons of this kind, all with the same polarization, corresponds to circularly polarized light,
as has been shown by direct measurement of the angular momentum carried by these photons.

Beth’s experiment

Beth’s experiment ° performed in 1936, consists in producing a beam of monocromatic
circularly polarized light of frequency v, which is sent into a plate attached to a torsion pendulum
(see figure 2.7). Photons are absorbed by the plate, and therefore energy and linear momentum
are transfered, and also angular momentum. If the power of the beam is P the beam contains
n = P/hv photons per second, all of them with the spin in the same direction. When absorbed,
the angular momentum of the plate J, with respect to the point O, changes with time as
dJ/dt = nh per second, so that the torque M of the external forces produced by the torsion of
the pendulum must equilibrate this variation.

=

Figure 2.7: A monocromatic circularly polarized light beam of intensity n photons per
second, are absorbed by a plate which is in equilibrium by means of a torsion pendulum.
When photons are absorbed, the plate rotates an angle ¢, to the left or right, according
to the left or right polarization of the beam. This experiment verifies that all photons of
the beam have the same spin orientation

For a thread of length L, radius a and torsion modulus p, the torque of the external forces
which produce a rotation of angle ¢, is:

4
ma

By measuring the angle ¢ rotated by the plate, one checks in this experiment that M = nh,
because each absorbed photon contributes with an angular momentum of value A.

® R. A. Beth, Mechanical detection and measurement of the angular momentum of light, Phys. Rev. 50, 115
(1936).
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But this Beth’s device is also an analyzer of the photon polarization. If the circularly
polarized light beam turns the plate to the right, the beam contains photons with their spins
pointing forward. If the disc rotates left, all the photons of the beam have their spins pointing
backward.

Left and right polarized photons correspond to € = 1 and € = —1, respectively. Energy is
related to the angular frequency H = h{), and linear momentum to the wave number P = hk,
that therefore is related to the angular velocity vector by k = e /c. If it is possible to talk
about the ‘wave-length’ of a single photon this will be the distance run by the particle during
a complete turn.

The antiphotons, i.e., those particles for which H < 0, they satisfy H = 5-Q = p-u < 0 and
therefore the spin and and the angular velocity have opposite direction and the same happens
for the velocity and linear momentum. In any case they have the same energy than the photons
with H > 0. To determine whether a material system absorbs a photon or an antiphoton we
have to measure separately the velocity of the photon and the linear momentum, which have
to be opposite to each other. It seems that the radiation of normal matter produces photons,
because the radiation preasure has the direction of the motion, and thus linear momentum and
velicity are parallel. In the electron-positron interaction, in order to the particles approach to
each other by means of an interchange of a photonic particle, this has to be an antiphoton.
However in the electron-electron interaction the particles separate from each other and they
interchange a photon. See the section 2.7 for the analysis of particles and antiparticles.

The relationship between the different observables for the photon (H > 0) and the antipho-
ton (H < 0) is represented in the figure 2.8

H>0 H<0
e=+1
U — U
S —— S —
Q Q
P —= - p
e=—1
U— U—
- S - S
() Qe
—=p -—— D

Figure 2.8: Relative orientation between the different observables u, S, Q y p, for the
photon H > 0 on the left hand side column and for the antiphoton H < 0 on the right hand
side, for the two possible helicities ¢ = 1. S = eSu/c, p = Hu/c* = eSQ/c.

If the possible states of a photon are represented in vector form like |sign(H), ¢ >, the states
represented on the left of the figure are |+, + > and |+, — >, and those of the right by |—, + >
and |—, — >, respectively. They are independent and orthogonal states. If the radiation field
is only composed of photons (H > 0), then the classical description of the vector states of the
monochromatic light is given by complex vectors of the two-dimensional complex space C? and
the different polarized states by the Poincaré sphere, as a convex linear combination of pure
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states (See Appendix 3.4). See the section 2.7 for the analysis and detection of antiphotons.

2.5.2 Massive particles. (The electron)

If we consider now the other possibility, % # 0 but orthogonal to w, then variables ¢ and 7
transform as in the previous case (2.115) and (2.116), but for @4 and w we have:

W = R(¢)i+ R(¢)u, (2.151)
W' = R(P)w+ wy, (2.152)

where the rotation of parameter ¢ is again given by (2.135) and vector wy is:

_ YRu x v — (v — 1)R(u x @) + 272 (v - R(u x ))v/(1 +’y)c2.

2.1
we (2 + v - Ru) (2.153)
Expression (2.151) is the 7-derivative of (2.134) and can also be written in the form:
Rib)
i = ($)a (2.154)

Y1 +v- R(p)u/c?)

Expression (2.152) comes from R(p') = R(¢)R(p) and taking the T-derivative of this expression
R(p') = R(¢)R(p) + R(¢)R(p), because parameter ¢ depends on 7 through the velocity u(7),

and therefore . ‘
' = R(p')R"(p') = R(¢)QR" (¢) + R(p)R" (¢)).

R(¢)QRT (¢) corresponds to R(¢p)w and the antisymmetric matrix Q4 = R(¢)RT (¢) has as
essential components the wy vector, i.e., equation (2.153).
The homogeneity condition of the Lagrangian leads to the general form

L=Ti+R-7+U -u+W - w, (2.155)

where T = OL/8t, R; = OL/07%, U; = OL/0u' and W; = OL/0w', and Noether’s theorem
provides the following constants of the motion:

temporal momentum H = -7 — (dU/dt)- u, (2.156)
linear momentum P = R — (dU/dt), (2.157)
kinematical momentum K = Hr/c? — Pt—8 xu/c, (2.158)
angular momentum J = rx P+ S. (2.159)

In this case the spin S, i.e. the angular momentum with respecto to the point 7, is defined as
in the Galilei case, by
S=uxU+W=Z+4+W. (2.160)

Like in the Galilei case, we also have invariance of dynamical equations under the local
rotations group SO(3)r which affect only to the orientation variables without modification of
the angular velocity, like in (2.51). We obtain another three constants of the motion

Local angular Momentum 7; = W - e;, (2.161)

which are the projection on the body axes of the rotative part of the spin W.

Expressions (2.156, 2.157) imply that H/c and P transform like the components of a four-
vector, similarly as in (2.126-2.127), thus defining the invariant and constant of the motion
(H/c)?> — P? = m2c?, in terms of the positive parameter m which is interpreted as the mass of
the particle.
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Observable S transforms as:
2
v gl
S'(1) = yR(w)S(1) - W(U R(p)S(7))v + 5 (v x R(p)(S(7) x u)), (2.162)
an expression that corresponds to the transformation of an antisymmetric tensor S#” with strict

components S% = (S x u)’/c, and S = €7*S, which transform under the Poincaré group as,
S = AL (v, p)AS (v, n) ST, A(v, ) = L(v)R(p)

If we define the vector k = S x u/H, with dimensions of length, the kinematical momentum
(2.158) can be rewritten as
K = Hq/¢* — Pt,
where g = r — k, represents the center of mass position of the particle. The time derivative
of this expression we obtain a linear relationship between H and P as in the case of the point

particle:

H dq

2" T

in terms of the velocity of the center of mass v. This implies that again H and P are expressed
in terms of the center of mass velocity and the invariant m, like for the point particle as

P:

H=~(w)me, P =~(v)mv.

If we call vops to the center of mass velocity, it transforms among inertial observers like:
2
R(p)v v+ —L—(v- R(p)v T))v
(m)ven(r) +7 i+ 7)cz( (m)venm(T))

YL +v- R(p)vou(r)/c?)
Although the Poincaré transformation of the position of the center of mass does not correspond
with the center of mass of the electron in the new reference system, the center of mass velocity
is efectively the transformed of that velocity. If vops = 0 is the velocity of the center of mass
in the center of mass frame, then the velocity in another frame is v, where v is the velocity of
the center of mass frame for that arbitrary observer.

The spin with respect to the center of mass, is defined as usual by

2
SCMZJ—quZJ—%KxP, (2.164)

Vs (7) = (2.163)

and is a constant of the motion. It takes the form
1
SCM:S+I<:><P:S+E(S><u)><P. (2.165)

The helicity Sop - P =S - P = J - P, is also a constant of the motion. We can construct
the constant Pauli-Lubanski four-vector

H
wh = (P : SCM,HSCM/C) = (P-S,HS/C—I— (S X u) X P/C) = 672(,0 : SCM,CSCM), (2.166)

which is expressed for the free particle in terms of constants of the motion and therefore it is
another constant of the motion. Its absolute value —w*w,, = m2CQS%M, where Scps is the spin
in the center of mass frame, is another constant of the motion for the free particle. If we accept
the atomic principle it has to take the same value even under some external interaction. It is
expressed in terms of the invariant properties, and therefore intrinsic values, m and Scas of the
particle, where S%M is the absolute value squared of the S¢ps, which in the quantum case is
3h2 /4. The absolute value of this spin is not invariant and for an observer which sees the center
of mass moving with velocity v, takes the value:
g2 ¢ —v? g2
oM <C2 — 02 COSQQS) oM

where ¢ is the angle between v and Scay-
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2.5.3 Motion of the electron in the CM frame

The center of mass frame is defined by the conditions P = K = 0. For this class of observers
q = 0 and v = 0, the center of mass is at rest and located at the origin of the reference frame.
The spin S = S¢yy is constant, H = +mc? and from (2.158) we obtain

1

This is the dynamical equation of the point r for the center of mass observer and this internal
motion takes place on a plane orthogonal to the constant spin S. The scalar product with u
gives r - dr/dt = 0, and therefore the radius of this motion (the zitterbewegung) is constant.
Taking the time derivative of both sides of (2.167), we get mc*u = +(S x du/dt), because
the spin is constant in this frame, which implies that w and S are orthogonal. If we derivate
again this expression we conclude that du/dt and S are also orthogonal. If we introduce in
(2.167) this expression of w and taking into account the orthogonality between the spin and the
acceleration, we get for the particle and antiparticle,

d2r 2

5 W =0, w= me (2.168)

S

which is exactly the same equation of the Preamble (2) and of the nonrelativistic particle (2.75)
when the center of mass is at rest. Taking in (2.167) the cross product with w and using the
orthogonality of the spin with the velocity we arrive to

S = +mu x 7. (2.169)

Since S and u = c¢ are constant, the motion is a circle of radius Ry = S/mec. For the
electron we take in the quantum case S = h/2, and the radius is i/2mec = 1.93 x 10713 m.,
half Compton’s wave length of the electron. The frequency of this motion in the C.M. frame
is v = 2mec?/h = 2.47 x 10 57! and w = 27v = 1.55 x 10! rad s~!. The ratio of this
radius to the so-called classical radius Ry = €?/8megmec? = 1.409 x 107 m, is precisely
Re /Ry = €%/2e0he = 1/136.97 = «, the fine structure constant. The radius of the electron,
estimated from high energy e — e sccatering in the experiments performed at the LEP in CERN,
give the value R, < 107!? m. The analysis of the measurement of the gyromagnetic ratio ¢ in
a Penning trap gives a smaller value R, < 1072?m.% If we compare with the Bohr radius, the
estimated radius of a circular trajectory of an electron of the Hydrogen atom, with an orbital
angular momentum L = 1, is R = 4mwegh?/mee?, Rp/Ro = 2/a ~ 274.

There are two different types of particles, as far as the sign of H is concerned. In both the
energy is mc?. It is called particle the object with H > 0 and antiparticle with H < 0. The
kinetics of this is opposite to the other once the spin direction is fixed. Particle and antiparticle
have the time reversed motion of each other. Motions of this sort, in which the particle is
moving at the speed of light, can be found in early literature, but the distinction between the
motion of center of charge and center of mass is not sufficiently clarified. 7 &

Nevertheless, in the model we are analyzing, the idea that the electron has a size of the
order of the zitterbewegung radius is a plausible macroscopic vision but it is not necessary to
maintain any longer, because the only important point from the dynamical point of view is the
center of charge position, whose motion completely determines the dynamics of the particle.

SH. Dehmelt, A single atomic particle forever floating at rest in free space: New value for Electron radius,
Physica Scripta T22, 102-110 (1988)

" M. Mathisson, Acta Phys. Pol. 6, 163 (1937); 6, 218 (1937)

§ M.H.L. Weyssenhof, Acta Phys. Pol. 9, 46 (1947). M.H.L. Weyssenhof and A. Raabe, Acta Phys. Pol. 9,
7 (1947); 9, 19 (1947).
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In this form, elementary particles, the kind of objects we are describing, look like extended
objects. Nevertheless, although some kind of related length can be defined, they are dealt with
as point particles with orientation because the physical attributes are all located at the single
point 7. The dynamics of equation (2.167) for the particle, can be represented in figure 2.9,
and for the antiparticle in figure 2.10, where we have separated the two contributions to the
total spin 8§ = Z + W, related respectively to the orbital and rotational motion.

Z

S=Z+W==y(v)m(r—q)xu

Figure 2.9: Motion of the center of charge of the electron in the center of mass frame. The
(anti)orbital part Z = u x U of the spin has the direction of S while the part W, in the
direction of the angular velocity w, has the opposite direction. The spin is orthogonal to
the velocity of the center of charge and to the separation between CC and CM.

2.5.4 The spin and the center of mass position for an arbitrary observer

If we take in (2.158) the 7-derivative and the scalar product with the velocity u we get the
Poincaré invariant relation:

1
H—P-u+C2S~<C§?xu>. (2.170)
In this way, the temporal momentum or Dirac’s Hamiltonian, is the sum of two terms,
one translational, related to P, which vanishes for the center of mass observer, and another
rotational and related to .S, which never vanishes. In the quantum case it will be related to
H = cP -« + fmc?, in terms of the a and 3 Dirac matrices. Since ca is usually interpreted
as the local velocity operator u of the electron, * we have H = P - u + Bmc? and this relation

suggests the identification
1 du
5—mc45-<dtxu>.

Here all magnitudes on the right-hand side are measured in the center of mass frame. We shall
come back to this relation after quantization of this system.

We are going to express the general form of the spin observable and the position of the
center of mass in terms of the kinematics of the center of charge position. The transformation
equation for the function S, (2.162) can also be written as

S =~(1+wv-R(p)u/c*)R(¢)S, (2.171)

9 J.J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley Reading, MA (1967).
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and therefore, from this expresion and (2.154), S -4 = S’ - %' which vanish in any reference
frame, and also from (2.134), 8" -u' = (1 + v - R(;)u/c?)S - u, which also vanishes. Since
the center of charge spin is orthogonal to w and =, for the center of mass observer, it is also
orthogonal to w and @ for any other inertial observer.

An alternative method of verifying this is to take the time derivative in (2.158) and (2.159), and

thus IS p
Hu—- P -2 xu—sx ™ —o,
dt dt
dsS
E—qu,
ie.,
du
— =(H —u- P)u.
Sxdt ( u- P)u

and a final scalar product with S, leads to (H —u - P)u - S = 0. The first factor does not vanish
since the invariant H?/c* — P? = m2c? is positive definite and if H = u - P, then (u- P)?/c* — P?
with v < ¢ is always negative, then S-u = 0. If we take the time derivative of this last expression,
with the condition that dS/dt is orthogonal to u, we obtain S -4 = 0. The observable S has
always the direction of the non-vanishing vector @ X u for positive temporal momentum particles
and the opposite direction for antiparticles of negative temporal momentum.

If we take the time derivative of the kinematical momentum (2.158) for the free particle, we
get

ds du
Hu—c*P+ — — =0.
u—c'P+ 7 X u+ 8 X 7 0
Taking into account that dS/dt = P x w and making a cross product with du/dt we get
H—-u- P\ du
S=|———] — 2.172
( (du/dt)? > a (2.172)

and ¢ = r — S x u/H leads for the center of mass position to

(2.173)

_T+§ H—u-P\ du
T="" g\ (dujar)? ) @

The expression (2.172) of the spin with respect to the center of charge can be rewritten as

Hi—P-7
527( ! — T)'uxu.
u

Because from (2.134) we know that v’ = R(¢)u and from (2.154) that ' = R(¢)u/v(1 + v -
R(p)u/c?), it implies that 4?2 = @?/y*(1 + v - R(u)u/c?)? and the numerator (Hi — P - #) is
Poincaré invariant, and from this we obtain the previous expression for the transformation of S,
(2.171).

From the geometrical point of view, since the vector u is tangent to the trajectory of the center
of charge and its derivative is orthogonal to it, the spin with respect to the center of charge
(2.172) has the direction opposite to the binormal and in the same direction for the antiparticle.

The center of mass, with respect to the center of charge, is in the direction of the acceleration
for the particle and antiparticle. The point  makes a central motion around the center of mass.
If from (2.173) we express the acceleration in terms of  — g, the spin with respect to the point
r can also be written as

S=——(r—q) xu=5yv)m(r - q) xu, (2.174)
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Z

S=Z+W=y(v)m(r—q)xu

Figure 2.10: Motion of the center of charge of the positron in the center of mass frame.
The part W of the spin of the positron is oriented opposite to the angular velocity. The
part Z has the usual orbital direction and therefore the same direction as S.

which enhances its antiorbital character for the particle H > 0 and of orbital orientation for
the antiparticle. It is expressed in terms of the two characteristic points » and g and their
corresponding velocities w and v and of the positive parameter m, the mass of the particle.
Because the total spin has two parts S = Z + W, this means that for the antiparticle the part
Z has the direction of S while the rotational part W has the opposite orientation, and therefore
this part W is opposite to the angular velocity as depicted in the figure 2.10. This feature is
the same than for photons and antiphotons. For photons the spin is of rotational nature like
W, and has the same direction than the angular velocity while for antiphotons has the opposite
orientation.

The spin with respect to the center of mass can be obtained from S, from the mechanical
linear momentum for the particle P, = v(v)mw, in the form,

Som, = Sp + (r —q) x Pp = —y(v)m(r — q) x (u —v),
while for the antiparticle P, = —y(v)mwv
Scm, = Sa+ (r—q) X Py =~(v)m(r —q) x (u—v).

From these expressions can be checked that for the free particle the spin Scps is a conserved
magnitude. In fact, for the free particle v = const., the time derivative of of r — q is © — v and
the derivative of w has the direction of the vector » — q. The spin S, in the case of the free
particle is not conserved and its time derivative leads us to dS/dt = P x w, for the particle and

antiparticle.
Under interaction we have,
ds 1 9 dv
Eszu_cﬁﬂv) <vdt> S,
dScy 1 9 dv
o =(r—q)x F 6—27(7)) v S,

where the last term is of the order S/c?, and can be neglected, the dynamical equation of S is
the same than in the free case and the time variation of Scjs is the torque with respect to the
CM of the external forces defined at the CC.
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The final expressions of both spins are
S =Fy(v)ym(r —q) xu, Scu =Fy(v)m(r—q) x (u—v), (2.175)

where the expression of S¢ps has the same structure, with the sign included and without the
factor y(v), than the non-relativistic spin.
Since P = Hw/c? for both particle and antiparticle, the expression of the center of mass

position (2.173) is
—v-u\ du
= — | —. 2.1
=r+ < (du/dt)? > dt (2.176)

We see that the particle has mass and spin, and the center of charge moves in circles at the
speed of light in a plane orthogonal to the spin, for the center of mass observer. All these
features are independent of the particular Lagrangian of the type (2.155) we can consider.

2.5.5 Poincaré invariance of Dirac’s Hamiltonian

The expression which gives rise to Dirac’s equation is Poincaré invariant and it takes the
same form in any reference frame. In fact, if from (2.170) we take all terms to the left hand
side and multiply by £, we get

: : 1 .
tH—r~P—C—25-(uxu):0.

The first part tH — 7 - P = i#P, = a'c/”Pl’“ with ## = (ct,7) and P* = (H/c, P), is Poincaré
invariant. The term which contains the spin we see from (2.134), (2.154) and (2.171), that the
velocity u, acceleration @ and spin S, respectively, transform:

R(#)i R(w)u

W= R, W= Y(1+v- R(p)u/c?)’ §=7 <1 i CQ) )5,

and we deduce that
S (i xu)=8"(ixu).

2.5.6 Dirac analysis

To end this section and with the above model of the electron in mind, it is convenient to
remember some of the features that Dirac ' obtained for the motion of a free electron. Let
point r be the position vector on which Dirac’s spinor ¥ (¢, r) is defined. When computing the
velocity of point =, Dirac arrives at:

a) The velocity w = i/h[H,r] = ca, is expressed in terms of o matrices and writes, .. a
measurement of a component of the velocity of a free electron is certain to lead to the result
+c’.

b) The linear momentum does not have the direction of this velocity w, but must be related
to some average value of it: ... ‘the x1 component of the velocity, cay, consists of two parts,
a constant part ¢>piH !, connected with the momentum by the classical relativistic formula,
and an oscillatory part, whose frequency is at least 2mc?/h, ...".

¢) About the position r: ‘The oscillatory part of xy is small, ... , which is of order of
magnitude h/mec, ... .

d) When analyzing, in his original 1928 paper, !! the interaction of the electron with an
external electromagnetic field, after performing the square of Dirac’s operator, he obtains two
new interaction terms:

eh ieh
— - B+ —a-FE 2.177
2mc 2mc ’ ( )
10 P.A.M. Dirac, The Principles of Quantum mechanics, Oxford Univ. Press, 4th ed. Oxford (1967).
1 P.A.M. Dirac, Proc. Roy. Soc. Lon. A117, 610 (1928).
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where the electron spin is written as S = h¥/2 and

o 0

> -
in terms of o-Pauli matrices and E and B are the external electric and magnetic fields, re-
spectively. He says, ‘The electron will therefore behave as though it has a magnetic moment
(eh/2mc) X and an electric moment (iefi/2mc) . The magnetic moment is just that assumed
in the spinning electron model’ (Pauli model). ‘The electric moment, being a pure imaginary,

we should not expect to appear in the model.’

However, if we look at our classical model, we see that for the center of mass observer, there

is a non-vanishing electric and magnetic dipole moment
e dk e

€
¢ Sxu, p 2" " 2m

— (2.178)

where S is the total spin and Z = —mk x dk/dt is the zitterbewegung part of spin. The time
average value of d is zero, and the average value of p is the constant vector p.
e) In his book !? analyzes the dynamics of the spin S = ho/2 and arrives to the conclusion

that
dsS

— =pXca=pXu,
dt p p

for the free and interacting electron. This differential equation is the same as the dynamical
equation of the spin with respect to the center of charge. Dirac’s spin operator represents the
angular momentum of the electron with respect to the center of charge.

This classical model gives rise to the same kinematical prediction as the nonrelativistic model
described in Sec.2.2.7. If the charge of the particle is negative, the current of Fig.2.9 produces
a magnetic moment that necessarily has the same direction as the spin. If the electron spin and
magnetic moments are antiparallel, then we need another contribution to the total spin, different
from the zitterbewegung. All real experiments to determine very accurately the gyromagnetic
ratio are based on the determination of precession frequencies, but these precession frequencies
are independent of the spin orientation. However, the difficulty to separate electrons in a Stern-
Gerlach type experiment, suggests to perform polarization experiments in order to determine
in a direct way whether spin and magnetic moment for elementary particles are either parallel
or antiparallel. We have suggested a couple of plausible experiments to determine the relative
orientation between the spin and magnetic moment of free electrons and also for electrons in
the outer shell of atoms'3, which are considered in section 4.2.7.

Another consequence of the classical model is that it enhances the role of the so-called
minimal coupling interaction j,A*. The magnetic properties of the electron are produced by
the current of its internal motion and not by some possible distribution of magnetic dipoles, so
that the only possible interaction of a point charge at r with the external electromagnetic field
is that of the current j*, associated to the motion of point r, with the external potentials.

2.6 The dynamical equation of the spinning electron

We have seen that for relativistic particles with « = ¢ and w and @ orthogonal vectors, the
position vector T moves in circles according to the dynamical equation (2.167) in the center
of mass frame, as depicted in figure 2.9. But this solution is independent of the particular
Lagrangian we choose as an invariant function of the kinematical variables and their derivatives,

12p A.M. Dirac, The principles of Quantum Mechanics, Oxford 4th edition 1958, p. 266
13M. Rivas, Are the electron spin parallel or antiparallel vectors?, ArXiv:physics/0112057.
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which accomplish with this orthogonality w - w = 0, requirement. We are going to analyze this
dynamical equation for any arbitrary inertial observer.4

As mentioned in the Preamble, let us consider the trajectory r(t), t € [t1,t2] followed by
a point for an arbitrary inertial observer O. Any other inertial observer O’ is related to the
previous one by a transformation of a kinematical group such that their relative space-time
measurements of any space-time event are given by

t'=Tt,r;q1,...,9:), 7™ =R(Et7r;91,...,9),

where the functions T and R define the action of the kinematical group G, of parameters
(g1,---,9r), on space-time. Then the description of the trajectory of that point for observer O’
is obtained from

() =Tt rt)ig,....0:), 7'(t) =Rt r(t)igr,...,9:), VtE [tr,to].

If we eliminate ¢ as a function of ¢’ from the first equation and substitute into the second we
shall get
Y =r"{t;0,...,9-) (2.179)

Since observer O’ is arbitrary, equation (2.179) represents the complete family of trajectories of
the point for all inertial observers. Elimination of the r group parameters among the function
r/(t') and their time derivatives will give us the differential equation satisfied by the trajectory
of the point. This differential equation is invariant by construction because it is independent of
the group parameters and therefore independent of the inertial observer. If GG is the Poincaré
group, it is a ten-parameter group so that we have to work out in general up to the fourth
derivative to obtain sufficient equations to eliminate the ten group parameters. Therefore the
order of the differential equation is dictated by the number of parameters and the structure of
the kinematical group.

2.6.1 The relativistic spinning electron

Let us assume the above electron model. For the center of mass observer O*, the trajectory
of the center of charge of the electron is contained on the XOY plane and if we write in vector
form, and with units Ry = h/2mec, wo = 2mc?/h

cos wot™ dr* — sin wpt*
r*(t*) = Ro | sinwet* |, o = ¢ | cos wot* |,
0 0

For the center of mass observer O* this point satisfies the differential equation

d*r* (") ‘i

Since the center of charge is moving at the speed of light for the center of mass observer O* it
is moving at this speed for every other inertial observer O. Now, the relationship of space-time
measurements between the center of mass observer O* and any arbitrary inertial observer O, is
given by:

tt9) = (" +v- Rla)r*(t)) +b,

2
r(t*9) = R(Q)r*(t*) + yut* + 11—7 (v - R(@)r*(t*)) v + a.

M. Rivas, The dynamical equation of the spinning electron, J. Phys. A, 36, 4703, (2003),
ArXiv:physics/0112005.
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The velocity of the point for the observer O

(1) _ dl _ d'f'/dt*
dt ~ dt/dte

and the same method for the remaining derivatives.
With the shorthand notation for the following expressions:
dr*(t) dK dV
dt* dtr’ dtr
dB  dA
dt*’  dt*

K(t") = R(a)r(t"), V(") = R(a)

B(t"Y=v-K/? A{t*)=v-V/=

= -wiB,

where A is dimensionless and B of dimension of time. K has dimension of length and V' of

velocity. In particular
dt

dt*

:'y(l—i—U'V/CQ) :'7(1"’_‘4)’

and

K?*=R} V’=¢ K- V=0, K-v=cB, V. .v=cA

By making use of the relation (2.180) and its derivatives, we get the following expressions for
the subsequent time derivatives of the point 7 in the arbitrary reference frame O:

1
o - - v
T AT A) <V+1+7(1+’y+’yA)v>
r@ = W <—(1 +tAK+BV + Bv) ,
v (1+ A)3 147
2
g 2 2
e (A(1+4 A) + 3w2B )v>
4
r® = ﬁ ((1+ A)(1—24 — 34% — 1562 B*) K —
(7+4A — 3A% — 1503 B*) BV —
ﬁ (1—8A—9A%— 15w332)3v> .

From these derivatives we obtain

(r(l) -r(l)) = w%R(Q) =2, (7'(1) : T(2)> =0,

412
@ . @) — _(p0 @) = _“fy
(r " ) <’° " ) A1+ AP
1 whR2
2. p0) = _Z(pM). @) _*070
(r2®) = =5 (1) = i A 2B
6 2
(r(3)-r(3)) = m(l—A2+3w332)7
wd R2
(r(2)~r(4)) = m(—l+2A+3A2+9w832),
7 2
(r(3)-r(4)) = M(l—i—AjL?)wgB?) (woB).

(2.181)

(2.182)

(2.183)

(2.184)

(2.185)

(2.186)
(2.187)
(2.188)
(2.189)

(2.190)
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Since wpB is dimensionless, the dimensionality of these terms is contained in the coefficients
wiR2, ie., L2TF.

By inspection of equations (2.181-2.184) we see that the four time derivatives of the position
vector can be expressed as a linear combination of the three vectors V', K y v, where the first
two vectors are orthogonal and the third is a constant vector which, in general, it is not a linear
combination of the other two:

Y+ AP

v = M -3By(1+ A)r® ¢ LB (2.191)
Wo
A ) 3*B @ _ L0+ A7 ®)
vV = & 1 A1+ A)r® - 2T A)rB)(2.192
Tt 0ty rAdE Ar (1+~y) (L4 +7A) r(2.192)
B ) O+ A) L, 9 @  V'BI+ AP o
K = —r +73wB — (1471 +A)r® - 22T 6) (2193

It is clear that the three derivatives (9, i = 2, 3,4, can be expressed as a linear combination of
the three vectors V', K and v. If we define
V(1+A4)°

L+ 4)° V(1 A

di =11+ ArD, dy= @ dy = B dy = O,
0 0 0
we get the relation:
(1—2A—3A% +3w2B%)dy — 6Bds +dy = 0,
which in terms of the derivatives (), becomes
1
(1 —24 —3A% 4+ 3uw2B*)r® —6B~(1+ A)%r®) + EVQ(I + A)tr® =, (2.194)

0

and represents the Poincaré invariant differential ecuation which satisfies the position of the
center of charge, in any inertial reference frame.

From equations (2.186)-(2.188) we can express the magnitudes A, B and + in terms of these
scalar products between the different time derivatives (r(® . 7)) i j = 2,3. The constraint
that the velocity is ¢ implies that all these and further scalar products for higher derivatives
can be expressed in terms of only three of them. The expression of the coefficients A, B and -,
in terms of the different scalar products of these time derivatives is:

(2) . p(2))5/2
1+4 = Blr™ )"/ Ro ,(2.195)
4(r(2) . 7'(2))5/2/R0 + 4(7"(2) . r(2))(r(3) . r(3)) — 3(7“(2) . fr(3))2

(2) . p(2)5/4(p(2) . p(3) 1/2
woB = A7) e T ) [ ,(2.196)
4(r(2) . r(2))5/2/R0 + 4(r(2) . r(Q))(r(?’) . r(3)) — 3(7“(2) . r(3))2

A T O Ry + 4D e O) ) 1 0) - 30O
b 8(r(2).r(2))11/4/(CR(1)/2) . .

with Ryp = ¢/wp and therefore all terms in the numerator and denominator have the same
spacetime dimensions.
We thus arrive to:

- 3(r®-r®) o (2(7~(3).T(3)) 3(r@ . p3)2

A S _ _(r(2) . (211/2 ) .(2)
@ @) r @ @) 1@ )2 (r ') >r 0. (2.198)

It is a fourth order ordinary differential equation which contains as solutions motions at the
speed of light. In fact, if (r(!) . #(1)) = ¢2, then by derivation we have () - #()) = 0 and the
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next derivative leads to (r® . ) 4+ (U . ¢B)) = 0. If we take this into account and make
the scalar product of (2.198) with (), we get (r™1) - #®)) 4+ 3(r? . #6)) = 0, which is another
relationship between the derivatives as a consequence of |r()| = c.

Let us go to compare with the most general differential equation of a point in three dimen-
sional space given in the Preamble (6),

. . . . .2 . . .
S (2"6 N T) p8) 4 (,g L2 BT 2””;’“) P2 4 2 (“ _ T> P — 0,
T RT K K

K T

where the dots over k and 7 represent time derivatives. The differential equation for the center
of charge of the electron describes a helical motion helicoidal because the term in the first
derivative r™) is lacking. This implies, according to the mentioned result in the Preamble, that
there exists a constant relation between curvature and torsion. In fact, if the coefficient of (1)
is zero, this implies that 4/x = 7/7, and therefore the coefficient of () has to be —3#/k. Since
the curvature k = |d?r/ds?| = (r® . +@)1/2/c2 in terms of the time derivatives and taking
another time derivative, we get,

1 (7“(2) . r(?’)) 3K 3(r(2) . ,’,,(3))

"TEE @2 kT (@ . 0)”

which is in fact the coefficient of () in (2.198).
Because in terms of the arc length used as a parameter, and in terms of the three Frenet-
Serret unit vectors,

1"(1) =t, fr(2) = KN, 7'(3) = —li2t + AN + KTb,

it implies that

(r(3).r(3))_ . £\ 2
m—ﬂ +7° 4+ E ;

and the coefficient of 7, if we consider the relationship between curvature and torsion is

. 2 . (3) (3) . 2 .
2,2, g (R _R_(@V-rY) (RN R
AT +3<f<a> ﬁ_(r(2)-r(2))+2(m> K’

and since
K (','-(3) . 71(3)) + (','-(2) . 7'(4)) (','-(2) . ,’,.(3))2
- — —

(r2 . r(2) (@2 . p(2))2’

where the scalar product (r® - r®) can be expressed in terms of the other three. If we add
the terms (2.186)-(2.188), this coefficient is

@ @) = L0 02 9@ @) B )

Ro 4(r(2) . r(2))

o (F 2k (® @) 3(p@ . ()2 _L( @yl
K ('r(2) . ,',.(2)) 4(r(2) . r(2))2 Ry ’

and we finally obtain the coefficient of the derivative r.

If we select as a boundary condition a velocity |r(1)(0)| # ¢, this differential equation contains
solutions in which the point is not moving at the constant velocity ¢. But if |#(1)(0)| = ¢, Then
the solution satisfies |+ (¢)| = ¢, for any time t.
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2.6.2 The center of mass

The center of mass position is defined by

2(r@ . 1)) )

1
a=r+ bt A = (2:99)

2 32
O (1 @2 Ry 4 (r®) (@) - B0

4@ @y

in such a way that its time derivative represents the velocity v of the origin of the observer
frame O* with respect to O. In fact, its time derivative is

3 (3)Jr 1 3y (1+A)2(—WSB)T(2)

(1) L =
qg'/=r + 21+ A

:'U’

i.e., expression (2.191) because dA/dt* = —w3B and we have to divide by dt/dt* = (1 + A).
We can check that g and g(!) vanish for the center of mass observer.
If we take the next time derivative

q® = (124 —34% +33B%) r® —6By(1 + A)r® + iﬂ?(l + A)Pr® =0,

1+4 wg
which is another form of the dynamical equation of the free particle (2.194) y (2.198).
Because 1
(a=7)? = =7 (1+ A r2),
“o
1 1
gV rM =24 7272(1 + AP E®) Wy =2 7272(1 + AP (3 )
“o “o
by (2.186) and thus
2 —qW.p@ _ w3 .
(q—7)? V(1+A)?

which is the inverse of the coefficient of 7 in the definition of gq. Then, the fourth order
dynamical equation (2.198) for the position of the charge can also be rewritten here as a system
of two second order differential equations for the positions g and r

d’q &Pr F—v-u
=0, —=—_-—"""""(q— 2.2
dt2 ’ T)2 (q ’r) ’ ( 00)

dt? (q —
with v = ¢ and w = *(V, ie., a free motion for the center of mass and a kind of central
motion for the charge around the center of mass.

If we consider the general expression for the center of mass obtained in (2.173), because
P = Hv/c?, it can also be written as

ey (Covewydu o du A (dujd)”
- (du/dt)? ) dt’ it d2 T 2 —w-ou?
which when compared with (2.200) we obtain the relation

- —

du _c2—v‘u 2
~lg-r] R’

c—v- u—’ ‘|q or ‘

because the acceleration is always normal, and where R is the curvature radius of the trajectory
of the center of charge. Thus, the separation between the center of mass and center of charge

satisfies v u
]q—r!zR(l— 2).
c




124 CHAPTER 2. EXAMPLES OF SPINNING PARTICLES

@

N S

-

VA AN

VAVAAVARY

! L L
05 1 15 20

13

Figure 2.11: Projection on the plane XOY of the motion of the center of charge (blue)
and center of mass (red) of a free electron with v/c = 0.2. The trajectory on the left,
the electron is boosted on the zitterbewegung plane and the spin is orthogonal to this
trajectory and the separation between CC and CM is not constant. The trajectory on the
right corresponds to an electron polarized with the spin pointing in the forward direction.
Here the separation between both points is constant. Both motions have a spatial period
of value d = vy(v)Ty =1.28255, in these units.

This separation is not constant. If we start with the electron at rest and boost it in the direction
orthogonal to the zitterbewegung plane, then v - u = v? and in this case the trajectory is a
helix of constant curvature and torsion and the separation is constant, Ry, which is related to
the constant curvature radius by

R = Roy(v)*.

In any other situation this v - w is not constant and the separation oscillates. For instance, if
we boost the electron with a velocity v contained on the zitterbewegung plane, the trajectory
of the center of charge is flat and in units Ry = 1, and v/c = 0.2, we get the picture on the
left of the figure 2.11. We see that the separation oscillates between |g¢ — 7| = 0.8Ry and
|g — r| = 1.2Ry. In fact, in these units the internal period is Ty = 27 Ry/c = 2m, for the center
of mass observer. For the laboratory observer this period is T' = «(v)Tp, during this time the
center of mass moves a distance d = vy(v)Tp = 1.28255 in these units. We see this is the spatial
period of the above figure. The trajectory on the right, is produced if the electron is boosted
in the direction orthogonal to the zitterbewegung plane and the spin is pointing forward. The
spatial periodicity is exactly the same and the separation between the center of mass and center
of charge remains constant.

For the non-relativistic electron we get in the low velocity case v/c — 0 and |g — r| = R,
the equations of the Galilei case

d’q _ 0 d’r

ez 7 di?

a free motion for the center of mass and a harmonic motion around g for the position of the
charge, of constant frequency wy = ¢/Ryp.

In the figure 2.12 is represented the motion of the CC and CM on the plane XOY for four

different velocities, in which we appreciate that the relative separation between these centers

= wi(g—r). (2.201)
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Figure 2.12: Projection on the plane XOY, of the motion of the CC and CM, with velocities
v/c=0.2,0.3,0.4 y 0.5. Remark that the relative separation of the CM oscillates between
(1-wv/¢)Ry and (1 + v/c)Rg, for this spin orientation.

oscillates in the interval between (1 —v/c)Rg and (1 + v/c)Ry. The wavelength (the distance
followed by the CM during a complete turn of the CC) of these motions are, respectively 1.28255,
1.97597, 2.74221 and 3.6276. In the figure 2.13 the same motions as before but with the CM
velocity perpendicular to the zitterbewegung plane. In this case the separation between these
centers is constant.
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Figure 2.13: Projection on the plane XOZ, of the motion of the CC and CM, with velocities
v/c=0.2,0.3,0.4 and 0.5. Remark that the relative separation between the CC and the CM
is constant, but the length followed by the CM during a turn of the CC is the same as in
the previous figure.

The figure 2.14 represents a three-dimensional picture, of the motion of the CC and CM
when the CM velocity v is oriented an angle of 30° with respect to the zitterbewegung plane.
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Figure 2.14: Motion of the CC and CM where the velocity of the CM v/c =0.1 and it
is oriented 30°, with respect to the zitterbewegung plane. The separation |g — | is not
constant, but this vector ¢ — r is always orthogonal to the velocity vector of the center of
charge u.
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2.6.3 Interaction with some external field

In the most general situation, the Lagrangian which describes an interacting electron is of
the form L _
L= Ly(u,t, 7 w,w)+ Li(t,r,i,7), (2.202)

where the free Lagrangian L, is related to the mechanical properties of the electron, its mass
m and spin Scay, is independent of ¢ and r and the dependence of the orientation p and p is
through the dependence on w. For the interaction Lagrangian Lj, there is no dependence on
@ and w, because according to the atomic principle m and Scy cannot be modified by any
interaction, and therefore the functions which define the spin U = dL/01u, and W = JL /0w,
must come from only of the mechanical part L,,. It is in the part L; where the interactive
properties of the particle are contained. In the time evolution description L,, = L., (u,a, 2)
where a is the acceleration of the point 7, Q@ = w/f and L; = —e¢(t,r)+eA(t,r)-u, which only
depends on the charge of the particle e and the external potentials. The dynamical equations
of the three degrees of freedom 7, are

d (0L, d?> (0L, oL d (0L;
— ==+t ==+ |=—] =0
dt \ ou dt2 \ da or dt \ du
The part related to L,, is reduced to —dP,,/dt, where P,, is the mechanical linear momen-

tum while the part related to L supplies the Lorentz force, defined at the charge position 7.
Separating the time derivative of the linear momentum to the left hand side, we get

dPy,
— =F 2.2
T F, (2:203)

while the definition of the center of mass remains the same,

dPr F—-v-u

This equation also comes from the definition of the spin with respect to the center of charge (2.175)

S:ff—z(rfq) X .
In the defintion of S = w x U + W only the functions U and W appear, and these mechanical
properties are not modified by the interaction because L; does not depend on % and on w. If the
spin S is not modified by the interaction, this means that in the above definition, the function H
represents the mechanical temporal momentum H,y,, which is also unmodified by the interaction,
because its definition comes from the Lagrangian L,,, and therefore the definition of the center of

mass
u xS

q—T= Hm ’
which leads to the equation (2.204), remains the same under interaction.

But the mechanical linear momentum is written in terms of the center of mass velocity as
P = my(v)v, so that the free dynamical equations (2.200) in the presence of an external field
have been replaced by (2.203) and (2.204). We are going to modify (2.203),

dPp, dv 3 dv\ v
W—W’Y(U)E‘f‘mﬁ’(”) (U‘dt>c2_F’

and taking the scalar product with v, it gives
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and leaving the highest order derivative dv/dt = d*>q/dt*> on the left hand side, we get the
differential equations which describe the evolution of the center of mass and center of charge
of a spinning electron, under the action of an external electromagnetic field and in any inertial
reference system:

diq = € E+u><B—lv([E+U><B] v) (2.205)
- my(v) c? ’ '
d’r A—v-u
- - -7 —r). 2.2
7 CEDE (gq—7r) (2.206)
where
_dg _dr
Cdt’ o odt’

with the constraint |u| = ¢. We can compare these relativistic equations with the non-relativistic
ones of the Galilei particle (2.84) and (2.85). For the other three degrees of freedom the same
dynamical equation holds (2.52)

8Ly, d [ OLnm AW
O =/ ) = — =0 . .
dp  di <8(dp/dt)) 0 W (2.207)

because the dependence on these orientation variables is through €2 and the interaction La-
grangian Ly is independent of them.
From equation (2.206), if we take the scalar product of both members with (g —r), it gives:

d
q—r g
(@—7) —
On the other side
%(q~u—r-u):v-u+q~%—02—r-%:0,

and the function (g —7) - w is a first integral of the system. If we take again the scalar product
with w in both sides of (2.206), we see that this first integral vanishes because u - du/dt = 0.
The velocity vector u is always orthogonal to the vector g — 7.

2.6.4 Boundary conditions

The differential equations for the center of charge r of a spinning particle (2.198) are ordinary
differential equations of fourth order. To single out a solution we have two possibilities. From
the variational point of view we have to supply the values of the kinematical variables (1) and
u(t1) at the initial instant ¢; and also the values of r(t2) and u(t2) at the final time to. If what
we want is to single out a unique solution by giving boundary values at the initial time 1, we
have to give the values of 7(t1), w(t1), a(t1) and w(t1), of the position, velocity, acceleration
and jerk, respectively, at the initial time ¢1, i.e., the values of the variables r; up to third order
derivatives at that time. It seems that we need to provide 12 initial values, but they are a
smaller number because u(t;) = ¢ and u(t1) - a(t;) = 0, and these two constraints reduce to 10
the number of initial independent values.

However, according to (2.205) and (2.206), the fourth order differential equations for the
variable r have been separated into a system of second order differential equations for the
variables g and 7, of the center of mass and center of charge, respectively. Therefore, to obtain
a solution in terms of the boundary conditions at the initial time we have to supply the values
of the r(t1), w(t1), q(t1) and v(t1), of the positions and velocities of both points, evaluated at
t1. This has the advantage that we shall use as a boundary condition the center of mass velocity
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of the electron. When preparing the experiment we can estimate the value of the electron linear
momentum and therefore its center of mass velocity. We shall also give the initial location of
the center of mass q and therefore the initial values of r and w should be expressed in terms of
the initial spin orientation. This initial spin orientation could be controlled by means of some
external magnetic field.

Let us assume that for the center of mass observer the spin of the electron is along OZ axis
as is depicted in the figure 2.15 with the center of mass at the origin in this frame. The center
of charge is located at a point of coordinates (Rp,0,0), along the OX axis. For this observer
the values at the initial time of position, velocity, acceleration and jerk are:

1 0 ~1 0
r(0)=Ro | 0], u(0)=ce| -1], a(0)=cv| 0 |, w0 =c?|1]|, e==I,
0 0 0

Figure 2.15: The electron in the CM reference system, with the spin along OZ axis. The
position of the CC on the XOY plane is fixed by the phase 1.

If at the initial time the center of charge is at a phase ¥ and the spin orientation is changed
by the zenithal angle # and azimuthal angle ¢, since the rotation matrices are

cosy —siny 0
Roz(¥) = | siny  cos¢ 0],

0 0 1
cosf 0 siné cos¢p —sing 0
Roy (0) = 0 1 0 , Roz(p)=| sing cos¢ 0
—sinf 0 cosf 0 0 1

the rotated initial variables are 1o = Roz(¢)Roy (0)Roz(1)r(0), and the same for the remain-
ing ones, and thus

cos 6 cos ¢ cos ) — sin ¢ sin Y cos 0 cos ¢ sin 1) + sin ¢ cos Y
o = Ry | cosfsin¢cosy 4+ cosgpsiny |, wug=ce| cosfsinpsiny —cospcosy |,
—sin 6 cos vy — sin 6 sin Y

(2.208)
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cos 6 cos ¢ cos ) — sin ¢ sin Y cos 6 cos ¢ sin ) + sin ¢ cos Y
ag = —cwy | cosfsingcosy +cospsiny |, wo= —cwge cos 0 sin ¢ sin ) — cos ¢ cos
—sin € cos ¥ —sin #sin ¢

The relation of these values with those measured by the inertial observer O’ which sees at
observer O moving with velocity v, is given by

v (v-ro)v

1+ 2

v-r
th = y(to + 620), Th = 70 + YUty +

If we consider that the initial time to integrate the system, corresponds to time t{, = 0 in this
reference frame, this corresponds to tg = —v-7g/c?, for the center of mass observer, so that the
initial position of the center of charge at the laboratory frame is at t{, = 0,

v (v 'r'o)'v.

/
To=To—7 +v  c?
For the other variables is ,
, uo + v + g5z (v - uo)v
ul) = ~ : (2.209)
Y1 +v-up/c?)
(1+wv-ug/cHag — (v-ag/c?)ug — + L= (v-ag)v
a) = Aty , (2.210)

Y2(1 4 v -ug/c?)?

These boundary conditions contain information of the velocity v of the center of mass of the
electron. If they are interpreted as boundary conditions at initial time ¢, = 0, of the system of
equations (2.205) and (2.206), it means that we know r{, u(, v, = v and we need still to know
q(), the initial position of the center of mass.

If we consider that the center of mass position given in (2.173) with H = 4ymc?, and

P = ymwv, we get
ey A —v-u du
= (du/dt)? ) dt’

and therefore the boundary condition for the center of mass in the laboratory frame will be

2 /
cc—v-u
A o ./
qQo=To+t —— 5 Qo
ag

in terms of the position, velocity and acceleration of the center of charge. Please remark that
in the expression of the center of mass velocity it is contained the dependence up to the third
derivative of the center of charge r.

As a summary, to characterize the boundary conditions at the initial time ¢;, = 0, in the
laboratory reference system, we have to give the values of

2

Y .
e | (v-7ro)v o Uo + YV + (1+7)c? (v ug)v 2911
o To 1+ 2 y  Ug = 2 ) ( . )
v e Y1 +v-ug/c?)
2
gh=rh+ M ay vy =, (2.212)

a
with @ given in (2.210), and where the magnitudes 7o, ug and ag, are those magnitudes
measured in the center of mass reference frame (2.208). We do not need to produce the values
of the jerk wq, because these values are already contained in the definition of the center of mass
velocity v.
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If the initial time is ¢, = 0, and CM location is determined, we only need another 6 boundary
conditions: the 3 components of the CM velocity in the laboratory frame and the initial phase
¥ and spin orientation 6, ¢ for the CM observer. For particles coming from a different initial
point we have to add the other 3 extra desplacement variables for the initial CM position.

In natural units, ¢ = Rp = wo = 1 and a9 = —rp. In this case, taking the square of (2.210)

ah’ = I S
’}/4(1 +v- u0)4’

and from (2.209), by multiplying with v, we get the term

1
l-v-uy= ——",
CT (14 v - u)
and the boundary condition for the CM position, instead of (2.212) becomes:

g, = (v-ro)ug — (v-ug)rg = v x (ug X rg), vy = . (2.213)

In general, the initial CM position given in (2.213) is contained in the zitterbewegung plane,
and is depicted in the figure 2.16 where the distance to the center is vsiné in dimensionless
units. From here we see that if v is orthogonal to the ziterbewegung plane, v-ry = v - ug = 0,
and the CM is at the origin and the separation with the CC is constant.

vsSvI¥ o,

cu 18

N

UoX To

Figure 2.16: Initial position of the CM when the velocity v is at an angle 6 with the direction
orthogonal to the zitterbewegung plane. The separation is perpendicular to the vectors v
and ug X 7o and of value O — CM = vsinf in these dimensionless units. It is independent of
the intial CC position.

In the figure 2.12, since 8 = 90°, we see that the CM is desplaced to the left of the central
position, in a direction perpendicular to the velocity v, at the distances v/c = 0.2, 0.3, 0.4 and
0.5.

In the pictures 2.17, we represent the plane motion on the plane XOZ of the CC and CM
when the spin is orthogonal to the velocity v, § = ¢ = 90°, with various initial positions of the
CC phase. In all cases the CM initial position is the same, but not the CC position.

2.6.5 Natural units

We have a natural unit of velocity ¢ and also a spatial scale factor Ry, the radius of the
zitterbewegung for the center of mass observer. If we define the dimensionless magnitudes
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Figure 2.17: Projection on the XOY plane, of the CC and CM motion, with velocity
v/e=0.2, § = ¢ =90° and the initial phase ¢ = 0,90°,180°,270°. In all cases the initial CC
position is different, but that of the CM is the same, at a distance v/csinf =-0.2 from the
origin.
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r = RoT, t = wot, with wy = ¢/ Ry, this means that

u = dl = ﬁw = C@
P e
du  &F 2 @2

@@ Rede
and the differential equation (2.206) in natural units becomes
T 1-v-au G- 7)
N CET R
where now 0 <7 < 1 And w = 1. For the equation (2.205) in natural units, we arrive to

2 2%
c” d°q e - ~ ~ ~
———=—|EF+uxBc—v (E+uxBc)-v
Ro a2 mv[ ( ) - ]
and making use of the expression Ry = h/2me, we get:
d*q eh . - ~ ~
ﬁ:m[E—l—uch—’U(E—i—uch)-’v]

where the external fields E y B are defined at every time in the the laboratory frame, at the
center of charge position r.
2.6.6 Invariant properties

If we accept the atomic principle, the intrinsic mechanical properties of the electron are
not affected by any interaction. If H,, and P,, represent the mechanical energy (temporal
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momentum) and mechanical linear momentum, respectively, (this is the meaning of the subindex
m), they satisfy for the free particle the property

H? — 2P, = m?*c. (2.214)
We also know that P,, = H,,v/c?, where v is the velocity of the center of mass. This implies
that both mechanical properties can always be written as H,, = v(v)mc? and P,, = v(v)mwv,

in terms of the center of mass velocity.
For the free particle they also satisfy the equation (2.170) which defines Dirac’s Hamiltonian,
and which involves the spin with respect to the center of charge:

1 du

However, from the interacting particle Lagrangian (2.202) the total temporal momentum and
linear momentum are defined as
dU dU
H=-T—u-— =H,+ep(t,r), P=R—-— =P, +eA(t,r).
dt dt
Therefore for the interacting particle, in terms of the external potentials, the following expres-
sions equivalent to (2.214) and (2.215) are satisfied.

(H — ed(t,r))> — (P — eA(t,r))? = m?c, (2.216)
H—ep(t,r)=u- (P —cA(t,r))+ C%S- (Cf;: X u) (2.217)

where H and P are the total momenta and in terms of the external potencials ¢ and A. In
the quantum case (2.216) and (2.217) they will supply us with the interacting Klein-Gordon
equation and interacting Dirac’s equation, respectively, equations which are satisfied by the
wavefunction of the electron.

If we know the dynamical equation of the momentum P,, as given in (2.203), taking the
time derivative in (2.214) we get

H
2Hmd—m — 2P, -

de_O dH,,
dt a7 dt

—’U'F(t,’l"),

i.e., dH,, = F - dq, the variation of the mechanical energy is the work of the external force
defined at the center of charge r, along the trajectory of the center of mass q.

2.7 Particles and antiparticles
The most general Lagrangian of an interacting particle is written as
L=1Lo+ Ly,

where Eo represents the free Lagrangian and L; that part that gives rise to the interaction.
The mechanical invariant properties of the particle, which are not modified by the inter-
action, come from the free Lagrangian Eo. These properties are related to the temporal mo-
mentum H,, and linear momentum P,, and the spin with respect to the center of charge
S=uxU+W = Z+ W. Because the interacting Lagrangian ZI, cannot modify the def-
inition of the two functions U and W, the spin structure remains unmodified, according to
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the atomic principle. In the relativistic context and for the particle whose center of charge is
moving at the speed of light ¢, these observables satisfy the invariant relation,

1 du

For the mechanical observables H,, and P,,, coming from the part Zo, we also have the

relation
(Hm/c) — Py, = m?c?,

where m is a positive observable which is interpreted as the mass of the particle. Between these
mechanical observables there exist the relation,

P, = m'v/c2
where v represents the velocity of the center of mass of the particle. This implies that
H,, = +y(v)mc?, P, = £y(v)mv.

The relativistic formalism predicts the existence of two kinds of material systems of the same
positive mass m, but the magnitude H,, can either be positive or negative. For the mechanical
linear momentum P,,, the two possibilities one in the direction of the center of mass velocity
or in the opposite direction, respectively. The first object is called particle, while it is called
antiparticle in the second case. The difference is that if the free Lagrangian for the first object
is Lo, the free Lagrangian for the second is —Lyg.

As far as the internal structure of the motion of the kinematical variables, implies that, once
the spin direction is fixed, the center of charge motion for the particle, is antiorbital while it
is orbital for the antiparticle. The unmodified mechanical properties Hy,, Py, and S, coming
from the mechanical free Lagrangian Lo, change their sign when derived from —Lg, because all
functions 7', R, U and W also change their sign.

For the part L takes the general form,

L= —eg(t, )t + eA(t,r) - T,

where the constant e represents the charge of the particle and its sign is undetermined. For the

antiparticle B
Ly = —e*¢(t,r)t +e*A(t,r) - 7,

where e* is the charge of the antiparticle and ¢ and A the external potentials.
For the particle, from L, = Lo + Lj, we get

dP d
P (BiuxB), Pp=r@me, O gl By,
dt dt
while for the antiparticle, from Ea = —fjo + Zf, we arrive to
dP d
Ttm:e*(E—i—uxB), P,, = —y(v)mv, w?ﬁm——e*(E—i—uxB),

where E = —V¢ — 0A/0t and B =V x A. If in front of the same external electromagnetic
field, the acceleration of the center of mass of the particle is opposite to the acceleration of the

antiparticle, then —e* = —e, and both objects will have the same charge. This last equation
for the antiparticle will be rewritten as,
d

T (vy(v)mv) = —e (E+u x B).
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We can define the mechanical linear momentum always in the same direction as the velocity,
which implies that the observable H,, should be definite positive, and the two kinds of particles,
of the same positive mass, will be different by the different sign of their charges, and they will
be described by the Lagrangians

L, = Lo — ed(t, 7t + eA(t,T) - 7,

Lo = Lo+ ep(t,r)i — cA(t,r) - 7,

which corresponds simply to a change e by —e, and where the free common part Eo is that
Lagrangian which leads to a positive H,, > 0 and P, = H,,v/c%. In any case the sign of the
particle is undefined.

Because the dynamical equations derived from L, And from —L, are exactly the same,
we can have two possible equivalent interpretations of the differences between particle and
antiparticle. One is that both elementary objects have the same mass and charge but their
mechanical properties H,, and P,, are opposite. The usual interpretation is that they have
opposite charges, which brings us to adopt that the sign of the energy must necessarily be
positive and that the linear momentum has the direction of the velocity of the center of mass.
The requirement of the positive definitness of the energy could be related to the arrow of time.
See the ananlysis performed in the section 6.10.3 about active and passive transformations of
the kinematical group.

This method is valid to establish the dynamical equations of the center of mass of the particle
or antiparticle. For the internal motion we have for both kinds of objects the equation

dPr F-v-u

—=——-(q—7
i~ (g—r) (g—m),
which is just the definition of the center of mass position

CQ(Hm—Pm-u> du

7=r+ (dwjdt)? ) i

The expression of the spin S in terms of these variables will be for the particle

H, — P, u)\ du . -
S, = ((du/dt)2> pralcs obien S, =—y(v)m(r—q)xu

while for the antiparticle

Hm_Pm'u du : J—

with H,, = ~v(v)mc* and P,, = v(v)mv. This makes a distinction between particle and
antiparticle, as far as the internal motion is concerned, because the spin S, has the direction of
the angular velocity for the antiparticle and in the opposite direction for the particle.

Experimentally we know that the pair electron-positron, if its total angular momentum is
zero, anhilates with the emision of two photons, with opposite spins and total energy 2mc?. In
this process it is conserved the energy, linear momentum, angular momentum and the electric
charge. If the initial state is of spin 1, then the desintegration is with the emission of three or
more photons. The usual interpretation that for massive particles that the antiparticle is an
object of opposite charge is consistent with this experimental result.

In the case of photons, because they do not have electric charge we can think that they are
their own antiparticle. This is the usual interpretation. But the same conclusion will be reached
for neutrinos, because they are chargeless and they could be their own antiparticles. However,
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the antineutrinos have opposite lepton number and they are different than the neutrinos. The
conservation of the leptonic number requieres they should be different. However, from the
mechanical point of view S and w have the same direction for the photon and opposite direction
for the antiphoton. This physical difference can be determined by the interaction with a crystal
lattice. If the optics of antiphotons is the same than that for photons, they will be no difference
between them. But it is possible that the interaction with the lattice, although they do not
have charge, could be related to the different relative orientation af the angular momentum and
angular velocity.

Since photons do not have charge, this interpretation that the linear momentum has the
direction of the velocity and the charge is opposite, implies that photons and antiphotouns,
being chargeless, they are the same particle. However, with the first interpretation there will
be no ambiguity, because the definition of the mechancial properties H and p will be opposite
to each other. Today we know that in electrodynamics and chromodynamics, the interaction
mechanisms between material particles (fermions of spin 1/2), is the interchange of virtual
bosons of spin 1 (photons, gluons, massive bosons W+, Z°). In the electromagnetic case, if
the interchange is mediated exclusively by photons, the phenomenon of atraction will not take
place.

e+

Figure 2.18: Interaction of an electron and a positron by the interchange of a virtual photon.
Both particles separate from each other.

Let us assume, as is depicted in the figure 2.18, that an electron and a positron, both of
positive mechanical energy H,, and linear momentum in the direction of the velocity of its
center of mass, interact by the interchange of a virtual photon, whihc is emited by the electron
in 1 and being absorbed by the positron in 2. Due to the interchange of linear momentum and
energy, th electron gets a linear momentum p} = p; — k, while the positron ends with a linear
momentum p), = py + k, and the two particles reppel each other. This process will be the same
if the virtual photon is emitted by the positron.

Because we know experimentally that particles of opposite electric charge atract to each
other, the mechanism should be that of the figure 2.19, with the interchange of an antiphoton,
emited from 1 by the electron, with linear momentum k, in the opposite direction to its velocity,
beind absorbed at 2 by the positron. Now we get again pj = p; — k, and the result is that the
electron approaches to the positron. The same interpretation will be obtained if the emision of
the virtual antiphoton is produced by the positron.

In an atom, the existence of bound states of electrons with respect to a positively charged
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Figure 2.19: Interaction of an electron and a positron by the interchange of a virtual
antiphoton. Both particles atract to each other.

nucleus, implies a process of electromagnetic atraction. If this process is mediated by the
interchange of virtual bosons between the nucleus and the electrons, these bosons necessarilly
have to be antiphotons.

2.7.1 Detection of cosmic antimatter

One of the projects to detect antimatter in the universe and to verify the existence of anti-
matter galaxies should consist in the detection of antimatter atoms in cosmic rays. Antiprotons
and positrons are already detected, but they could be produced at the Sun or in stars of our
galaxy.
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Figure 2.20: Measurement of the positron/electron ratio performed by the detector of the
AMSO02. The grey band is the prediction of this ratio by astrophysicists, based on models
of interaction and transport phenomena in our Galaxy. The measured ratio (red data),
increases above 10 GeV.

The simplest antimatter structure should be the nucleus of antihelium, formed by two an-
tiprotons and two antineutrons, i.e., an antialpha particle. This idea lead to the construction
of a spectrometer yo measure these objects. It is called Alpha Magnetic Spectrometer, and
the AMS02 was installed at the ISS (International Space Station) on May 2011, at a mean
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altitude of 350 Km. Up to 2013 had detected around 25 x 10° counts of electrons and positrons
in the range from 0.5 to 350 GeV, being positrons 4 x 10, while observing an increase in the
positron/electron ratio in the range from 10 to 250 GeV, with no significative difference along
time and in the direction of observation. But they found an unexplained excess of high-energy
positrons in Earth-bound cosmic rays, in Samuel Ting’s words, director of the project '*. In
Decembre 2016 they inform that a small ratio of antihelium-3 in around 10° Helium nuclei had
been detected in that year.

Recently we have analyzed the behaviour of antiphotons with mirrors and have suggested
the possibility of detecting antimatter galaxies with the design of a telescope which focus an-
tiphotons'6.

153, Coutu, Physics 6, 40 (2013); AMS Collaboration Phys. Rev. Lett. 110, 141102 (2013)
1M Rivas Considerations about photons and antiphotons, Indian J. Phys. 96 583-591 (2022).
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2.8 Appendix: Rotation group

We are going to describe geometrically a rotation of value o around an arbitrary axis,
described by the unit vector u. We interpret a > 0 when the rotation is clockwise when looking
along the direction given bu the unit vector uw. If a < 0, the rotation is in the opposite sense,
i.e., anticlockwise. Then, according to the figure 2.21, an arbitary point, characterized by the
vector 7, will be rotated to the position given by the vector 7/,

Figure 2.21: Active rotation of value a of the vector r, around the axis OA

From the vector point of view, ' = OA + AD + DC, where DC is orthogonal to the
vectors OA and AB.
OA=(r-u)u

AD = ABcosa = (r — (r - u)u) cos«
DC = |AC|sinan
where 7 is a unit vector orthogonal to uw and r, and therefore

uXxXr

B |lu x |
but |u x r| = |AC| = |AB]|, |AD| = |AC|cosa, |DC| = |AC/|sin o, and thus
DC =u x rsina
Finally, the vector r’ is expressed as:
" =rcosa+ (r-u)u(l —cosa) +u x rsina, (2.218)
and its Cartesian components:
2'i = xicos o+ (wpug)ui(l — cos @) + &;j,u;zg sina =

= (0i) cos @ + ujup (1l — cos ) + €k uj sina)xy = R, w)ixp k.

This linear expression of z in terms of xy, is expressed in terms of the matrix R(c, u);x. If we
define the vector a = au, then every rotation is parameterized by this three vector,

Qg
2

R(a)ix = di, cos a + (1 —cosa)+ Eijk& sin o (2.219)
a
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where the first index ¢ represents the row and the second the column k, of the matrix which
characterize this rotation. If we fix the vector w, then any positive rotation of value a produces
tha same rotation as another of value 27 — « in the opposite direction. In order to single out a
unique vector a, for each rotation, we have to restrict ourselves to the set of points of a sphere
of radius 7, (see figure 2.22) but with the constraint that opposite points on the surface of
the sphere, which represent rotations of value 7, represent the same rotation and have to be
identified as the same point, from the topological point of view.

Figure 2.22: Doubly connected and compact manifold of the group SO(3)

This feature means that if we try to join two points of this manifold by a curve of points in it,
there are two types of paths. These two types cannot be reduced to each other by deformation.
There are paths passing through the surface and paths which do not cross the surface. This
implies that the rotation group is characterized by a doubly connected, compact manifold.

Because the determinant of R(a) = 1, then the rotation group is isomorphic to the group
SO(3), of 3 x 3 orthogonal matrices of unit determinant (Special Orthogonal group).

Other alternative parameterizations are obtained by defining a three vector ¢ = sin(a/2)u
and the rotation matrix is given by:

R(P)iw = (1 — 20%) Sik + 20165 + 2¢/1 — ¢ 505 (2.220)

Now the group manifold is a unit sphere with opposite points on its surface, identified.
Another interesting parameterization is given by the vector p = tan(a/2)u, where the
matrix is

R(p)ik (1 = p%) dik + 2pipk + 2€45kp] (2.221)

where the manifold is the compact space R3, where compactification is done by adding to R? the
points of infinity in any direction, when the additional condition that opposite points represent
the same rotation. We shall denote this manifold by R3, to enhance its compact character.
( 0 1
0 O
-1 0

0
1
0
determine what kind of transformation produces.
Solution: Since the determinant is —1 it is a rotation followed by a space inversion. The trace

Exercise: Given the orthogonal matrix:
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is zero, and the value of the rotation is 0 = 1 4+ 2cosa, a = 27/3, around an axis with director
cosines proporcional to u ~ (1,—1,1).

Exercise: Calculate, by using two different parameterizations of the rotation group, the rotation
matrix, in the passive sense, of value o = 30° around an axis of director cosines proportional to
(_17 27 2)

2.8.1 Normal or Canonical parameterization of the group SO(3)

Any rotation matrix satisfies RTR = 1. From this we have nine relations between the nine
components of the matrix R. However only six of these relations are independent. If we consider
that any rotation matrix is formed, by raws or columns, as a set of three orthogonal unit vectors
e;, © = 1,2, 3 the above relations mean that these three vectors are orthogonal to each other
and of modulus 1. The feature that the determinant is +1, represents that these vectors, taken
in correlative order form a direct triad of unit vectors (anticlockwise). If the determinant is —1,
they form a clockwise triad. Then only three values determine each rotation, and therefore the
rotation group is of dimension 3. The part of the group continuously connected with the unit
element, SO(3), as a Lie group, has a Lie algebra of dimensiion 3. Let R = [+ eM an arbitary
rotation close to the unit rotation, with € infinitesimal and M a matrix to be determined. Since
R =R 1=1+eM? =1—eM, implies that M7 = —M and therefore M is an arbitrary 3 x 3
antisymmetric matrix. It is called the generator of the infinitesimal rotation.

The Lie algebre of SO(3), is the real vector space of real 3 x 3 antisymmetric matrices. A
basis of this vector space can be given by the three linearly independent antisymmetric matrices:

00 0 0 0 1 0 -1 0

Ji=10 0 -1}, J=|0 0O0), Jz=(|1 0 0],
01 0 -1 0 0 0 0 0

which clearly generate a real vector space of dimension 3.

Any Lie algebra, in addition of its structure as a real vector space, it also has another
internal composition law, distributive with respect to the sum of elements, but it is not in
general, neither commutative nor associative. To characterize this structure is sufficient to
know this composition law for the basis vectors J;. For matrices this law [A, B] is just the
commutator between them. The three J; satisfy the following commutation rules:

[Ji, Jk| = €ir 1, i, k,1=1,2,3, (2.222)

Let M = > «;J; be an arbitrary linear combination of elements of the base J;, with three
arbitrary real numbers «;. This sum we are going to write formally as Y «;J; = au - J, where
a; = au; in terms of the three components of a unit vector w and where by means of the dot
product, w - J = U what we want to express is just the sum > u;J; in a compact way. If we
calculate the matrix

M n 0 —us (%)
exp(M) = lim <]I+ > =exp(alU) =expLa| us 0 —w =
n—00 n
—Uu9 (51 0
1 0 0 o 0 —uz us o2 —(u3 + u%) ULU ULU3
01 0]+ | ous 0 —u; |+ o UL U —(u? + u3) UU3 +
0 0 1 "\ —us w 0 ’ UU3 UgU3 —(u? 4+ u3)
3 0 uz  —up

«
+— | —us3 0 Up + -
Uy —Up 0
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If we call
0 —u3z u —(u3 + u%) UL U UU3
U=u-J=| us 0 —u |, U? = UUL —(u2 + u3) UgU3 ,
—uy U 0 uULU3 UU3 —(u2 + u?)
then U satisfies U3 = —U, U* = —U? and the subsequent powers, so that the above expansion

can be expressed in terms of matrices U, U? and the unit matrix I, in the form

a o a? ot
exp(aU)Eexp(a-J):IH-U(l!—S!+~~>+U2 <2!—4!+-~>,

i.e., the expression obtained previously in (2.219).
If we consider that two parameters «; are zero and we analyze the one-parameter subgroup
generated by the nonvanishing parameter, for instance oy, then

exp(aJy) exp(BJ1) = (I +sinaJy + (1 — cos @) JZ) (I + sin BJ1 + (1 — cos §)J?) =

I+ sin(a+ 5)J1 + (1 — cos(a + 5))J12 =exp((a+ B)J1),

and in this parametrization the composition of rotations of any one-parameter subgroup is just
the addition of the corresponding parameters of the two elements. This parameter which defines
the exponential mapping, is called the normal or canonical parameter.

The normal parameterization of the rotation group corresponds to that in which the group
manifold is the compact sphere of radius 7, and in this parameterization any rotation can also
be represented by:

Qi

R(at);, = (exp(a - J))Zk = §;, cOs o + >

(67
(1 —cosa) + g4, —sina,
«

which is the expression (2.219).
In an extended form R(a), is:

cosa + u2(1 — cos ) —ugsina + ujug(l — cosa)  wgsina + ujus(l — cos @)
uz sin @ + ugug (1 — cos ) cosa + u3(1 — cos ) —uq sin a + ugug (1 — cos a)
—ugsina + ugui(l — cosa)  wgsina + uguz(l — cos @) cosa + u3(1 — cos @)

We can see that R(a)™! = RT(a) = R(—a) and that its trace is 1 4+ 2cos . The director
cosines of the unit vector w, which defines the direction of the rotation axis, are proportional to
the terms (Rs2 — Ra3, R13 — R31, Ro1 — Ri2), with the exception of a rotation of value av = m,
which in that case will be related to the diagonal elements because R is symmetric. These
diagonal elements in this case are —1 + 2u%, -1+ 2u% and —1 + 2u§, respectively, and the two
possible solutions for each u; have to be compatible with the remaining elements of R;;.

14+2cosa =Ry, u;= #eijmkj, a#0,7.
2sina
If o = 0, the components Ry;, k # j vanish and the above relation in undetermined, as it
corresponds to a nul rotation.

The eigenvalues of any rotation matrix are reduce to the real value 1 with eigenvector in
the direction of the rotation axis, and another two eigenvalues, in general complex, of the form
e’ y e~ without real eigenvectors, which in the particular case a@ = 7 they are —1, and the
corresponding eigenspace is the two-dimensional vector space orthogonal to the rotation axis.
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Exercise: Given the following two rotation matrices determine the angle and axis of rotation.

V2 =10 =V10 1 _4+v3  VB-1
2 5 10 6 6 3
A= | v0 14+2v2 v2-2 B = V3—4 1 V3+1
5 5 5 ) 6 6 3
VI0  V2-2 842 _ V341 1-Vv3 -1
10 5 10 3 3 3
Solution: oy =7/4, mna~ (0,—-1,2). ap =2n/3, mnp~(-2,2,1).

The analysis of rotations we have done is called the active representation because we rotate
the points in the space while leaving fixed the Cartesian reference frame. The passive interpre-
tation consists in describing the coordinates of the same point in three-dimensional space with
respect to two different frames which are rotated with respect to each other. But to rotate a
coordinate system by means of the rotation a, the new coordinates of the point correspond
to those of an active rotation in the opposite direction, of parameters —a. It is sufficiente to
replace o by —a to obtain the matrix representation of a change of coordinates when we make
a change of reference frame. In this case the commutation relations of the basic generators, in
the passive representation, are

[J’ijk] - _silih iak)l - 1)273

2.8.2 Composition law of rotations

If every rotation is represented by a vector a € SO(3), then it is possible to obtain the
resultant vector of the composition of two arbitrary rotations. Let R(7y) = R(a)R(B) the
composition of two rotations given by the product of the corresponding matrix representation.
If the vectors are o = au, B = fv and v = yw, making the matrix product and after a term
by term identification we get

v utana/2+wvtan /2 + tana/2tan 8/2(u x v)

tan — = 2.22
whaty 1 —tana/2tan 5/2(u - v) (2:223)

If instead of using the normal parameterization we use the vectors
p = tan gu, 1 = tan év, v = tan lw
2 2 2

then R(v) = R(p)R(p) implies:
L _ptutpxp
l—p-p
We can see in the above relation that if @ = 8 = 7, tan(«a/2) = tan(8/2) = co and therefore
in this limit:

(2.224)

v vXUu
wtan — =
2 u-v

so that the compound rotation is around an axis orthogonal to the previous ones in the direction
of the cross product of the second times the first. If they are separated by an angle ¢ then
tan(y/2) = sin ¢/ cos ¢ = tan ¢, and the value of the rotation angle is v = 2¢, twice the angle
that v and v subtend. Conversely, every rotation can always be written as the composition of
two rotations of value 7, around two axis orthogonal to its rotation axis and separated half the
angle to be performed.

If we have a cylindrical lid and we turn around, i.e., we rotate it a value 7w around one of its
diameters, and subsequently we make again another rotation of value 7 around another diameter,
it is finally face up and its points have rotated an angle twice the angle subtended between the
above diameters, and in the direction from the first axis to the second.
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Figure 2.23: Composition of rotations by means of rotations of value =

This allows us to produce a geometrical picture of the composition of rotations '” by using
the decomposition of each one into two of value 7. Let in the figure 2.23, w and v the two unit
vectors which represent the two rotation axis of values o and (3, respectively. If we construct the
orthogonal planes to both vectors, passing through the point O, they intersect along a straight
line characterized by the unit vector n. In the perpendicular plane to vector w, and in the
anticlockwise direction, we locate another unit vector ny, separated from n by an angle «/2.
Similarly, in the plane orthogonal to v, this time in the clockwise direction, we define the unit
vector ny separated /2 from m. Therefore:

R(B,v)R(a,u) = R(mw,n2)R(m,n)R(m,n)R(w,n1) = R(w,n2)R(m,nq), (2.225)

and thus the composite rotation is around an axis orthogonal to 111 and ng, in the sense 19 X 11
of value twice the angle subtended by these two vectors.

The above analysis can also give rise to another geometrical interpretation on a unit sphere.
Let us assume that, as usual each rotation is described by the rotation angle a and the unit
vector u, which defines the rotation axis. Let us represent both rotations on the unit sphere in
the following way. Vector w defines a point, and this defines an equatorial plane orthogonal to
u. Along this maximal circle we depict an oriented circular segment of lentgh «/2. Simmilarly
we also depict the corresponding oriented circular segment of length y /2 in the maximal circle
orthogonal to the unit vector v.

If we displace both circular segments, along the corresponding maximal circles, as in the
figure 2.24, such that the segment AC' is consecutive to the segment BA, then the points B and
C will correspond with the end points of the unit vectors ny and ni, respectively. Since the
final rotation is orthogonal to both axis, the compound rotation axis is defined by the maximal
circle passing through B y C, and the angle of rotation is twice the corresponding segment BC
of value /2.

Because the angular separation between the two planes is m— ¢, where ¢ is the angle between
the unit vectors w and v, by spherical trigonometry applied to the spherical triangle ABC, we
find:

cosvy/2 = cosa/2cos 5/2 + sina/2sin B/2 cos(m — ¢) =

173 M. Aguirregabiria, A. Hernandez, M. Rivas, Composition law of the rotation group, Eur. J. Phys., 13,
139-141 (1992).
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Figure 2.24: Composition of rotations on the unit sphere

= cosa/2cos 3/2 — sina/2sin /2 cos ¢

which is a relation that can be obtained form the composition of the corresponding matrices
associated to those rotations.

2.8.3 Kinematics of rotation

The description of a mechanical system with orientation, for instance a rigid body or a
spinning elementary particle, is by means of three unit vectors e;,¢ = 1,2,3, of the three
orthogonal axis associated to a moving point. In the case of the rigid body, these axes can be
the principal axes of inertia around the center of mass of the body. In the case of an elementary
particle, an arbitrary Cartesian frame located at the center of charge.

If these three unit vectors are written as column vectors, consecutively, they form an or-
thogonal 3 x 3 matrix of unit determinant, i.e., a rotation matrix. Then, only three essential
parameters «;,7 = 1,2,3, characterize the independent degrees of freedom associated to the
change of orientation.

R(a) = ((e1), (e2), (e3))

If at instant t = 0, we select the laboratory axis in coincidence with the body axis, then at
instant ¢, the matrix R(a(t)) represents the active rotation I have to produce to the laboratory
axis to transform them into the body axis.

If we consider now another inertial observer O’ related to O by means a Galilei transforma-
tion, then the relative spacetime measurement of some spacetime event is given by

t'=t+b, r=R(pr-+vt+a.

This means that the three unit vectors linked to the body transform among inertial observers
in the form

e{i = R(P’)elv

and if we collect them in the form of a matrix in both members, at any instant ¢:

((€1), (e3), (e5)) =R(e/(t)) = (R(p)(e1), R(w)(e2), R(w)(es)) = R(p)R(ex(t)) (2.226)
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For the observer O, R(«a(t)) is the orientation of the body at the instant ¢t and R(«(t + dt))
the orientation at the instant ¢ + d¢t. This can be written as a rotation R(a(t)) followed by the
infinitesimal rotation I + Qdt, i.e.,

R(a(t +dt)) = (I+ Qdt)R(e(t)) = R(e(t)) + QR(ex(t))dt = R(a(t)) + R(a(t))dt,
and the matrix €2, is
QUOR(a(t) = R(a(t), — Q) =R(a)R (a(t) = R(a(t))RT (a(t))

and (2 is an antisymmetric matrix with three essential components wich define the components
of the instantaneous angular velocity w(t), w; = %Gz‘jkﬂjk-

In fact, for any rotation matrix RR* = I, and also at any instant ¢, R()R” (t) = I, and thus
taking the time derivative ) ]
RR" +RR" =0, Q+Q" =0.

The relation R(c(t)) = Q(t)R(e(t)), if we analyze by columns is equivalent to

dei
dt

:QeiEeri.

The kinematics corresponds to an instantaneous rotation around an axis in the direction of w.
If we express the rotations in terms of the vector o = aw, the angular velocity is given by

da du du
w=u— +sina— + (1 —cosa)u X —. 2.227
dt dt ( ) dt ( )
Exercise. Show that if we use the parameterization of the orientation by the three-vector

p = tan(a/2)n, where n is the unit vector along the rotation axis and a the rotated angle, the
angular velocity can be written as

(p+pxp), w=R(pw (p—pxp)

w:1—|—p2 :1—|—p2

where w is the angular velocity vector with respect to the body frame.

If in (2.226) we take the derivative of both sides with respect to t’, taking into account that
ot/ot' =1, gives

and taking the transpose of (2.226)
R/ (t')) = RT (e(t))RT ()
and thus the matrices 2 transform between inertial observers
V(1) =R/ ()R (& (') = R(1)R(e(t) R (a(t) R (1) = R(pe) 2(t) RT (n)

which corresponds to the transformation equations of a second rank antisymmetric tensor, such
that for its essential components, gives

From expression (2.221) we get that the unit vectors associated to the body axis ey, in the
p representation of rotations, admit the following representation

1

2
152 [(1 = p%) dik + 2pipk + 2€ijkp;]- (2.228)

(ex)i =
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2.8.4 Dynamics of rotation

If we want to make the Lagrangian description of a body with orientation «, because
the rotation group has no central extensions, and the dynamical equations must be rotation
invariant, then the Lagrangian has to be an invariant function L(a;, &), of the variables we
use to describe the orientation «, and its time derivatives <. It must be a function of them
through its dependence of the angular velocity w;, L(w;). In this way, Euler-Lagrange dynamical
equations are

OL d (OL\ _ OLOwj d (0L Ouw; _ 0
80@ dt 802i N 6wj 80@ dt 6wj 8021- Y
If we call W; = OL/0Ow;, we propose to the reader (is relatively simpler in the p parameteriza-
tion) to show that the above equations lead to

dW oL

WZUJXW, m:ai%

The angular momentum components with respect to the body axis, are constants of the
motion. Let us call T; = W - e;. Its time derivative gives

dl; dW de;

i GV e; + W . )

dt dt dt

=(wxW)-e+W:(wxe;)=0.

In the case of a nonrelativistic elementary particle, if it is a rigid body and its spin is a
constant of the motion, then W ~ w and the Lagrangian has to be an arbitrary function of w?.
A simple case corresponds to

1
L= =-Tw?
2

an object with spherical symmetry, i.e., with the three principal moments of inertia of the same
value, and the angular momentum S = W = [w. We have to remark that an object with the
three principal inertia momenta of the same value does not mean that its shape is that of a
sphere. The same thing happens to a cube.

If the three principal momenta are different

1
L:§Mﬁ+b@+kﬁx

and Euler-Lagrange equations are, with S; = Liw;, (no addition on indes 7)

dws

dws
I __ 2
St

dwq
I __“Z
2at

I — = (I3 — Iz)waws,

dt = (IQ — Il)wle.

= (I — I3)wswi,

The w1 component will be a constant of the motion if I3 = I3, and the same criteria for the
others.
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2.9 Appendix: Galilei group

The Galilei group is a group of space-time transformations characterized by ten parameters
g = (b,a,v,a). The action of g on a space-time point = = (¢,7) is given by 2/ = gz, and is
considered in the form

2’ = exp(bH)exp(a- P)exp(v- K)exp(a-J)x

as the action of a rotation of value «, followed by a pure Galilei transformation of velocity v and
finally a space and time translation of values a and b, respectively. In this way all parameters
that define each one-parameter subgroup are normal, because the exponential mapping works.
Explicitly

' = t+b, (2.229)
r" = R(a)r+vt+a, (2.230)

and the composition law of the group ¢’ = ¢'g is:

V' = v +b,

a’" = R(d)a+v'b+d,

v = R(d)v+v,
R(&") = R(d)R(a).

For rotations we shall alternatively use two different parameterizations. One is the normal
or canonical parameterization in terms of a three vector & = an, where n is a unit vector along
the rotation axis, and « € [0, 7] is the clockwise rotation angle in radians, when looking along
n. Another, in terms of a three vector u = mtan(a/2), which is more suitable to represent
algebraically the composition of rotations.

The rotation matrix R(a) = exp(a-J) is expressed in terms of the normal parameters «; and
in terms of the antisymmetric matrix generators J; which have the usual matrix representation

0 0 O 0 0 1 0 -1 0

Ji=10 0 —-1], Jo= O 0 o0}, Jg=(1 0 0],
0 1 0 -1 0 0 0O 0 O

and satisfy the commutation relations [J;, Ji| = €;x;.J;, such that if we write the normal param-

eters a = an in terms of the rotation angle a and the unit vector n along the rotation axis, it
is written as

R(a);j = dijcosa + ninj(l — cos ) — ezpnpsine, 4,5,k =1,2,3. (2.235)
In the parametrization g = ntan(a/2), the rotation matrix is

1

=132 (- 12)0ij + 2papty — i) s B0,k =1,2,3. (2.236)

R(p)i;

In terms of these variables, R(u”) = R(n')R(w) is equivalent to

/ /
X
w=H J{’_‘ ;:/"‘u B (active) (2.237)

This can be seen in a simple manner by using the homomorphism between the rotation group
and the group SU(2), of 2 x 2 unitary matrices of unit determinant. The matrix generators



2.9. APPENDIX: GALILEI GROUP 149
of SU(2) are J = —io /2 in terms of o Pauli matrices. In the normal parameterization the
rotation matrix exp(a - J) = exp(—ia - 0/2) is written in the form

R(a) = cos(a/2)] —i(n - o)sin(a/2).
By defining g = ntan(«/2), this rotation matrix is expressed as

1
—(I—ip-0),
Tru?( p-o)

where I is the 2 x 2 unit matrix and in this form we can get the composition law (2.237). '

R(p) = (2.238)

If the rotation is of value 7, then egs. (2.235) or (2.236) lead to
R(TL, 7T)ij = 7(57;]' -+ Qnmj.

Even if the two rotations R(p) and R(p') involved in (2.237) are of value 7, although tan(r/2) = oo,
this expression is defined and gives:

" 1" nxmn
t 2) = ———.
n” tan(a”’ /2) po—"
The absolute value of this relation leads to tan(a”’/2) = tan, i.e., a” = 20, where 6 is the angle

between the two unit vectors  and n’. We obtain the known result that every rotation of value o
around an axis n can be obtained as the composition of two rotations of value 7 around two axes
orthogonal to m and separated by an angle a/2.

Because every transformation of the Galilei group corresponds to a change of reference frame,
it is necessary to consider the rotations from the passive point of view. This amounts, when
compared with the active point of view a simple change of sign in the group parameter. In this
way, the composition of rotations in the passive representation is:

/ /
VN L Ll R .
W= T (passive) (2.239)
For the orientation variables we shall use throughout the book the early Greek variables
a, 3, ... whenever we consider the normal parametrization, while for the tan(a/2) parameter-
ization we will express rotations in terms of the intermediate Greek variables p,v,p,... . In
this last notation, transformation equations (2.231-2.234) should be replaced by

W= ¥ +b, (2.240)

a’ = R()a+v'b+d, (2.241)

v = R(p)v -+, (2.242)
’ o

p' o= HERZR X (2.243)
L—p' p

The neutral element of the Galilei group is (0,0,0,0) and the inverse of every element is
(b,a,v,a)™' = (=b, —R(—a)(a — bv), —R(—a)v, —a).
The generators of the group in the realization (2.229, 2.230) are the differential operators
H=09/ot, P;,=090/0r;, K;=1t9/0r; Ji=ek;rd/or; (2.244)
and the commutation rules of the Galilei Lie algebra are

(J,J]=-J, [J,Pl=-P, [J,K]=-K, [J H =0, (2.245)

'8 D. Hestenes, Space-time algebra, Gordon and Breach, NY (1966).
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[H,P]=0, [H K]=P, [P,P|=0, [K,K]=0, [K,P]=0. (2.246)

All throughout this book, except when explicitly stated, we shall use the following shorthand
notation for commutators of scalar and 3-vector operators, that as usual, are represented by
bold face characters:

[A,B] = C, = [A;, Bj]=¢€1Ch,
[A,B] = C, — [Ai,Bj] = 51'3'0,
[AvB] = C, = [A%B] =G,
[B,A] = C, — [B,Al] = C@',

where 6;; = d;; is Kronecker’s delta and ¢;j; is the completely antisymmetric symbol, so that
Latin indexes match on both sides of commutators.

The group action (2.229)-(2.230) represents the relationship between the coordinates (¢,r)
of a space-time event as measured by the inertial observer O and the corresponding coordinates
(t',7") of the same space-time event as measured by another inertial observer O’. The ten group
parameters have the following meaning. If we consider the event (0,0) measured by O, for
instance the flashing of a light beam from its origin at time ¢t = 0, it takes the values (b, a)
in O’, where b is the time parameter that represents the time translation and a is the space
translation. The parameter v of dimensions of velocity represents the velocity of the origin of
the Cartesian frame of O as measured by O’, and finally the parameters a, or R(cx), represent
the orientation of the Cartesian frame of O as measured by O’. In a certain sense the ten
parameters (b, a,v, a) with dimensions respectively of time, position, velocity and orientation
describe the relative motion of the Cartesian frame of O by O'.

The Galilei group has non-trivial exponents given by

g.) = m Gv?b' to. R(a)a'> . (2.247)

They are characterized by the non-vanishing parameter m.
The central extension of the Galilei group 20 is an 11-parameter group with an additional
generator I which commutes with the other ten,

I,H =[I,P|=[I,K]=I,J] =0, (2.248)

and the remaining commutation relations are the same as above (2.245, 2.246), except the last
one which appears as
[KZ’,PJ'] = —m&jl, or [K,P] = —mI, (2249)

using our shorthand notation, in terms of a non-vanishing parameter m. If we define the
following polynomial operators on the group algebra

1 1
W=IJ-—KxP, U=IH—-_—P? (2.250)
m 2m

U commutes with all generators of the extended Galilei group and W satisfies the commutation
relations:

W, W] =—IW, [JW]=-W, [W,P|=[W,K|=[W,H|=0,

so that W? also commutes with all generators. It turns out that the extended Galilei group has
three functionally independent Casimir operators which, in those representations in which the

19y, Bargmann, On unitary ray representations of continuous groups, Ann. Math. 5, 1 (1954).
20 J.M. Levy-Leblond, Galilei Group and Galilean Invariance, in E.M. Loebl, Group Theory and its applica-
tions, Acad. Press, NY (1971), vol. 2, p. 221.
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operator I becomes the unit operator, for instance in irreducible representations, are interpreted
as the mass, M = ml, the internal energy Hy = H — P%/2m, and the absolute value of the spin
with respect to the center of mass

1 2
S? = (J - —K x P) . (2.251)
m

The spin operator S in those representations in which I = I, satisfy the commutation relations:
[S,S]=-S, [J,S]=-S, [S,P]=[S,H]=IS,K]=0,

i.e., it is an angular momentum operator, transforms like a vector under rotations and is invariant
under space and time translations and under Galilei boosts, respectively.
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2.10 Appendix: Poincaré group

The Poincaré group is the group of transformations of Minkowski’s space-time that leave
invariant the separation between any two close space-time events ds® = Nuvdrtdx” = cAdt? —dr?.
We shall consider the contravariant components z# = (ct,r), and 2/ = gz is expressed as
2" = A*, 2V + a*, in terms of a constant 4 x 4 matrix A and a constant translation four-
vector at = (cb,a). We take for the covariant components of Minkowski’s metric tensor 7, =
diag(1,—1,—1,—1). Then da'" = A*,dz" and ds® = n,,d2""da’"" = n,,dz°dz” implies for the
matrix A

NN N ) = 1o (2.252)

Relations (2.252) represent ten conditions among the 16 components of the matrix A, so that
each matrix depends on six essential parameters, which can be chosen in many ways. Through-
out this book we shall take three of them as the components of the relative velocity v between
inertial observers and the remaining three as the orientation o of their Cartesian frames, ex-
pressed in a suitable parametrization of the rotation group.

Therefore, every element of the Poincaré group P will be represented, as in the previous case
of the Galilei group, by the ten parameters g = (b, a, v, &) and the group action on a space-time
point x = (¢,7) will be interpreted in the same way, i.e., 2’ = gx:

7' = exp(bH) exp(a - P)exp(B- K)exp(a - J)x, (2.253)

as the action of a rotation of value «, followed by a boost or pure Lorentz transformation of
normal parameter 3 and finally a space and time translation of values a and b, respectively. It
is explicitly given on the space-time variables by

t' = ~t+y(v-R(p)r)/c® +b, (2.254)
r = R(u)r+~yvt+~3(v- R(p)r)v/(1+ ) +a. (2.255)

Parameter 3 in (2.253) is the normal parameter for the pure Lorentz transformations, that in
terms of the relative velocity among observers v is expressed as 3/ tanh § = v/c as we shall see
below. The dimensions and domains of the parameters b, @ and p are the same as those of the
Galilei group, and the parameter v € R3, with the upper bound v < ¢, has also dimensions of
velocity. The physical meaning of these ten parameters, that relate any two inertial observers,
is the same as in the Galilei case. The parameter v is the velocity of the origin of the observer
O, as measured by O’, and R(u) represents the orientation of the Cartesian frame O relative
to O’, once O’ is boosted with velocity v. The factor v(v) = (1 — v?/c?)~ /2,

The composition law of the group is obtained from z” = A2’ + ¢’ = A'(Az +a) + o’ that by
identification with 2”7 = A"z + a” reduces to A” = A’A and @’ = AN'a + d, i.e., the composition
law of the Lorentz transformations, that we will find in the next Section 2.10.1, and a Poincaré

transformation (A’,a’) of the four-vector a*. In this parameterization g” = ¢'g, is: 2!

b = b+ R(p)a)/P +V, (2.256)

2
” Y

a = R(p)a++v'b+ W(v/ ‘R(p)a)v' + a’, (2.257)

2
R(p v+~ + (1:7/)2(”/ “R(p)v)o’
v = yoc , (2.258)

V(14" R()v/c?)
" !/ o !/ F / /
L—p p+GO, p, v, )

21 M.Rivas, M.Valle and J.M.Aguirregabiria, Composition law and contractions of the Poincaré group, Eur.
J. Phys. 6, 128 (1986).
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where F(v', p/,v,pu) and G(v', p/, v, u) are the real functions:

/
F(' v, = 28l vxv +o@ - py)+v(v-
CRTSNT (HWHWCQ[ (v )+ (v p)

+ o x (0 xp)+ (v x p) x v +(vp)(v < )

+ (wxp)(v )+ (v xp) x (v x )], (2.260)
GO 0p) = i lo o o (0 ) o (0
- () )+ (oxp) (v x )] (2.261)

The unit element of the group is (0,0,0,0) and the inverse of any arbitrary element
(b7 a’7 U7 ,’l’) is

,}/2

W(’U ca)v), —R(—p)v, —p).

(b,a,v,p) " = (—9b+7v - a/c*, —R(—p)(a — yvb+

The group generators in the realization (2.254, 2.255), and in terms of the normal parameters
(b,a,B, o), are

H = 8/8?57 P, = a/a’ri, K; = Cta/an + (Ti/C)a/at, Ji = Eklirla/am.
Thus, K and J are dimensionless and the commutation relations become
[J7']] = _J7 [J7P] = _P7 [J7K] = _Ka [JvH] = 07 [va] = 07 (2262)

[H,K]=cP, [P,P|=0, [K,K]=J, [K,P|=—HJc. (2.263)

If, as usual, we call 20 = ct, po = H/c, pi =P and K; = Jy; = —J;0 and J, = %EMTJZT,
z, = nwe’, p=0,1,2,3 and 0, = 9/0x", then,

Pu=0u, Ju =—Juu =2,0, —,0,.

In covariant notation the commutation relations appear:

[puapl/] = 07
[Julupa] =  —Nuobv + NvoPus
[J;Wa Jpa] = _T]}Lp‘]llo' - nyaJup + nupJuo + 77;w'=]1/p-

The Poincaré group has two functionally independent Casimir invariants. One is interpreted
as the squared mass of the system,

P'pu = (H/c)* — P? = m?¢, (2.264)

and the other is the square of the Pauli-Lubanski four-vector w*. The Pauli-Lubanski four-
vector is defined as
1

wh = 55W“ pspa=(P-J HI/c— K x P)=(P-S,HS/c), (2.265)

which is by construction orthogonal to p,, i.e., wp, = 0.
It is related to the spin with respect to the center of mass S¢js, defined through the relation

Sev=J—qx P, HScy/c=HJ/c— K x P, (2.266)
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after writing K = Hq/c?> — Pt, so that its time component w® = P- S =P -J = P - Sy is
the helicity of the particle, and the spatial part is the vector (6.45).
The other Casimir operator is thus

whw, = (P-J)* — (HJ Jc — K x P)* = —m*c*S?, (2.267)

where it depends on S2, the absolute value squared of the spin with respect to the CM. We see
in the relativistic case that the two parameters m and S characterize the two Casimir invariants
and therefore they are the intrinsic properties of the elementary particle the formalism provides.
In the quantum case, since the representation must be irreducible S? = s(s + 1)h?, for any
s = 0,1/2,1,..., depending on the value of the quantized spin of the particle, but in the
classical case S? can take any continuous value.

These w# operators satisfy the commutation relations:

[wh, w”] = e Pwgp,, (2.268)
where we take €923 = +1, and
w1 =0,  [Juw, Wo] = —1uoWy + Moy (2.269)
The Poincaré group has no non-trivial exponents, so that gauge functions when restricted to
homogeneous spaces of P vanish.

2.10.1 Lorentz group

The Lorentz group L is the subgroup of the Poincaré group P of transformations of the
form (0,0,v, ), and every Lorentz transformation A(v, ) will be interpreted as A(v, p) =
L(v)R(u), as mentioned before where L(v) is a boost or pure Lorentz transformation and
R(p) a spatial rotation. Expressions (2.258, 2.259) come from A(v”, pu”) = A(v', p')A(v, ).
Expression (2.258) is the relativistic composition of velocities since

L@")R(p") = L(v)R(u)L(v)R(p)
= L) R(p)L(v) R(—p')R(W) R(p),
(
)

but the conjugate of the boost R(p')L(v)R(—p') = L(R(p')v) is another boost and thus

L(v")R(p") = L(v") L(R(k')v) R(1') R(p).

The product L(v')L(R(p')v) = L(v")R(w) where v” is the relativistic composition of the
velocities v’ and R(p')v, and R(w) is the Thomas-Wigner rotation associated to the boosts
L(v') and L(R(p')v).

Therefore, expression (2.258) is equivalent to

L(v") = L(v")L(R(p')v) R(—w), (2.270)
and (2.259) is
R(p") = R(w)R(p')R(ps) = R(P)R(p). (2.271)
The Thomas-Wigner rotation matrix R(w) is:

1L (2 (1=~ V(1=
R(’U))U = 513 + — ( < ; ’U;U;- + g R;kka;‘lvl

1+4"\ 2 \1+~ 1+~

2
29" "7* (v, Ry vr)

/R/
I k”’“)

/
v
+CT(“£R;‘kUk — v Rjpog) +
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and the factor 'R
v v
Matrix R(w) is written in terms of the vector parameter w, which is a function of v’, p’ and

v, given by
F(v',0,R(p)v,0)

= 2.272
YT IV GW,0,R()v,0)’ (2272)
and the parameter ¢, such that R(¢p) = R(w)R(p') is
/ F / / O

1+ G0, p,v,0)"

If any one of the two velocities v or v vanishes, R(w);; = d;;.

The composition law is obtained by the homomorphism between the Lorentz group £ and
the group SL(2,C) of 2 x 2 complex matrices of determinant +1. The Lie algebra of this group
has as generators J = —io/2 and K = o/2, where o; are Pauli spin matrices. A rotation of
angle o around a rotation axis given by the unit vector n is given by the 2 x 2 unitary matrix
exp(a : J)?

R(a) = cos(a/2)op — in - o sin(a/2). (2.274)
In terms of the vector p = tan(a/2)n,
1
R(p) = (2.275)

——= (00 —ip- o),
1+ p?

where o is the 2 X 2 unit matrix. A pure Lorentz transformation of normal parameters 5; is
represented by the hermitian matrix exp(3 - K). This matrix is:

o3
B

In terms of the relative velocity parameters, taking into account the functions cosh 5 = ~(v),
sinh # = yv/c and the trigonometric relations cosh(8/2) = y/(cosh 5+ 1)/2 and tanh(8/2) =
sinh 3/(1 4 cosh 3), the matrix can be written as

L(v) = ﬁ (ao + 1170;}) . (2.277)

Then, every element of SL(2,C) is parametrized by the six real numbers (v, i), and inter-
preted as

L(B) = cosh(B/2)og +

sinh(3/2). (2.276)

A(v,p) = L(v)R(p). (2.278)

We thus see that every 2 x 2 matrix A € SL(2,C) can be written in terms of a complex
four-vector a* and the four Pauli matrices 0,. As A = a*0,, and detA = 1 leads to a*a, =1
or (a%)? — a? = 1. The general form of (2.278) is

_ 147 L ku futuxp
A(v, p) = ] [00<1 21_{_7)4-0' <1+7 zu)}, (2.279)

here the dimensionless vector u = y(v)v/c.

Conversely, since Tr (0,0,) = 20,,,, we obtain a* = (1/2)Tr (Ao,). If we express (2.279) in
the form A(v,u) = a*o, we can determine p and v, and thus w, from the components of the
complex four-vector a* as:

Im (a)
b= g (2.280)
u = 2][Re (a®)Re (a) 4 Im (a®)Im (a) + Re (a) x Im (a)], (2.281)
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where Re (a#) and Im (a*) are the real and imaginary parts of the corresponding components
of the four-vector a*. When Re (a”) = 0 expression (2.280) is defined and represents a rotation
of value 7 along the axis in the direction of vector Im (a).

If we represent every Lorentz transformation in terms of a rotation and a boost, i.e., in the
reverse order, A(v, u) = R(p)L(v), then the general expression of A is the same as (2.279) with
a change of sign in the cross product term uw x p. Therefore, the decomposition is also unique,
the rotation R(p) is the same as before but the Lorentz boost is given in terms of the variables
at by

u=2[Re (a®)Re (a) 4+ Im (a°)Im (@) + Im (a) x Re (a)] .

Note the difference in the third term which is reversed when compared with (2.281).

In the four-dimensional representation of the Lorentz group on Minkowski space-time, a
boost is expressed as L(8) = exp(8 - K) in terms of the dimensionless normal parameters [3;
and the 4 x 4 boost generators K; given by

01 0 O 0 01 0 0O 0 0 1
1 0 0 O 0O 0 0 O 0O 0 0 O
B=togoo0oo0l"™ 1000|0000
0O 0 0 O 0O 0 0 O 1 0 0 O
Ifwecall B=g3-K =), 3K;, we have
0 B1 B2 B3 B2 0 0 0
p_| ™ 0 0 pg2_| 0 BBt BB Pibs
B2 0 0 0|’ 0 BB Pafa (283 |’
Bs 0 0 O 0 pB361 B3B2 B3B3

with 32 = 82 + 55 + 8% and B® = 32B, and so on for the remaining powers of B, so that the
final expression for L(8) = exp(3 - K) is

_ _ 1 1 2 1 3 _ 1 1 2 1 2 1 22

and the addition term by term converges to

c (81/8)S (B2/B)S (B3/B)S
(Bys)s 1+ C - BRe-y PR
(B/B)s  Be-1) 1 BREe-1) B
(Bs/B)s  Be-1  BRe-n 1+ 8Re -

where S = sinh 8 and C' = cosh .

What is the physical interpretation of the normal parameters §;7 Let us assume that
observers O and O’ relate their space-time measurements = and 2’ by 2’ = L(8)" z". Observer
O sends at time ¢t and at a later time ¢ + dt two light signals from a source placed at the origin
of its Cartesian frame. These two signals when measured by O’ take place at points ' and
r’ + dr’ and at instants ¢’ and t' + dt’, respectively. They are related by

cdt’ = Loocdt, da’" = Liyedt

because dx’ = 0. The quotient da;’i/dt’ is just the velocity of the light source v’ i.e., of the origin
of the O frame as measured by observer O’, and then this velocity v* = cLiq/L% = ¢(3;/3)S/C,
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such that the relation between the normal parameters and the relative velocity between observers

Y- P tanh g
c

B

and therefore tanh 8 = v/c. Function cosh 8 = v(v) = (1 — v?/c?)~Y/2 and when the transfor-
mation is expressed in terms of the relative velocity it takes the form of the symmetric matrix:

1S

Y Yz /c ’Y”y/c Y. /c
2 9 2 2
VU 7 Uy 7y VpVy
e/ 1+c§7+1 Z v+l 22z7+1
L(v) = 2 2 2 2 2.282
) yoyfe gt T 1+ 42 T e ( )
¢t vt AT 2 7+1
VzVg '72 VzUy ’72 2

v, 7
wele TEAET @ oa+1 Mt EaET

The inverse transformation L~!(v) = L(—v). The orthogonal 4 x 4 rotation matrix takes the
block form

R(p) = (é fz?u)) : (2.283)

where é(u) is the 3 x 3 orthogonal matrix (2.235). We can also give a matrix representation
to the Lorentz boosts (2.282) in the form

T
y 0T fe
L = 2.284

('U) <’Y’U/C ]13 + (1+’yj)c2fva> ’ ( 8 )

where vT is the row vector transposed of the three-dimensional column vector v, and I3 the

3 x 3 unit matrix. In this way the component of the 3 x 3 matrix, (vvl);; = v;v;. Is easy to
see that in this representation the conjugate transformation

R(p)L(v)R(p) ™" = L(R(p)v).

In fact T
¥ vt /e

R(p)L(v) = (’yR(u)v/C R(p) + ujj)@(R(u)v)vT> ’

and when acting on the right with R(u)~! = R(u)?, we arrive to

< o (R(p)v)" /e
TR(upfe T+ o (R(u)o) (R(w)o)T

When a Lorentz transformation is expressed in the form A(v,u) = L(v)R(p), then by
construction the first column of A(v, ) is just the first column of (2.282) where the velocity
parameters v are defined. Therefore, given the general Lorentz transformation A(v,p), from
its first column we determine the parameters v and thus the complete L(v) can be worked
out. The rotation involved can be easily calculated as L(—v)A(v,u) = R(p). If expressed
in the reverse order A(v, u) = R(p)L(v), then it is the first row of A that coincides with the
first row of (2.282). It turns out that, given any general Lorentz transformation A(v, @), then
A(v,p) = L(v)R(p) = R(p)L(v") with the same rotation in both sides as derived in (2.280)
and L(v') = R(—p)L(v)R(pn) = L(R(—p)v), i.e, the velocity v/ = R(—p)v. In any case, the
decomposition of a general Lorentz transformation as a product of a rotation and a boost is a
unique one, in terms of the same rotation R(u) and a boost to be determined, depending on
the order in which we take these two operations.

Matrix A can be considered as a tetrad (i.e., a set of four orthonormal four-vectors, one
time-like and the other three space-like) attached by observer O’ to the origin of observer O.

) = s
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In fact, if the matrix is considered in the form A(v, u) = L(v)R(p), then the first column of
A is the four-velocity of the origin of the O Cartesian frame and the other three columns are
just the three unit vectors of the O reference frame, rotated with rotation R(u) and afterwards

boosted with L(v).



Chapter 3

Quantization of the models

Quantization of generalized Lagrangian systems will suggest that wave functions for elemen-
tary particles must be squared integrable functions defined on the kinematical space.

We shall use Feynman’s quantization method to show the structure of the wave function and
the way it transforms under the kinematical or symmetry group of the theory. Once the Hilbert
space structure of the state space is determined, this leads to a specific representation of the
generators of the group as self-adjoint operators and the remaining analysis is done within the
usual quantum mechanical context, i.e., by choosing the complete commuting set of operators
to properly determine a set of orthogonal basis vectors of the Hilbert space. Special emphasis
is devoted to the analysis of the different angular momentum operators the formalism supplies.
They have a similar structure to the classical ones, and this will help us to properly obtain the
identification of the spin observables.

The structure of the spin operator depends on the kind of translation invariant kinematical
variables we use to describe the particle, and the way these variables transform under the
rotation group. Since in the Galilei and Poincaré case, as we have seen previously, these variables
are the velocity u and orientation o and they transform in the same way under rotations in both
approaches, then the mathematical structure of the spin as a differential operator is exactly the
same in both relativistic and nonrelativistic formalisms.

In fact the spin operators are related to the compact part of the velocity variable u, i.e.,
its direction given by the two angles, the polar angle 6 and the azimuthal angle ¢, and to the
three variables which characterize the orientation of the cartesian frame linked to the particle,
and therefore they will be differential operators with respect to these five compact, angular
variables.

Half integer spins depend on the kind of the differential operators and on the manifold they
act. If the angular momentum operators act on a two-dimensional manifold, like the surface of
the unit sphere, we do not obtain all representations of the rotation group but only those related
to integer spin. It is necessary that the operators act on the three dimensional manifold of the
whole rotation group, to obtain both integer and half integer representations. This implies that
the classical spin has to depend on the angular variables which describe the classical orientation
of the particle.

As we have seen in the classical description the position of the charge of the particle and
its center of mass are different points, and the spin is related to the rotation and internal
motion (zitterbewegung) of the charge around the center of mass of the particle. The magnetic
properties of the particle are connected only with the motion of the charge and therefore to
the zitterbewegung part of spin. It is this double spin structure that gives rise to the concept
of gyromagnetic ratio when expressing the magnetic moment in terms of the total spin. If the
Lagrangian shows no dependence on the acceleration, the spin is only of rotational nature, and
the position and center of mass position define the same point. Spin 1/2 particles arise if the

159
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corresponding classical model rotates but no half integer spins are obtained for systems with
spin of orbital nature related only to the zitterbewegung. On the manifold spanned by non-
compact variables w no half-integer spins can be found, because the spin operator has the form
of an orbital angular momentum and eigenvectors are but spherical harmonics.

Dirac’s equation will be obtained when quantizing the classical relativistic spinning particles
whose center of charge is circling around its center of mass at the speed c. In that case, the
internal orientation of the electron completely characterizes its Dirac algebra.

3.1 Feynman’s quantization of Lagrangian systems

Let us consider a generalized Lagrangian system as described in previous chapters and whose
evolution is considered on the kinematical space between points ;1 and x».

The variational formulation requieres to know the boundary states, and the particular so-
lution of the Euler-Lagrange equations passing through them, singles out the evolution of the
particle. However, from the experimental point of view it is impossible to get a precise determi-
nation of these boundary states, because any measurement means to interact with the particle,
and when we measure some property other properties become distorted, and their uncertainty
increases. This means that we do not know accurately the values of the point x;, but some
average values around z1, with a certain probability. The same happens with respect to s,
so that finding the path described by the particle is equivalent to determine among all paths
coming from a region R around z; to the region Ry around x3. What we have is a kind of thick
tube of paths, linking both regions, so that to determine a unique trajectory like in the classical
description, is mathematically impossible. We have to replace the variational formulation by
a theory which predicts the probability that a mechanical system starting from a region R; in
kinematical space, reaches the region Ro.

For quantizing these generalized Lagrangian systems we shall follow Feynman’s path integral
method !. The Quantization Principle is introduced in Feynman’s approach by the condition
that if no measurement is performed to determine the trajectory followed by the system from
x1 to xo, then all paths x(7) are allowed with the same probability. Therefore a probability
definition P[z(7)], must be given for every path. The variational formalism does not longer
works and it is substituted by a quantization principle which considers that all paths have the
same probability.

The probability associated to each possible path P[z(7)], is calculated in terms of a complex
number ¢[x(7)], associated to every path, and called the probability amplitude, such that

Plz(r)] = [¢[z(r)]]?, Va(r), 0<Pla(r)] <1

Since all paths have the same probability all probability amplitudes are complex numbers of the
same absolute value and they only have a different phase. Thus, to every possible trajectory
followed by the system, z(7) in X space, Feynman associates a complex number ¢[z(7)] called
the probability amplitude of this alternative, given by

ole(r)] = N exp {; / L(z(r), g;«(T))dT} _ Nexp {;} Ay (o1, m)} , (3.1)

1

where N is a normalization factor, the same for all paths, and where the phase of this complex
number in units of & is the classical action of the system Ap,(x1,72) along the corresponding
path z(7). Once we perform the integration along the path, this probability amplitude becomes
clearly a complex function of the initial and final points in X space, x1 and x2, respectively.

! R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, MacGraw Hill, NY (1965), p. 36.



3.1. FEYNMAN’S QUANTIZATION OF LAGRANGIAN SYSTEMS 161

In this Feynman statistical procedure, the probability amplitude of the occurrence of any
alternative of a set of independent alternatives is the sum of the corresponding probability
amplitudes of the different independent events. The probability of the whole process is the
square of the absolute value of the total probability amplitude. This produces the effect that
the probability of the whole process can be less than the probability of any single alternative of
the set. This is what Feynman calls interfering statistics.

The idea that underlies in Feynman’s quantization method is the two slit interfering process. We
have a monochromatic light beam impinging on a two slit pannel. It difracts and arrives to a screen.
At every point of the screen arrive photons coming from both slits. However there are points on
the screen where no photons arrive. In those points some interference has been produced.

As an electromagnetic wave we can think that along the light ray there is a transversal orthogonal
plane which contains the electric and magnetic field of the wave. Let us assume that the light
corresponds to circularly polarized light. The electric field is rotating with constant angular velocity
w. When the wave travels the phase of this field is changing, but not its intensity. We can also
imagine that this transversal plane represents a complex plane and that the electric field corresponds
to the complex number ¢[z(7)], of constant absolute value and whose phase is changing along the
trajectory. If at a point on the screen two photons arrive, each one coming from a different slit, the
electric field at that point will be the sum of the corresponing electric fields, but the energy willl
be the squared of the intensity of this field. The probability of arrival of the light at that point is
the squared of the sum of the amplitudes E1 + Es, i.e., |¢[z1(7)] + ¢[z2(7)]|>. There are points
on the screen where photons arrive coming from one of the slits, but when consider the effect of
both slits the resultant electric field is zero. We do not add the probablities of arrival but rather
the probability amplitudes.

If we extend this idea to an arbitrary system we can imagine that at every point of the
evolution of the mechanical system on the kinematical space we associate a complex plane
where we depict the amplitude ¢[z(7)], like in the figure 3.1,

T2

¢ [(7) ]

z(7)

Ty

Figure 3.1: Trajectory of the mechanical system on its kinematical space where we have
depicted a transversal complex plane at the point z(7), where we represent the probability
amplitude ¢[z(7)]. The phase a of this complex number is the action of the mechanical
system, in units of 7, along that trajectory up to this point.

Then, the total probability amplitude that the system arrives at point s coming from x1,
i.e., Feynman’s kernel K (z1,22), is obtained as the sum or integration over all paths, of terms
of the form of Eq. (3.1). Feynman writes this probability amplitude as

Koo = | (D (r)),
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where D(x(7)) represents a measure over the kind of paths z(7) going from z1 to xs.

Feynman’s kernel K(z1,z2), will be in general a function, or more precisely a distribution,
on the X x X manifold. If information concerning the initial point is lost, and the final point
is left arbitrary, say x, the kernel reduces to the probability amplitude for finding the system at
point x, i.e., the usual interpretation of the quantum mechanical wave function ®(x). By the
above discussion we see that the wave functions must be complex functions of the kinematical
variables but not of other kind of variables. The Hilbert space of pure states is the vector space
L2(X) of squared integrable complex functions on the kinematical space.

We thus see that Feynman’s quantization method enhances the role of the kinematical
variables to describe the quantum state of an arbitrary system, in spite of the independent
degrees of freedom. We consider that this is one of the reasons why the kinematical variables
have to play a leading role also in the classical approach.

We are used to consider in quantum mechanics, instead of a single function ®(x), multicom-
ponent wave functions, i.e, a set of linearly independent functions v; (¢, r) defined on space-time
and labeled with a discrete subindex that runs over a finite range, such that it can be consid-
ered as a vector valued function in a finite dimensional complex vector space. In general this
finite space carries some irreducible representation of the rotation group and each component
1; represents a definite spin state of the system. Nevertheless, our wave function ®(x) depends
on more variables than space-time variables. Once we define later the complete commuting set
of observables to obtain, in terms of their simultaneous eigenvectors, an orthonormal basis for
the Hilbert space of states, we shall find that ®(z) can be separated in two parts. One part
¢(t,r) depending on space-time variables and another part y that depends on the remaining
compact translation invariant kinematical variables, that in our case will reduce to the velocity
u and orientation «. It is this possible separation of our wave function that will produce the
emergence of the different components of the usual formalism.

3.1.1 Transformation of the wave function

To see how the wave function transforms between inertial observers, and therefore to obtain
its transformation under the kinematical groups, let us consider that O and O are two inertial
observers related by means of a transformation g € G, such that the kinematical variables
transform as:

2" = fi(z,g). (3.2)

If observer O considers that the system follows the path Z(7), then it follows for O’ the
path Z'(1) = f(Z(7),g) and because the action along classical paths transforms according to
Eq. (1.13), the probability amplitude for observer O’ is just

T2

oo =New{; [" L@@, #ar}

1

:Nexp{;/Tm L@(T),f?(f))dT} exp{;/TTQ da(g;f(ﬂ)m},

1 1
ie.,
_ _ i
10 (1)] = ola()] exp { § (algiz) - algn) |
where the last phase factor is independent of the integration path. If we add all probability
amplitudes of this form, it turns out that Feynman’s kernel transforms as:

K(ah) = Ko, az)exp { 3 (algiaz) — agion) }. 33)
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If information concerning the initial point x; is lost, the wave function transforms as the part
related to the variables z2, up to an arbitrary function on G,

7

¥(o!(0) = '(g0) = By exp { 1 (algz) +0(a)) }. (3.4

or in terms of unprimed x variables

d'(x) = ®(g 1x)exp {; (a(g;g_lx) + 9(9))} , (3.5)

where 6(g) is some function defined on G but independent of x.

Since our system is somewhere in X space, the probability of finding the system anywhere is
1. Then we have to define the way of adding probabilities at different points x € X. If we define
a measure on X, u(z), such that du(z) is the volume element in X space and |®(z)|?du(z) is
interpreted as the probability of finding the system inside the volume element du(x) around
point z, the probability of finding it anywhere in X must be unity, so that

[ @)t = 1. (3.6)
X

Since from (3.5)
|9 (a")* = |@(2)[, (3.7)

it is sufficient for the conservation of probability to assume that the measure to be defined p(z) is
group invariant. In that case, equation (3.7) implies also that inertial observers measure locally
the same probability. This will have strong consequences about the possibility of invariance of
the formalism under arbitrary changes of phase of the wave function. But the phase can be
changed in a different manner at different points . We can use this fact to further impose the
local gauge invariance of the theory. It must be remarked that this arbitrary change of phase
B(x) is not only a phase on space-time, but rather on the whole kinematical space of the system
and this enlarges the possibilities of analyzing different transformation groups that can be more
general than the original kinematical groups, because they act on a larger manifold.

3.1.2 Hilbert space structure of the probability amplitudes

The complex function ®(z), if interpreted as the probability amplitude for finding the system
around the point € X, coming from anywhere, satisfies (3.6). It means that ®(z) is a complex,
squared integrable function defined on the kinematical space. Because probability amplitudes
add to form new probability amplitudes when properly normalized, the set of possible functions
®(x) forms a complex vector space, because we can add and multiply them by arbitray complex
numbers to produce new complex functions which will describe new probability amplitudes.

Consequently, the Hilbert space H whose unit rays represent the pure states of the system
is the space of squared-integrable functions L?(X, 1) defined on the kinematical space X, u(x)
being an invariant measure such that the scalar product on H is defined as

< QU >= /X<I>*(:1;)\I/(af)du(:1;), (3.8)

®*(z) being the complex conjugate function of ®(x). There is an arbitrariness in the election
of the invariant measure p(x) but this will be guided by physical arguments. Nevertheless, the
invariance condition will restrict the possible measures to be used.

The absolute value of the above (3.8) | < ®|¥ > | represents the probability that preparing
the system in the state given by W¥(x) we find the system in the state ®(z), and conversely,
because | < ®|U > | = | < U|D > |.
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3.1.3 Representation of Observables

Wigner’s theorem 23, implies that to every symmetry g € G of a continuous group, there

exists a one to one mapping of unit rays into unit rays that is induced on H by a unitary
operator U(g) defined up to a phase that maps a wave function defined on x into an arbitrary
wave function of the image unit ray in 2’. The Relativity Principle is a strong symmetry of
physical systems that defines the equivalence between the set of inertial observers whose space-
time measurements are related by means of a transformation of a kinematical group G. Now, if
we interpret ®(z) as the wave function that describes the state of the system for the observer
O and @'(z) for O', then we have

Ul9)0(a) = '(a) = 0lg~ e exp { algsa™a) +6(0) | 5.9)

Since the 6(g) function gives rise to a constant phase we can neglect it and take as the
definition of the unitary representation of the group G on the Hilbert space #, the following

' (z) = U(g)®(x) = ®(g~ x)exp {;a(g;g_lx)} : (3.10)

Gauge functions satisfy (1.15), and therefore the phase term can be replaced by

algig'w) = —algh2) + a(0;2) + €(g,97") = —alg @) + ((9), (3.11)

because gauge functions can always be chosen such that a(0;x) = 0 and the group function
((g) = &(g,97 1) giving rise also to a constant phase, can be suppressed. We thus define the
transformation of the wave function by

1

' (x) = U(g)®(x) = (g 'x)exp {—hoz(gl;;c)} : (3.12)

If the unitary operator is represented in terms of the corresponding self-adjoint generators of
the Lie algebra in the form

Ulg) = exp{;g"Xa}, (3.13)

then, for an infinitesimal transformation of parameters dg° its inverse transformation has in-
finitesimal parameters —d¢g°, we obtain at first order in dg°

U00)8(0) = (1 07X, ) 0a) = 0la) = 10" X, ().

while
0®(x

oxt ’

~—

O(dg~'a) = ©(f(w,097")) = ®(x) — 597 ug(z)

and , .
exp {—;a(dg_l;x)} =1- %a(ég_l;x).

But because «(0;z) = 0,
_ da(g; )

a(bg " 2) 997

(_690)7
g=0

2 E.P. Wigner, Group theory and its application to the quantum mechanics of atomic spectra, Acad. Press,
NY (1959).
3 V. Bargmann, .J. Math. Phys. 5, 862 (1964).
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and the substitution of the above terms in (3.12) and further identification of the first order
terms in dg% imply that the self-adjoint operators X, when acting on the wave functions have
the differential representation

X, = ;u{,(g;) 507~ Me(@); (3.14)
where .
) = @y 2 falee)) (3.15)
dg° g=0 dg° g=0
If we restrict ourselves to transformations of the enlarged configuration space (¢, ¢;) that
can be extended to the whole kinematical space z = (¢,q;, .. .,qgkfl)), then, using the same

notation as in (1.18)-(1.21), if the infinitesimal transformation is of the form

t =t + Mow6g®, ¢ = gi + Migdg®, ....q ¥ = g* " 4 MEVsg7,

10

these generators take the form

_h 0 ' 0 (k-1) O
X, == (Mog 9 + M;, 90 +... 4+ M 8q(k1)> Ao (). (3.16)

{
3
When compared with the Noether constants of the motion (1.36) written in the form
~Ny = —H Mo + plyp ) M = Mo (a), (3.17)

we see a certain kind of ‘correspondence recipe’. When restricted to kinematical groups,
the functions A, (x) of (1.36), are obtained from the Lagrangian gauge functions a(g;z), by
(1.14), which is exactly the same derivation as the functions A,(z) above in (3.15). Now, by
identifying the different classical observables and generalized momenta that appear in (3.17)

with the corresponding differential operators of (3.16) that multiply the corresponding MZ.(US)

function, we get: the generalized Hamiltonian H = pés)qgs) — L, is multiplied in (3.17) by the
function My, is identified with the operator ihd/0t which is also in front of the function M, in

(3.16), and similarly, the generalized momentum pé s+1)) the factor that multiplies the function

Mi(j), with the differential operator —iha/aql(s), fors=0,...,k—1.
Recipe: Remember that pés +1) and qgs) are canonical conjugate variables. Then, each gen-

eralized momentum pzs +1) is replaced by (h/7) times the differential operator that differentiates
(s)

with respect to its conjugate generalized coordinate ¢;”” and the generalized Hamiltonian H by

the differential operator ihd/0t.

. h 0 0
7 .
p(s-i—l) — ;@, H— 'Lha
(2
In the case of elementary particles, the kinematical variables are ¢, r,u, p, the generalized vari-
ables we have r,u and p and the corresponding conjugate momenta are p, = P, p, = U and
p, =V, and H the Hamiltonian, these will be given by the differential operators

_ho gy ho oy ho 0

“iar Uiaw Voiop oy (319

P %

Instead of the momentum V = 9L /0p, we have used the function W = oL /Ow, which produces
the part of the spin related to the rotation of the particle, which will be described as a differential
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operator with respect to the orientation variables p, in the form which is described in the
appendix about general spinors 3.5, at the end of this chapter. This takes the form

h
W= %{vp"’PXVp*‘P(P'Vp)}, (3.19)

where V, = 0/0p. This representation of the momenta (3.18) is valid even when the particle
is under any interaction, because its mathematical structure depends only on the kinematical
variables.

We know that V; = OL/dp; and W; = OL/0w; = OL/dp; 8pi/dw; = Vidpi/Ow;. Since in the
passive representation of rotations

2
14 p?

. . . 1
wi = (B + €igrpipr),  pi = 5 (wi = emjprw; + pi(p - w)),

0pi 1 api h (0 0 0
= = (0ij — €inj iPj) =V =—| iikPi ipi=— |,
Ow; 2( i — €kipr + pips), W ;2 (ap]’ + €jikp apn +pip 8/77;)

i.e.,(3.19).

The Heisenberg representation is that representation in which the time dependence has been
withdrawn from the wave function by means of a time dependent unitary transformation. Then
the wave function in this representation depends on the kinematical variables with the time

(r)

excluded, i.e., it depends only on the generalized coordinates g; *. Therefore, when acting on

the wave function in the Heisenberg representation w(qi,qgl), e ,qgkfl)), the observables qzm

and pgs) satisfy the canonical commutation relations

0" 9l 1)) = ih8]07.

If the functions A\, () in (3.14) vanish, the X, generators satisfy the commutation relations of
the group G. But if some A\, (z) # 0 the X, generators do not satisfy in general the commutation
relations of the initial group G, but rather the commutation relations of a central extension of
G. The group representation on the Hilbert space is not a true representation but a projective
representation of G' as shown by Bargmann 4.

In fact, from (3.10) we get

U(g0)0(x) = 095 ) exp{ralorigr o)),

acting now on the left with U(g2),
_ i _
U(g2)U(91)®(x) = Ulg2)®(g1 ' @) exp{z g1 97 ')}

= ((g201)"2) exp{ 3l 05 ')} explyalon; (g20) ) (3.20)

while acting on ®(z) with U(g291),

U(g291)®(x) = ®((g2g1) ') exp{%a(gagls (g291) ")} (3.21)

lg = gflgglx = z, then g12 = 92_1:U and because gauge functions satisfy

If we define (g2g1)~
(1.15), we write

a(ge; 912) + a(g1;2) = a(ge91; 2) + (92, 91), (3.22)

* V. Bargmann, Ann. Math. 59, 1 (1954).
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and by comparing (3.20) with (3.21), taking into account (3.22), we obtain

U(92)U(91)8(2) = Ulg200) () exp 1 €(92:91)}- (323)

Since ®(x) is arbitrary, we have a projective unitary representation of the group G characterized
by the non-trivial exponent £(g, ¢’).

For both Galilei and Poincaré particles the kinematical space is the ten-dimensional manifold
spanned by the variables (¢, 7, u, «), t being the time, r the charge position, u the velocity and
« the orientation of the particle. Thus in the quantum formalism the wave function of the most
general elementary particle is a squared-integrable function ®(¢, 7, u, ) of these kinematical
variables. For point particles, the kinematical space is just the four-dimensional space-time, so
that wave functions are only functions of time and position, but spinning particles will have to
depend on the additional variables like velocity and orientation. The spin structure will thus
be related to these additional compact variables.

3.2 Nonrelativistic spinning particles

3.2.1 Nonrelativistic spinning particles. Bosons

Now let us apply the formalism to the most interesting case of spinning particles. Let us
consider next Galilei particles with (anti)orbital spin. This corresponds for example to particles
whose kinematical variables are time, position and velocity. A particular classical example is
given in Chapter 2, Section 2.2 by the free Lagrangian

pom (A m (du)® (3.24)
2 \dt 2w\ dt )’ '

with w = dr/dt. For the free particle, the center of mass ¢ = r — k has a straight motion while

the relative position vector k follows an elliptic trajectory with frequency w around its center

of mass. The spin with respect to the center of mass is expressed as Scy = —mk x dk/dt.
The kinematical variables transform under G in the form

t'(r) = t(r)+0, (3.25)
(1) = R(a)r(r)+vt(r) + a, (3.26)
v (1) = R(a)u(r)+w. (3.27)

The wave functions are complex functions on X and thus functions of the variables (¢, r,u). On
this kinematical space the gauge function is the same as in (2.41), where m defines the mass of
the particle. Taking into account the correspondence recipe for the Hamiltonian H — ihd/0t,
the first generalized momentum p, = P — —iAV and the other generalized momentum p, =
U — —ihV,, the generators of the projective representation are given by

H:ihg, Pzijv, K:mr—tEV—EVU, (3.28)
ot 7 7 7
h h
J:rxgv+uxzvu:L+Z, (3.29)

where V is the gradient operator with respect to the r variables and V,, the gradient operator
with respect to the u variables. It is important to stress that this representation of the generators
is independent of the particular Lagrangian that describes the particle. It depends only on
the kinematical variables (¢,7,u) and the usual Galilei gauge function. We write the symbol
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Z = u x U for the angular momentum with respect to the center of charge, related to the
Zitterbewegung motion of the particle and we shall see that quantizes with integer values.
If we define ¢ = r — k = (K + Pt)/m, it satisfies the commutation relations with P,

[¢i, Pj] = ihd;j,

which are the canonical commutation relations between the linear momentum and position for
a point particle and therefore these canonical commutation relations between the total linear
momentum and the center of mass position for a spinning particle are already contained in
the commutation relations of the extended Lie algebra of the kinematical group. Therefore the
quantum mechanical operator

h
g=1r——V, (3.30)
im

can be interpreted as the center of mass position operator. Discussion of other possibilities for
the center of mass position operator can be found in the book by the author.

In this representation, one Casimir operator is the internal energy H — P> /2m. We see that
the spin operator with respect to the center of mass is defined as usual

h h

1
SCM:J——KXP:uxU+k><P:u><EVU+ Vu X =V,
m i i

im
which is written in terms of two non-commuting terms. It satisfies

[Scm, Scm| =ihScm, [J,Scm) =ihScm, [Scm, P) = [Scm, Hl = [Scm, K] =0,

i.e., it is an angular momentum operator, transforms like a vector under rotations and is invariant
under space and time translations and under Galilei boosts, respectively. The second part of
the spin operator is of order h? so that it produces a very small correction to the first Z part.

The angular momentum operators Z, or spin with respect to the center of charge, satisfy
the commutation relations

(Z,Z) =ihZ, |J,Z|=ihZ, [Z,P)=[Z H|=0,

[Z, K] = —ihU = —h*V,,

i.e., Z is an angular momentum operator, transforms like a vector under rotations and is
invariant under space and time translations but not under Galilei boosts. It is usually considered
as the quantum mechanical spin operator, because commutes with H and P.

We see however, that the angular momentum operator J is split into two commuting terms
r X P and Z. They both commute with H, but the first one is not invariant under space
translations. The Z operators are angular momentum operators that only differentiate the
wave function with respect to the velocity variables, and consequently commute with H and
P, and although it is not the true Galilei invariant spin operator, we can find simultaneous
eigenstates of the three commuting operators H — P?/2m, Z? and Z3. Because the Z operators
only affect the wave function in its dependence on w variables, we can choose functions with
the variables separated in the form ®(¢,r,u) = >, ¢;(t,r)x;(u) so that

(H — P?/2m);(t,7) = Ey(t, ), (3.31)
Z%xi(u) = z(z + D2y (u), (3.32)
Zzxi(u) = mzhixi(w). (3.33)

The space-time dependent wave function v;(t, 7), satisfies Schroedinger’s equation and is un-
coupled with the spin part x(u).
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Due to the structure of Z? in terms of the w variables, which is that of an orbital angular
momentum, the spin part of the wave function is of the form

x(u) = f(u)Y;"(0, ), (3.34)

f(u) being an arbitrary function of the modulus of w and Y, (0, ¢) the spherical harmonics on
the direction of w.

For the center of mass observer, S = Z and both angular momentum operators are the same.
But for an arbitrary observer, Z operators do not commute with the boosts generators so that
its absolute value is not Galilei invariant, while S is. But the splitting of the wave function into
a multiple-component function that reflects its spin structure is an intrinsic property that can
be done in any frame.

It turns out that if for a free particle Z is not conserved, r x P is not the conserved orbital
angular momentum, because r does not represent the position of the center of mass of the
particle.

When there is an interaction with an external electromagnetic field, equation (3.31) is sat-
isfied for the mechanical parts H,,, = H — e¢ and P,, = P — eA and we thus obtain the usual
equation
(P —eA)?

2m

(H —ep— ) Wit r) = By(t,r). (3.35)

This formalism, when the classical spin is of orbital nature, does not lead to half integer
spin values, and therefore, from the quantum mechanical point of view these particles can be
used only as models for representing bosons.

3.2.2 Nonrelativistic spinning particles. Fermions

Other examples of nonrelativistic spinning particles are those which have orientation and
thus angular velocity. For instance, if X = G/R2, R3 being the subgroup {R3, +} of pure
Galilei transformations, then the kinematical space is spanned by the variables (¢,7, ). This
corresponds for instance to the Lagrangian system described by

dr\* I
L= % (d:> + 5 (3.36)

The particle travels freely at constant velocity while it rotates with constant angular velocity
w. The classical spin is just S = Iw, and the center of charge and center of mass represent the
same point.

To describe orientation we can think of the three orthogonal unit vectors e;, i = 1,2,3
linked to the body, similarly as in a rigid rotator. If initially they are taken parallel to the
spatial Cartesian axis of the laboratory inertial frame, then their nine components considered
by columns define an orthogonal rotation matrix R;;(c) that describes the triad evolution with
the initial condition R;;(t = 0) = d;;.

Now, kinematical variables ¢, r and p transform under G in the form

t'(r) = t(r)+Dd, (3.37)
(1) = R(a)r(t)+vt(r)+a, (3.38)

On the corresponding Hilbert space, the Galilei generators are given by:

H:ihg, P:EV, K:mr—ti—,iv, (3.40)
ot 7 )
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h h
J=-rxV+ oVt pxV,tplp-Vy)} =L+ W, (3.41)

V, being the gradient operator with respect to the p variables and in the p parameterization
of the rotation group.

The W part comes from the general group analysis. The group generators in this parametriza-
tion X; will be obtained from (3.39) and according to (1.48) and (1.50). They are obtained

as k
_(9r

that can be written in vector notation as

0
—,
p=0 %

X=V,+pxV,+p(p-V,)
They satisfy the commutation relations
(Xi, Xi] = =260 X)

and therefore the operators Wy = %Xk, or in vector notation

h
W= Z{vp‘f'l’x Vo+pp-Vp)}, (3.42)
will satisfy the angular momentum commutation relations
(W, W] =ihW. (3.43)

In this way since L and W commute among each other, we also get [J, J] = ihJ.

In this example the center of mass and center of charge are the same point, L = r x P is
the orbital angular momentum associated to the center of mass motion and W = S is the spin
operator with respect to the CM. The spin operator commutes with H, P and K and the wave
function can be separated as ®(t,r, p) = >, ¥;(t,7)x:i(p) leading to the equations

(H — P?/2m)y;(t,r) = E;(t,r), (3.44)
S*xi(p) = s(s + DI xa(p), (3.45)
S3xi(p) = mshxi(p)- (3.46)

Bopp and Haag ° succeeded in finding s = 1/2 solutions for the system of equations (3.45)
and (3.46). They are called Wigner’s functions 6. Solutions of (3.45) for arbitrary spin s are
but a linear combination of the matrix elements of a (25 + 1) x (2s 4+ 1) irreducible matrix
representation of the rotation group as can be derived from the Peter-Weyl theorem on finite
representations of compact groups %9 We shall deal with the s = 1/2 functions in the
Appendix Section 3.5, where explicit expressions and a short introduction to the Peter-Weyl
theorem, will be given.

To describe fermions, the classical particles must necessarily have compact orientation vari-
ables as kinematical variables, otherwise no spin 1/2 values can be obtained when the classical
spin is related only to the zitterbewegung.

5 F. Bopp and R. Haag, Z. Naturforschg. 5a, 644 (1950).

5 L.C. Biedenharn and J.D. Louck, Angular Momentum in Quantum Physics. Theory and Application,
Cambridge U. P., Cambridge, England (1989).

7 A.R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton U. P., Princeton NJ (1957).

8 N. Ja. Vilenkin, Fonctions spéciales et Théorie de la représentation des groups, Dunod, Paris (1969).

® A.O. Barut and R. Raczka, Theory of group representations and applications, PWN, Warszawa, (1980).
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3.3 Photon quantization

If we take axis OZ as the trajectory of the photon, the kinematical variables reduce to
(t,z,a), where « is the orientation of a Cartesian frame with one of the axis along OZ and «
represents the rotated angle of this local frame while moving along OZ. The Lagrangian which
describes a classical photon of spin S and helicity € = 41, is described in section 2.5.1,

L= 652.
ct
The Noether cosntants of the motions are
oL oL oL
H:—Ezes’w, Pz:£:eSw/c:eSk‘, SZ:%ZES,

with w = da/dt is the angular velocity of the local frame, and k = w/c the wave number. For
the photon ew > 0 and ew < 0 for the antiphoton. In this way H > 0 and P, > 0 for the photon
and negative for the antiphoton. According to Planck this particle represents a quantum of
electromagnetic energy of value hv, where v is the frequency of the radiation. If we identify
with the angular frequency of the particle, this implies that H = S27v = hv, and therefore the
value S = A. From the quantum point of view the spin S, can only take the integer values %A,
and the particle represents a boson. If the spin were different than that value, the energy of the
photon will not be hw = hv. To single out a unique solution between the extremal values of the
kinematical variables is not sufficient to fix t1, 21, @1 with 0 < a7 < 27 and the same kind of
values at 2. We also need to give the complete number of turns n rotated by the particle, such
that the final phase will be expressed as 2mn 4 aa, con 0 < ag < 27. In this way
_ 2mn + a2 — o

SRR — 21 = cts — t).
w t2—t1 ) zZ2 <1 C(2 ]-)

In the quantum case, the selfadjoint generators of translations and rotations are

0 0 0
H=ih—, P,=—ith—, S,=—ih—.
ot ? a2 ? o
The wave function which describes the states of the photon will be a squared integrable function
¥(t, z, ), which is an eigenvector of these three commuting generators. We can take the solution

in separate variables
U(t, z,0) = e~ Wleihgicd — oxp(—ie(wt — kz — a)),

which is an eigenvector with the corresponding eigenvalues. This corresponds with the descrip-
tion given in (3.48) once the two spin sates have been replaced by the two component column
vector. The identification of these two polarization states corresponds to

(76 N 1 —ix . 0
e O,e E

In this basis the representation of the spin operator is reduced to

1 0
sl ).

These two basic states correspond to photons of circularly polarized light, left and right, re-
spectively. If we include the eigenstates of the antiphoton then the vector state will be a four
column vector.
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In this way any polarized photon will be a linear combination

itz = ()P o =1
and it looks like a plane wave, travelling along the positive direction of the axis OZ. The action

funtion between the initial and final states, takes the form

(22 — z1) (27N + g — 1)
C(tQ — tl)

A(xq1,x9) = €h = eh(2mn 4+ ag — o) = ehw(ty — t1),
if we consider that (22 — 21)/(t2 — t1) = ¢. In units of A this function is the phase of the wave
function, or state of the photon, according to Feynman.

Since the values of the observables H, P, and S, are defined accurately because they are
eigenfunctions of all of them, the corresponding conjugate variables have a great uncertainty.
In fact, since the commutators are [t, H] = —ih, [z, P,] = ih, |« S;] = ih, this implies that

AIAH > [t H)| =h, A:AP. > |2 PJ| =h  AaAS. > [, 5. = h

which means that we cannot locate exactly the photon and its phase is unobservable.
The measure to define the scalar product at constant ¢ can be

1 22 2mn+as
< Plop >= / / V¥ dzdo,
21 aq

(z2 — 21) (2N + 2 — 1)

extended to the whole range of the kinematical variables during this evolution. Therefore, the
expected value of the position operator in any one of these states is

1 22 2mn+as 1
<z >=< Y|zl >= / / zdzda = =(z1 + 22),
12 (22 —21)2mn+ a2 —a1) Jyy Joy 2( )

i.e., the middle point z of the trajectory, and its uncertainty

1 1 1
(Az)? =< (z— < 2 >)? >= g(z% + 2120 + 23) — 1(21 + 20)% = ﬁ(zQ —z1)2
The uncertainty Az = (22 — 21)/3.46, and therefore the probability of finding the photon in the
range z + Az, is of 68%.
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3.4 Appendix: Light polarization states

The internal part of the wave function which describes the spin states of the photon is a two-
dimensional complex Hilbert space C2. Therefore any pure state is described by a vector |® >¢€
C? of unit norm, < ®|® >= 1. Non pure states, or statistical mixtures, will be characterized by
density operators p, i.e., selfadjoint operators of unit trace. They will be represented as 2 x 2
hermitian matrices of unit trace.

The set of hermitian matrices 2 x 2 is a real four-dimensional vector space, and a basis of
this vector space can be given by the four linearly independent hermitian matrices:

10 0 1 0 —i 1 0
UO:(O 1>’ 01:(1 0)’ Uz:(i 0>’ ”3:<0 1) (3-47)

and every hermitian matrix can be expressed in the form p = a*o0, with a* € R, four real
numbers. The condition that p represents some state is that its trace is 1, which leads to
a’ = 1/2. If p is a pure state, also called a vector state, then p = |® >< ®| in terms of the
vector |® >, and it results a projection operator. Pure states are characterized by the condition
p? = p, and thus Trp? = Trp = 1, while for any arbitrary state Trp? < Trp = 1.

This condition, taking into account that Tro,o, = 20,,, leads to 2((10)2 +2a® < 1, and
since a® = 1/2, a® < 1/4, and we can characterize any state by a real three-dimensional vector
a, of absolute value |a| < 1/2, being 1/2 in the case of a pure state. The set of states of light
will be given by the points of a sphere in R? of radius 1/2, sometimes called the Poincaré
sphere, where the points on its surface represent the pure or vector states, while the points
of the interior represent the mixture states. The set of all states is a convex set such that any
state can be described as a convex linear combination of pure states.

This kind of description is completely general for quantum systems with two basic internal
states. In this case it describes polarized photons whose Hilbert space of states can be realized
as L?(R3) ® C2, where the two possible states of polarization are described by the part C? of
this Hilbert space. Let us assume that at time ¢ we have the vector |¥ >:

> = (g) exp(i(kz — wt)) (3.48)

where o and 3 are two complex numbers such that |a|? + 8|2 = 1. It is an eigenvector of
the operator H = ihd/0t with eigenvalue fiw, and of the operator P = —iiV with eigenvalue
(0,0, hk). If we write a = aexp(id,) and = bexp(idy) and represent the state with the phase
of the first component real, then

0> = <g> exp(i(kz — wt)) = (b;5> exp(i(kz — wt + 6,)) (3.49)

where 6 = 0, — 4, .
The projection operator on this state is |¥ >< W¥| given by:

a®  abe a®+a® al —ia?
¥ >< U] = (abeié b2 ) = (al Lia?  ad — & > (3.50)
and the four-vector related to it is:
[(a® + b%)/2, abcos 6, absin b, (a® — %) /2], 2a" = a® + b* = 1. (3.51)

In terms of the three-dimensional vector a, the different pure states are the points of the surface
of the sphere of radius 1/2 of the figure, while mixed states are points of the interior.
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Figure 3.2: The Poincaré sphere represents the different states of polarization of light. The
surface of the sphere represents the pure states or vector states, while the inner points
represent mixture states characterized by density operators p. The sphere is a convex set.

. 1 . : —
In particular the orthogonal states <O> and <(1)) give rise to the projection operators

(1) 8 and 8 (1) described respectively by the vectors @ And —a. The vector a =
(0,0,1/2), is the North pole and the vector —a = (0,0, —1/2) is the South pole of the sphere.
If E, and Ej} are two projection operators characterized by the vectors a and b, respectively
and they represent orthogonal states, then E,FE, = 0. In terms of Pauli matrices E,Ep =
atb’o,0, = 0, and taking the trace of this, taking into account that a® = b0 = 1/2, we get
(1/4+a-b) =0, and since a and b are of modulus 1/2, the solution is @ = —b. Orthogonal
pure states are represented by opposite points on the surface of the sphere. Taking by pairs
they characterize every possible ortonormal basis of C?. This means that every pure state is
expressed as a coherent superposition of any of these two orthogonal states and any other state
as a linear convex combination of pure states.

3.4.1 Stokes’ parameters

The above description of the polarization states in terms of the four-vector a# is equivalent
to the description made by Stokes (1852). If we have an elliptic polarized wave where the electric
fields are

E; =acos(kz —wt), E,=bcos(kz—wt+9),

the field describes on the plane XOY an ellipse contained in the rectangle of sides 2a and
2b. 'Y The points of contact of the ellipse with the rectangle are A, A’ = (da, +bcosd) and
B, B’ = (+acosd, £b). The Stokes’ parameters are

so=a>+0b% sp=a®—1% sy=2abcosd, s3=2absind,

which are not independent since s3 = s7 + s3 + s3 and where s represents the intensity of the
electromagnetic wave. If we compare them with the previous description sq = 2a°, s = 2a?,
sy = 2a' and s3 = 2a”. The radius of the Poincaré sphere in this case is not 1/2 but it is sg. The
poles N and S represent circularly polarized light right and left, respectively. We can interpret

10M. Born and E. Wolf, Principles of Optics, Cambridge Univ. Press, (1993), ch.1
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Figure 3.3: Electric field of an elliptic polarized wave.

the quantum decription of the photon in such a way that the real part of a non-normalized wave
function would represent the transversal part of the electric field associated to the photon. The
normalization of the wave function would be interpreted as the density of energy of the photon.
The different elliptic polarized states are in correspondence with the pure states of the quantum
description.

3.4.2 Coherent Superposition

If we have two pure states |® > and |¥ >, the vector a|® > +5|¥ > once normalized will
represent another pure state and we say that it is the coherent superposition of both states. In
this case the relative phase of both vectors is important.

Lat us assume that we take the two states (é) exp(i(kz — wt)) and (?) exp(i(kz — wt)),

and that o ans 8 are taken real with the condition a? 4+ 2 = 1. Then the vector state of this
2

g) exp(i(kz—wt)) and because the projector is <zﬁ O‘g

on the surface of the sphere by [a3,0, (a? — 52)/2] and therefore on the meridian of the plane

XOZ at the point P represented in the figure 3.4 where NP = § and PS = a.

In fact, a® = (a® — $%)/2 = 1/2 — 32 = o — 1/2, and the distances of the point P to
the tangent planes through the poles are 5% and a?, respectively. If o = 3, the representative
point will be on the Equator. These values a? and 32 are the probabilities that our state will
be either N or S, respectively, or the proportion of the states N and S which are used in the
construction of the new state.

superposition is ( ) it is represented

If aw and B are in general complex, once the phase of & has been neglected, the state is reduced
to (3.50) and (3.51), and the coherent superposition with the same a And b and different 9,
will produce all points of the same parallel. The angle ¢ is the azimuth in the clockwise sense
around an axis from the second state to the first.

The situation is completely symmetric if we make it from any two arbitrary orthogonal
states. We have on the sphere two opposite points. We determine first the superposition with
a = 8 = 1/4/2, which gives rise the position of the corresponding meridian. From now on we
rotate clockwise an angle d, and the parallel will correspond of the relative values a and b.

The coherent superposition is performed on the surface of the sphere, such that to every
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Figure 3.4: The point P represents the coherent superposition of the two states N and S
with real coefficients o and 3.

Figure 3.5: The point P is the coherent superposition of N And S with coefficients ¢ and
bed,
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pair of opposite points given the numbers a and be?, there corresponds another point of the
surface obtained by the above method.

3.4.3 Incoherent superposition

Let |®; > and |®2 > two orthogonal pure states characterized by the projection operators £
and FEs, respectively and for the real vectors @ and —a. If we define the state p = aE1+(1—a) Es,
with 0 < a < 1, it represents an incoherent superposition of both states proportionally to «
and 1 — a. In this representation, the resultant vector is aa — (1 — a)a = (2a — 1)a. The
characteristic point in the figure 3.6, is in the line joining the two pure states, in such a way
that PA = (1 —a) and PB = «. It is the center of mass of two masses o and (1 — «) located
at A and B, respectively.

Figure 3.6: The point P is the incoherent superposition of the pure states A and B propor-
tionally to o and 1 — «, respectively.

We can interpret the incoherent superposition as the center of mass of all possible coherent
superpositions with the same proportions A and B, where the relative phase is left free. In this
case we shall obtain all possible states of the parallel separated of the Poles by (1 — «) and «,
respectively.

If p1,p2,...,pr are k pure states, and therefore represented by points on the surface of
the sphere and oy, a9,...,a5, 0 < a; < 1 such that Y a; = 1, then p = > a;p; is said the
incoherent mixture, with weights a; of the k pure states p;. The representative point will be
given by the center of mass of the corresponding points p; with weights of value o;. The pure
states are the only states which can never be obtained as a convex linear combination of other
pure states.

The incoherent superposition becomes the convex linear combination of vectors of R3, on
the surface of the sphere of radius 1/2.

3.4.4 Filters

Filters are observables such that acting on any state of the quantum system it is projected
into a possible pure state. They are represented by the projection operator on the state onto
they project. If the initial state of the photon is p, then the measurement of the filter £
in the state p is given by < E >= TrpE, while the photon goes after measurement into a
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1
new state p) = EpE/Tr(pE). For exemple, let us assume that p; = (0 8) and E is the

projection operator onto the state given by the vector a of components [0,v/3/4,1/4], i.e.,
3/4  —/3i/4
E= .
V3i/4  1/4
proportion in which the state E is produce by the superposition of p; and its orthogonal state.
After the measurement, the state of the photon is:

). The expected value of E in the state p; is 3/4, which precisely the

= ene i) = aene = ( Y1, V) -6

i.e, the state E.

P3 Ie) 1/2

. . . 1
From the vector point of view, because the state is a vector state |p1 >= ( > and therefore

0
the expected value < E;p; >=< p1|Ep1 >= 3/4 and the final state will be |p] >= E|p; >
/E|p1 > || = <\{%2> which is precisely the state F, because |p| >< p}| = E.

3/4 0

0 1/4
an incoherent superposition of 3/4 of the previous state p; and 1/4 of its orthogonal state, then
< E;py >=TrpsE =5/8, i.e., that part of pa which is projected into E, and the final state p
is anew the state E.

If the initial state is the completely incoherent state, like the one given by the density

operator p3 = <1(/)2 1(/)2), represented by the point O, Then < E;p3 >= 1/2, because that

If the initial state is not a pure state, for example py = < > , which corresponds to

incoherent state can also be made from E and the 50% of its orthogonal state.
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3.5 Appendix: Spinors

In this section of mathematical content we shall review the main properties of spinors, in
particular those connected with the possible representation of the wave function to describe spin
1/2 particles. We shall describe the representations in terms of eigenfunctions of the different
commuting spin operators. But it must be remarked that in addition to the spin operators in
the laboratory frame we also have spin operators projected on the body frame, because our
general spinning particle has orientation, and therefore, a local Cartesian frame linked to its
motion. This produces the result that for a spin 1/2 particle the wave function necessarily is a
four-component object.

All calculations in this Appendix can be obtained in the Mathematica!' notebook file by
the author http://tp.1c.ehu.es/documents/SpinorsNotesBilbao.nb.

The general wave function is a function of the ten kinematical variables, ®(t,r,u, p), and
the spin with respect to the center of charge is related to the kinematical variables w and p, as

S=uxU+W=Z+W, (3.52)

where Z and W are given by
h h
Z:uxzvu, W:%{Vp—kvap—kp(p-vp)}, (3.53)

in the tan(a/2) representation of the rotation group, as has been deduced in previous sections.
V. and V, are respectively the gradient operators with respect to w and p variables. These
operators always commute with the H = ihd/0t and P = —ihV operators, and therefore
they are translation invariant. This feature allows the separation of the general wave function
in terms of space-time variables and velocity-orientation variables to describe the translation
invariant properties of the system.

The above spin operators satisfy the commutation relations

Z,Z)=ihZ, [W,W]|=ihW,6 [Z,W]=0, (3.54)
and thus

S, S] = ikS.

3.5.1 Unit vectors

Because we are describing the orientation of the particle by attaching to it a system of three
unit vectors e;, whose orientation in space is described by variables p or «, then, if at initial
instant 7 = 0 we choose the body axes coincident with the laboratory axes, the components of
the unit vectors e; at any time are

(ei); = Rji(a) = dj; cos o+ nyjni (1 — cos ar) — €55 sin o, (3.55)

in the normal parameterization and also in the p parameterization by

(ei); = Rji(p) (1= p*)8ji + 2ppi — 2€jikpr)s (3.56)

T 112

where the Cartesian components of the rotation axis unit vector n are:

ny1 = sin 6 cos ¢, ng = sin @ sin ¢, ns = cos b, (3.57)

"'Mathematica, is the registered computer program edited by Wolfram
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where 6 is the polar angle and ¢ the usual azimuth angle. Explicitly:

e11 = cosa+sin?6cos? ¢(1 — cosa),

el = cosfsina + sin?fsin ¢ cos p(1 — cosa),

e13 = —sinf#singsina + sinf cosfcos p(1l — cos ),
ez1 = —cosfsina + sin?fsin¢cosp(1 — cosa),
eso = cosa +sin?@sin? p(1 — cosa),

€93 = sinfcos¢sina + sinfcosfsin ¢(1 — cosa),
€31 = sinfsingsina + sinfcosf cos ¢(1 — cosa),
€3y = —sinfcos¢sina + sinf cosfsinp(1l — cos ),
e33 = cosa +cos?f(1— cosa),

in the @« = an, or normal parametrization of the rotation group. In the p = tan(a/2)n
parametrization the body frame is

e11 = (L+p7—p5—p3)/(1+p),
et = (2p1p2 +2p3)/(1+ p?),
e13 = (2p1p3 —2p2)/(1+ p?),
ear = (2p2p1 —2p3)/(1+ p?),
ez = (L—pi+p5—p3)/(1+p?),
eas = (2p2p3+2p1)/(1+ p?),
es1 = (2p1p3 +2p2)/(1+ p%),
esa = (2p3p2 —2p1)/(1+p?),
es3 = (L—pl—ps+p3)/(1+p),

where p? = p? + p3 + p3 = tan?(a/2).

3.5.2 Spin projection on the unit vectors

In addition to the different components of the spin operators .S;, Z; and W; in the laboratory
frame, we also have another set of spin operators. They are the spin projections on the body
axes e;, 1.e., the operators R; = e;- S, M; = €;- Z and T; = e; - W, respectively. In particular,
spin operators T;, collecting terms from (3.56) and (3.53), take the expression

k=3 k=3
h
T; = Z(ei)ka 2i(1+ p?) Z (1 = p*)ik + 2pipr — 2ekijp;)
k=1 k=1
0 0
— r -V ’
X (apk + €xirpr o + pr(p p))

and after some tedious manipulations we reach the final result, written in vector notation as

h
T:Z{VP_PX Vo+pp-Vp)}. (3.58)
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We see, by inspection, that this result can also be obtained from the expression of W in (3.53),
just by replacing p by —p, followed by a global change of sign. This is because we describe the
orientation of the particle by vector p in the laboratory frame from the active viewpoint, i.e.,
with the laboratory reference frame fixed. However, its orientation with respect to the body
frame is described by the motion of the laboratory frame, whose orientation for the body is
—p, and the global change of sign comes from the change from the active point of view to the
passive one. This is the difference in the spin description in one frame or another.
It satisfies the following commutation relations

[T,T) = —ikT, [T,W]=0.

and in general all spin projections on the body frame R;, M; and T;, commute with all the spin
projections on the laboratory frame S;, Z; and W;. This is in agreement with the quantum
mechanical uncertainty principle, because spin components with respect to different frames are
compatible observables.

3.5.3 Spinor wave functions

To find eigenstates of the spin operator we have to solve equations of the form:

S*x(u, p) = s(s + D)A*x(u, p),  Ssx(u, p) = mhx(u, p).

But we also have the orientation of the particle, and therefore the spin projections on the
body axes. These projections commute with S? and S3, and it is possible to choose another
commuting spin operator, like the T3 operator, and therefore our wave function can be taken
also as an eigenvector of T3,

T3x(u, p) = nhx(u, p),

so that the complete commuting set of operators that describe the spin structure must also
include spin projections on the body axes.
The spin squared operator is

S2=Z>+W?4+2Z-W, (3.59)

and we see from (3.54) is expressed as the sum of three commuting terms and its eigenvectors
can be obtained as the simultaneous eigenvectors of the three commuting operators on the
right-hand side of (3.59). Operators Z and W produce derivatives of the wave function with
respect to u and p variables, separately. Thus, each x(u, p) can again be separated as

xX(u, p) = > Uj(u) Vj(p), (3.60)
J

where the sum runs over a finite range, and where U;(u) will be eigenfunctions of Z? and V;(p)
of W2, respectively.

Functions Uj(u) are multiples of spherical harmonics defined on the orientation of the ve-
locity vector w, because the Z operator has the structure of an orbital angular momentum in
terms of the w variables, and thus its eigenvalues are integer numbers. The global factor left
out is an arbitrary function depending on the absolute value of the velocity w.

In fact, if the velocity is expressed in polar spherical coordinates, u = (u, 3, ), where (3 is
the polar angle and A the azimuthal angle

Uy = usinfScos A, uy =usinBsin, wu, = ucosp,
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the components of the angular momentum Z; are:

Z1 =1h (sin )\2 + Z?jﬁ cos /\8> ,  Joy = —ih (cos )\g — cos in 0 ) , A3 = —ihi

85 smp S ax N

0, cosp 8}. (3.61)

Zy =71 +iZy=he™ {£— +i —
* ! 2 { ap + sin 8 O\
We see that they are independent of the variable u, because the rotation group is not acting on
the whole R3 space but only on the surface of the unit sphere, parameterized by 3 and \.

The operator Z2 commutes with th three Z;, and takes the form

0> cosp 0O 1 07
72 = —n? | — o = 3.62
[852 + sinf3 98 * sin? 3 3)\2] (362)

We have to search for eigenfucntions of Z2 and Z3 in separate variables in the form f(u)G(3, \),

with f(u) arbitrary and as far as the angular part is concerned
Z2Y™(B,A) = WL+ DEPY™(B,A), - Z3 Y™ (B,A) = mhY{™ (B, ).

Only solutions for integer eigenvalues of [ and m = —I, —{+1,...,[, can be found for this system
of differential equations.

The functions |[,m >= Y;"(8, ), defined on the unit sphere, are called spherical har-
monics. The normalized rotational invariant measure on the unit sphere is

™ 2T 1
d —sinBdA =1 )
/0 ﬂ/o pp sin 3 (3.63)

The spherical harmonics are orthogonal with respect to the hermitian scalar product defined by

1 2 ™
<l,m|s,n >= 4/ d/\/ sin 8dS Y™ (B, )Y (B, A) = dmnOis,
T Jo 0

i.e., with respect to the normalized invariant measure on the unit sphere (1/47)sin BdSdA.
The solution of this system is to find functions Y}'(3,A) of the separate variables Y}!(3,)) =
Ai(B)Bi(A), which satisfy

Zy A (B)Bi(N) =0,  Z3Ai(B)Bi(\) = IhA(B)Bi(N),

ie.,

A —l(cosB/sin B)A; =0, —iB=1B;.

They have to be proportional to the functions A;(8) ~ sin' 8 and Bj(\) ~ exp(il\). Because
on the unit sphere the point (8,A) is the same than the point (8, A + 27), it implies that
exp(il\) = exp(il(A + 27)), and therefore necessarily [ must be an integer number.

These functions, normalized with respect to the measure (3.63) can be written as

(20 + 1)(20)!

' il
22112 sin’ g e, (3.64)

VB, A) = (1)}

and the remaining eigenvectors are obtained by the action on them of the operator Z_. There
are no half integer eigenvectors, because the surface of the unit sphere is not the most general
homogeneous space of the rotation group. We can see that ¥;"* = (=1)"Y,”™, and the first
normalized spherical harmonics are:

0,0 >=1,
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3 ’ 3 .
11,1 >= —\/;sinﬂe”‘, 11,0 >=V3cos 8, |1,—1>= \/;sinﬁe”\, (3.65)

/15 . /15 . 5
12,2 >= §81n25621)‘, 12,1 >= — ?sinﬁcosﬁe“\, 12,0 >= \/;<3C0825 —1).

It turns out that to find the most general spinor is necessary to seek also solutions of the V;(p)
part, depending on the orientation variables. This goal will be achieved in the next section,
where we consider the action of the rotation group on itself as a transformation group.

3.5.4 Spinor representation on SU(2)

We shall describe now in detail the orientation part of the general wave function, V;(p).
If there is no contribution to spin from the zitterbewegung part Z, the spin operator (3.52)
reduces to the W operator given in (3.53). To solve the corresponding eigenvalue equations we
shall first represent the spin operators in spherical coordinates.

If we represent vector p = tan(a/2)n = rn in spherical coordinates (7,0, ¢), with r = |p| =
tan(a/2) and 0 and ¢ the usual polar and azimuth angles, respectively, then unit vector n has
the Cartesian components given in (3.57). If from now on we take h = 1, the spin operators
(3.53) are represented by the differential operators

Wy = i [(1+r2)sin¢9 cosgbag—l— (1(:050 Cosgb—sinqb) 9 < Sin ¢ + cos COS¢> 0 } ;
r

21 r 00 rsin 6 sin 6 0

1 ) ) 0 1 ) 0 cosfsing cosgp \ 0O

Wy = — (1 + 72 — - - — - —
2= [( —l—?")Sln@Slnqﬁar—F(rCOSQSln¢+COS¢> 20 < py rsin9> a(b],

1 0 sinf 0 0
=—|(1+7r? 0— — —+—.
Ws=5 [( Fr)eost ol == 89+6¢]
The Casimir operator of the rotation group W? is:
RS (1+T2)a2+2(1+r2)g 1 i?+cos9g+ 19
4 002 sinf 00  sin>0 092 ||

W? = g A9,
or2 r or r2

The up and down spin operators defined as usual by Wi = Wy + W, are

/L'¢ . o
W+:6,[(1+r2)sin96+<cose+”> 0 (rcos@ z> 8}7

214 or r 00 rsinf aiq[)
e~ i® 0 cos® —ir\ 0O rcosf+i\ 0
W_ = 1+r?)sing — —_— = — ) = .
2i [( ) sin or + ( r > 00 < rsinf ) 8¢]
They satisfy the commutation relations
[W?n WJr] =Wy, [W?n W,] =-W_, [W+7 W,] = 2Ws.
We can check that (W;)* = —W,; and Wy = —(W_)*, where * means to take the complex

conjugate of the corresponding operator.
If F™(r,0,¢) is an eigenfunction of W2 and Ws, it satisfies the differential equations:

WQan(T,e,(ﬁ) =s(s+ 1)EF"(r,0,¢0), W3F.:"(r,0,¢) =mF."(r,0,).

To find solutions of the above system we know that we can proceed in the following way. Let
us compute first the eigenfunctions of the form F. Then operator W, annihilates this state
WLF? = 0 and by acting on this function with operator W_ we can obtain the remaining
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eigenstates F," of the same irreducible representation characterized by parameter s and for
—s <m < s. Then our task will be to obtain first the £ functions.
Now, let us consider eigenfunctions F?? that can be written in separate variables as F¥(r, 0, ¢) =
A(r)B(0)C(¢). Then
W3A(r)B(0)C(¢) = sA(r)B(0)C(¢)

gives rise to
sin @

(1+72)cos@A’'BC — AB'C + ABC' = 2isABC

r
where A’ is the derivative of A and so on, and by dividing both sides by ABC we have

A'(r) sin0B'(9)  C'(¢)
A(r) r B(0)  C(9)

(1+72)cosf = 2is.

Now, the third term on the left-hand side must be a constant, because the remaining terms
are functions independent of ¢. Therefore, this term is written as C’(¢)/C(¢) = ik and thus
C(¢) = € up to an arbitrary constant factor. Since C(¢ + 27) = C(¢) this implies that the
constant k£ must be an integer. The other two functions satisfy

(1 +72)cosA'B — sin@AB’ + ir(k — 2s)AB = 0. (3.66)

If there exist solutions with real functions A and B, then necessarily k = 2s so that the
eigenvalue s can be any integer or half integer, and equation (3.66) can be separated in the
form: A(r) o B'(6)
r sin
1 2 = =p= tant 3.67
7( —H“)A(T) cos0 B0) p = constant, (3.67)

where, up to constant factors, the general solution is

A(r) = <1 fﬁ)p/z, B(9) = (sin )P

By acting on this solution F? = A(r)B(0)C(¢), with W, since W, F? = 0, it gives:
(1 +12)sin? A’ B + (sinf cos 0 + irsin §) AB' — 2s(ir cos@ + 1)AB = 0.

By dividing all terms by AB, taking into account (3.67), we get the condition (p — 2s)(1 +
ircosf) = 0. Then there exist real solutions in separate variables whenever p = 2s = k. They
are given, up to a constant factor, by

2

F5(r,0,¢) = <1:r2> (sin §) 25259 (3.68)

For s = 1/2 and after the action of W_ we obtain the two orthogonal spinors

Vr= L sing ¢ 12 _gol/z _reosb i
\111/2—m51n06 , W_\I/1/2_\I/1/2 =i

that produce a two-dimensional representation of the rotation group. We can similarly check

~1/2 _
that W_w./* = 0.

By inspection of the structure of W4 operators, if we take the complex conjugate of expres-
sion W, F?% =0 we get —W_(F?)* = 0 and therefore (F?)* ~ G;* so that taking the complex
conjugate spinors of the above representation we obtain another pair of orthogonal s = 1/2
spinors,

~1/2_T‘COS@—i T-1/2

.
2T e T iy

sinf e .
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The remaining representations for higher spins can thus be obtained by the same method,
or by taking tensor products of the above two-dimensional representations. For instance, for
s = 1 we can obtain the following three orthogonal representations. From (3.68) with s =1
and acting with the W_ operator we get

vl — \1,1/2 2 _ r? in2 g i29
1=( 1/2) = 11,2 sin” 0 e"?,
1/2y 0 —1/2 T . . i
\I/(l] — (\111§2)(\111/2/ ) = 5,2 sin 6 (i + r cos 0) ',
1 o -1/29 (i + rcos)?
RV I e A

that can also be obtained as the tensor product ¥ ® W.

If we work in the normal or canonical representation of the rotation group, where the
parameters are & = an, this amounts to replacing the variable r = tan(a/2) in terms of
parameter a and expressing the differential operator 0/9r in terms of 9/, and then the spin
operators are given by

1 i i cos f cos ¢ o g B sin ¢ cosf cosgp\ O
Wl_?i [QSmG cosqbanr( 51n¢> 20 (tan( + ) ],

tan(a/2) a/2)sinf sin )
1 . i 0 cos 6 sin ¢ 0 cos 6 sin ¢ cos ¢ 0
-2 = - - — —
W2 2i [ sind sin ¢ 9a " <tan(a/2) +eos gb) a0 < sin @ tan(a/2) sin 9> 8¢] ’

1 0 sinf 0 0
Ws = 2 {QCOSH&J ~ tan(a/2) 80 * 8(;5} ’
L N T
0a?  tan(o/2) 0o 4sin*(a/2) | 002 sin@ 00  sin?00¢% ) |’

i¢ .
W+:e[251n06+< cos 6 )+z) d <cos€tan(oz/2) z> 8]7

2i foJe! tan(a/2 00 tan(a/2) sin 6 )
W e—Z.’¢ ZSinQQ N cosl ; 0 cos@tan(a/?) +i) 0
21 Oa tan(a/2) 00 tan(a/2) sin 6 0¢
and the orthogonal spinors of the two two-dimensional representations can be written as
\Ifig = isin % sin 6 e, \111—/12/2 = cos % —isin % cos 0 (3.69)
and N N o N N
\I/ig =cos —|—isin5(:os 0, \111_/12/2 = —isinasinﬁ e, (3.70)

We have mentioned that the different spinors are orthogonal. To endow the group manifold
with a Hilbert space structure it is necessary to define a hermitian, definite positive, scalar
product. The Jacobian matrix of variables p’ in terms of variables p given in (3.39), has the

determinant
/1 1 2\2
det((% >: (1+p7)

op (I—p-p)t’
and thus the transformation of the volume element

d3p/ — (1 +lu’2)2
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We also get from (3.39) that

o (1447
L = 04

and then the measure

d*p :< (1—p p)? ) (L2 5 _
(T+p2? \A+DA+p2)) O-p-pi" "~ 0t

is in fact an invariant measure.
In spherical coordinates it is written as

2 sin @

and in the normal representation is
sin?(ar/2) sin dadfd.

Since the rotation group is a double-connected group, the above measure must be defined
on a simply connected manifold, i.e., on the universal covering group of SO(3), which is SU(2).
The SU(2) group manifold in the normal representation is given by the three-dimensional sphere
of radius 27 and where points on the surface of this sphere represent a unique SU(2) element,
namely the 2 X 2 unitary matrix —I. The normalized invariant measure becomes

1
dun(a,0,0) = sin?(ar/2) sin 0 do df dep. (3.71)

Therefore, the hermitian scalar product will be defined as

2 ™ 2
< flg >= 4%2 i da/o de/o do f*(a,0,¢)g(a, 0, ¢)sin®(a/2) sin b, (3.72)
where f* is the complex conjugate function of f.

All the previous computed spinors are orthogonal vectors with respect to the group invariant
measure (3.71). In particular, the normalized s = 1/2 spinors are those given in (3.69)-(3.70),
multiplied by /2.

The spin projection operators on the body axis e; linked to the particle, are given in (3.58)
in the p parametrization, and we have seen that they differ from the spin operators W only
in the change of p — —p, and a global change of sign. In the normal parametrization this
corresponds to the change o = —a, followed by a global change of sign.

It can be checked as mentioned before, that

(T3, Ty] = —i€i 10, (3.73)

(Wi, Ty] = 0. (3.74)

Since W2 = T? we can find simultaneous eigenvectors of the operators W2, W3 and T3,
which will be denoted by DSSL () in such a way that

W?Di) (@) = s(s +1)Df) (),

W3D$7§21(a) = ngZL(a)a
;D) (o) = nD)(e).
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Since W3 (a)D,(;izl(a) = meflzl(a), by producing the change o — —a we get Wg(—a)Dr(,izz(—a) =
mDﬁfi) (—a) and the subsequent global change of sign it reduces to

~Wa(—a)D{) (=) = Ty(@) D) (—a) = —mDS) (—a),
so that the above spinors (3.69)-(3.70) are also eigenvectors of T5.

With this notation, the four normalized spinors, denoted by the corresponding eigenvalues
|s,m,n >, are

o = |1/2,1/2,1/2 > = V/2(cos(ar/2) + i cos B sin(a/2)), (3.75)
Dy = [1/2,-1/2,1/2> = iv2sin(a/2) sinfe (3.76)
d3 = [1/2,1/2,-1/2 > = iv/2sin(a/2) sinfe'®. (3.77)
Dy = [1/2,-1/2,-1/2 > = /2(cos(a/2) — icosfsin(a/2)), (3.78)

They form an orthonormal set with respect to the normalized invariant measure (3.71) and with
the scalar product defined in (3.72). We can check that the lowering operators W_®; = &g,
W_(I)Q = 0, W_(I)g = ‘1’4, W_(I)4 = 0, and similarly T_(I)l = 0, T_(I)g = (I)l, T_‘I)Q = 0, and
T_®, = &5, and the corresponding up relations when acting with the rising operators W, and
T, respectively. Remark that because the opposite sign in the commutation relations of the T;
operators, here the T operate in the reverse direction.

The important feature is that if the system has spin 1/2, although the s = 1/2 irreducible
representations of the rotation group are two-dimensional, to describe the spin part of the
wave function we need a function defined in the above four-dimensional complex Hilbert space,
because to describe orientation we attach some local frame to the particle, and therefore in
addition to the spin values in the laboratory frame we also have as additional observables the
spin projections on the body axes, which can be included within the set of commuting operators.

3.5.5 Matrix representation of internal observables

The matrix representation of any observable A that acts on the orientation variables or in
this internal four-dimensional space spanned by these spin 1/2 wave functions ®;, is obtained
as Ajj =< ®;|]A®; >, i,j = 1,2,3,4. Once these four normalized basis vectors are fixed, when
acting on the subspace they span, the differential operators W; and T; have the 4 x 4 block
matrix representation

. _hfo 0
S:W_2<O U), (3.79)
0 T B0 i BT 0
T1_2<1I o)’ T2_2<—z’ﬂ o)’ T3_2<0 —]1)’ (3:80)

where o are the three Pauli matrices and I represents the 2 X 2 unit matrix. We have included
Planck’s constant into the angular momentum operators.

If we similarly compute the matrix elements of the nine components of the unit vectors
(ei)j, i, = 1,2,3 we obtain the nine traceless hermitian matrices

1/0 o 1 0 o 1/ O
61—3<0_ 0)’62_3<—i0' 0)733—3<0 —a’>' (3.81)

We can check that the T; = S -e; = e; - S. We see that the different components of the unit
vectors e;, in general do not commute. The eigenvalues of every component e;;, in this matrix
representation of definite spin, are +1/3. However, the matrix representation of the square of
any component is (e;;)? = I/3, so that the magnitude squared of each vector e? = Zj(eij)z =1

2

when acting on these wave functions. The eigenvalues of the squared operator (e;;)° are not
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the squared eigenvalues of e;;. This is because the function e;;®; does not belong in general
to the same space spanned by the &5, k = 1,...,4 although this space is invariant space for
operators W; and Tj. In fact, each function e;;®y, is a linear combination of a spin 1/2 and a
spin 3/2 wave function.

We do not understand why any component of a classical unit vector e;; of a Cartesian frame,
can have as eigenvalues £1/3 in the quantum case and its square (.ejj)2 = 1/3 instead of I/9.

3.5.6 Peter-Weyl theorem for compact groups

The above spinors can also be obtained by making use of an important theorem for rep-
resentations of compact groups, known as the Peter-Weyl theorem, '? which is stated without
proof that can be read in any of the mentioned references.

Theorem.- Let D(®)(g) be a complete system of non-equivalent, unitary, irreducible
representations of a compact group G, labeled by the parameter s. Let ds be the
dimension of each representation and ng) (9), 1 <1i,j <ds the corresponding matrix
elements. Then, the functions

(s) .
\/dsDi]’ (g)a 1<4,5<ds

form a complete orthonormal system on G, with respect to some normalized invari-
ant measure py(g) defined on this group, i.e.,

/G Vds D (g) v/d, D} (g) dpn(g) = 8 Sid. (3.82)

That the set is complete means that every square integrable function defined on G, f(g), admits

. . . . . S .
a series expansion, convergent in norm, in terms of the above orthogonal functions ng)(g), in

=>" a V. D (g).

871’7_]

the form

(s)

where the coefficients, in general complex numbers a;;

5= [ V&S () fladun (o).

In our case SU(2), as a group manifold, is the simply connected three-dimensional sphere of
radius 27, with the normalized measure as seen before (3.71),

, are obtained by

dun (e, 8,¢) = 7112 sin @ sin(/2)? dadfde.

In the normal parametrization, the two-dimensional representation of SU(2) corresponds to
the eigenvalue s = 1/2 of S? and the matrix representation is given by

D12 () = cos(a/2)1 — isin(ar/2)(u - o),

12'N. Ja. Vilenkin, Fonctions spéciales et Théorie de la représentation des groupes, Dunod, Paris (1969), p
39.
A.O. Barut and R. Raczka, Theory of group representations and applications, PWN-Polish Scientific Publishers,
Warszawa (1980), p. 174.
F. Peter and H. Weyl, Math. Ann. 7, 735 (1927).
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ie.,
DU/ (q) = cos(a/2) — icosfsin(a/2) —isinfsin(a/2) e~
N —isin 0sin(a/2) €' cos(a/2) +icosfsin(a/2) )
If we compare these four matrix components with the four orthogonal spinors given in
(3.75)-(3.78) we see that

DU/ () = \2 <_®£3 —(I)‘I?) (3.83)

In the three-dimensional representation of SO(3), considered as a representation of SU(2)

Dl(;)(a) = ;5 cosa + ujuj(1 — cos a) + epjup sina = ej;
we get another set of nine orthogonal functions. Multiplied by v/3 they form another orthonor-
mal set orthogonal to the previous four spinors. It is a good exercise to check this orthogonality
among these functions.

3.5.7 General spinors

In the case that the zitterbewegung content of the spin is not vanishing we can also obtain
spin 1/2 wave-functions as the irreducible representations contained in the tensor product of
integer and half-integer spin states coming from the U(u) and V(p) part of the general wave
function (3.60).

The total spin operator of the system is of the form

S=uxU+W=Z+W,

where Z = —ihV,, and W is given in (3.53). Spin projections on the body axes, i.e., operators
T; = e; - W, are described in (3.58). They satisfy the commutation relations

(Z,Z)=iZ, [W,W]=iW, [T,T]=1T,

(Z,W]=0, [2Z,T]=0, [W.,T]=0.

These commutation relations are invariant under the change p by —p in the definition of the
operators W and T, because they are changed into each other. The expression of the body
frame unit vectors e; is given in (3.55) and (3.56).

We can see that these unit vector components and spin operators W; and T} satisfy the
following properties:

1) ej(—a,0,¢) = —ej,(a,0,0).

2) €; - W = Zj 62'jo = Tz

3) %, e/T; = W.

4) For all 4, j, the action Wje;, = 0, with no addition on index i.

5) For all 4, j, the action Tje;; = 0, with no addition on index i.

6) For all 7, j, k, with i # j, we have that Wjer; + Wjeg; = 0, and in the case that i = j, it
leads to property 4.

7) For all 4,7, k, with 7 # j, we have that Tie;, + Tje;, = 0, and similarly as before in the
case ¢ = j it leads to property 4.

This implies that e; - W = W - e; = T;, because of property 4, since when acting on an
arbitray function f,

(W-e)f=> Wyleisf) = fY_ Wile) + Y ei;Wi(f) = Ti(f),
J J J

because >, Wje;; = 0.
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In the same way >, e;T; =3, Tje; = W.

Now we fix the value of spin. Particles of different values of spin can be described. Let us
consider systems that take the lowest admissible spin values. For spin 1/2 particles, if we take
first for simplicity eigenfunctions V(p) of W? with eigenvalue 1/2, and then since the total spin
has to be 1/2, the orbital Z part can only contribute with spherical harmonics of value z = 0
and z = 1.

If there is no zitterbewegung spin, z = 0, and Wigner’s functions can be taken as simulta-
neous eigenfunctions of the three commuting W?2, W3, and T3 operators, and the normalized
eigenvectors |w, ws, t3 > are explicitly given by the functions (3.75-3.78).

If we have a zitterbewegung spin of value z = 1, then the U(u) part contributes with the
spherical harmonics described in (3.65)

YIB,A) = |11 5= —sin(8)e? % (3.84)
YP(B,0) = \170>—C08(5)\/§7 (3.85)
VB = L1 s=sin()e [ (3.86)

normalized with respect to the measure

/D ) /0 " sin(3)dBdA,

which are the indicated eigenfunctions |z, z3 > of Z? and Z3, and where the variables 3 and A
determine the orientation of the velocity wu.

The tensor product representation of the rotation group constructed from the two irreducible
representations 1 associated to the spherical harmonics (3.84)-(3.86) and 1/2 given in (3.75)-
(3.78) is split into the direct sum 1 ®1/2 =3/2@ 1/2.

The following functions of five variables 8, A, «, # and ¢, where variables 5 and A correspond
to the ones of the spherical harmonics Y}, and the remaining «, 6 and ¢, to the previous spinors
®;, are normalized spin 1/2 functions |s, s3,t3 > that are eigenvectors of total spin S2, and S3
and T3 operators

U= [1/2,1/2,1/2> = \}g (Y10<I>1 - \/§Y11<I>2> : (3.87)
Uy, = |1/2,-1/2,1/2> = \}g (—YIO(I)Q + f2Yf1<1>1) , (3.88)
Uy o= [1/2,1/2,-1/2> = \}g (1/10@3 - \/51/11@4) , (3.89)
U, = [1/2,-1/2,-1/2> = \}g (-vPos+ Vavay), (3.90)

such that ¥y = S_W¥; and similarly ¥y = S_W3, and also that W3 = T_W;, and ¥y = T_Vs.
They are no longer eigenfunctions of the W3 operator, although they span an invariant vector
space for S2?, S3 and T3 operators. In the above basis (3.87)-(3.90) formed by orthonormal
vectors ¥;, the normalized invariant measure is

1 g 27 2 T 2
— / sin Bd3 / d\ / sin?(ar/2)do / sin 0d6 / do =1,
167 Jo 0 0 0 0

and the matrix representation of the spin is

hlfo 0
S—Z+W—2<O o-)’ (3.91)
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while the matrix representation of the Z and W part is

2h (o0 0O —h(o 0
Z_3(0 0'>’ W_6<O 0'>’ (3.92)

which do not satisfy commutation relations of angular momentum operators because the vector
space spanned by the above basis ¥, is not an invariant space for these operators Z and W.

It must be remarked that Z has the same orientation than the spin S, because it is a positive
multiple of it, while W has the opposite orientation, as suggested by the picture of the front
page of these Notes.

1 2
:‘fﬂ, 2221 Z— "0 W?P=—1 W=—_L

3 V3 12 23

The absolute value of S, S is v/3/2, while that of Z is just 2/v/3, only 4/3 of the other, meanwhile
for W its absolute value is 1/2+/3, just 1/3 of the absolute value of S but in the opposite
direction. Therefore, because Z is opposite to W, the modulus of S'is S = Z — W = /3/2.
This justifies, from the quantum point of view, the geometrical representation of those operators
in the front page, with Z in the same direction than S, and W in the opposite direction.

If we pay attention to the spinors ¥;, they are eigenvectors of Z2 with eigenvalue 1(1+1) = 2,
and of W2 with eigenvalue 1/2(1/2 + 1) = 3/4, but they are not eigenvectors of Z3 and Wj.
In fact, the action of these operators on these vectors, take them out of this four-dimensional
Hilbert space. It is not a representation space of an irreducible representation of the algebra
generated by the operators Z; and W, but it is a vector space of a closed representation of the
operators S;. It is a direct sum of two irreducible representations of spin s = 1/2.

The spin projection of the W part on the body axis, i.e., the T operator, takes the same
form as before (3.80)

h(0 1 h( 0 il h(l 0
T1_2<11 0)’ TQ_Q(—Z’H 0)’ T3_2<0 —]1)’ (3.93)

because ¥ and Vs functions are eigenfunctions of T3 with eigenvalue 1/2; while U3 and W, are
of eigenvalue —1/2, and thus the spinors ¥; span an invariant space for S; and 7} operators.
In fact the basis is formed by simultaneous eigenfunctions of total spin S?, S5 and T3, and the
ket representation is the same as in the case of the ®; given in (3.75)-(3.78).

The expression in this basis of the components of the unit vectors e; are represented by

1/0 o 1 0 o 1/ 0
61——9<a_ 0>’62__9<—i0' 0>,63——9<0 —a’>' (3.94)

1 1
S? = ZH, S
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3.6 Summary of Classical and Quantum Mechanics

We shall summarize very general aspects of classical and quantum mechanical elementary
particles.

Classical Mechanics

States: Each point x € X of the kinematical space X.
Elementary particle: X is a homogeneous space of the kinematical group G.

Observables: Every function of the kinematical variables and their time deriva-
tives.

Transformation of the state: 2/ = gz = f(z,9), g € G.

Elementary particle: Lo =Ti+ R-#+U -4+ W - w.
Transformation of the Lagrangian: L'(2/,4) = L(x, %) + da(g, z) /dr
Interaction: L; = —eAg(t,7)i + cA(t,T) - 7.

Noether Constants (non-rel.) G ® SO(3):

H:—T—u-%, P:mu—(ii—tt], K=mr—Pt-U, J=rxP+uxU+W,

Ti=W -e;, i=123.
Noether Constants (relat.) P ® SO(3)r:

d d

H = —T—u-d—g, P = R—d—rtj, K = Hr/c*~Pt—Sxu/c?, J=rxP+uxU+W,
T,=W -e;, i=1,23.

Invariants (no relat.)

p? 1 2
m, H-——=0, SQCM:<J—K><P>, T?
m

2m
Invariants (relat.)
pup" = (H/c)*~P? = m?*c?, w,wh = (P-Scym)*—(HScwm/c)? = —m?32S?, T2

Scvy=J—qxP, HScy/c=HJ/* - KxP, K=Hq/c— Pt.
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Quantum Mechanics

States: Each normalized vector |¢ >, ¢(z) € L?(X) of the Hilbert space L2(X).

Elementary Particle: L?(X) is the representation space of a projective unitary
irreducible representation of the kinematical group G.

Observables: Every selfadjoint operator acting on the Hilbert space.

Transformation of the state:

—1

6 5= U)o >, ¢/2) = Ulg)ote) = olg ™o exp { Jals ™)}

and the unitary operators and their infinitesimal generators are

—i h o, 0 da(g, )
U = e UXO' ) XO' = - ,f)' - )\0' y )\0' = —Qa -
0 =exo{ o0 @) g ) le) = OGED)
Generators (non-relat.) G ® SO(3):
L0 h
H=ihs, P=-V, K=mr—Pt-U, J=rxP+uxU+W.
i

h h
U:;vm W:Z(vp"i‘vap'i‘l’(ﬂ‘vp))u S=uxU+W,

h
Ti=W-e, i=123. T:Z(vp_vap"i_p(pvp))a

Generators (relat.) P ® SO(3):

ki
H:ihaat, P=-V, K=Hr/*~Pt—Sxu/c®, J=rxP+uxU+W.
1

h h
U= -V, W:%(vp—i_va’g—i_p(p‘vp)), S=uxU+W.

7

h
Ti=W-e, i=123. T:?Z(vp_vap"i_p(pvp))a

Invariants-Casimir Operators (non-relat.)

2 I § 0 92 7 1 K P ? T2 ‘172
m, 2 ’ CM < m X > )

Invariants-Casimir Operators (relat.)
pup” = (H/e)2=P? = m?c?,  w,wh = (P-Som)*—(HScm/c)* = —m?3s(s+1)h%, T? = W2,
Dirac equation

H—P-u—15-<du><u>:O.
c dt
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Chapter 4

Dirac particle

4.1 Quantization of the u = ¢ model

For Luxons we have the nine-dimensional homogeneous space of the Poincaré group, spanned
by the ten variables (¢, 7, u, ), but now w is restricted to u = ¢. For this particle, since u-4 = 0
and u # 0, we are describing particles with a circular internal orbital motion at the constant
speed c.

In the center of mass frame, (see Fig.4.1) the center of charge describes a circle of radius
Ry = S/mc at the constant speed ¢, the spin being orthogonal to the charge trajectory plane
and a constant of the motion in this frame. Let us consider the quantization of this u = ¢ model
whose dynamical equation is given by (2.167).

©
m
T
u
S e
— 2 M= -tz
r=Sxu/mc om
S=Z+W g °
M-ZZmS

Figure 4.1: Motion of the center of charge of the particle (H > 0), in the C.M. frame.

If we analyse this particle in the centre of mass frame it becomes a system of three degrees
of freedom. These are the x and y coordinates of the point charge on the plane and the phase
a of the rotation of the body axis with angular velocity w. But this phase is the same as the
phase of the orbital motion, as we shall see later, and because this motion is a circle of constant
radius only one degree of freedom is left, for instance the x coordinate. In the centre of mass
frame the particle is equivalent to a one-dimensional harmonic oscillator of angular frequency
w =mc?/S in its ground state.

Identification of the ground energy of the one-dimensional harmonic oscillator iw/2 with the
rest energy of the system in the center of mass frame +mc?, for H > 0 particles, implies that

195
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the classical constant parameter S = //2. All Lagrangian systems defined with this kinematical
space, irrespective of the particular Lagrangian we choose, have this behaviour and represent
spin 1/2 particles when quantized.

4.2 Dirac equation

The kinematical variables of this system transform under P according to

t'(r) = yt(r) + (v R(p)r(r))/c* +b, (4.1)
2

(1) = R(u)r(r) +yvt(r) + (11*7)02(@ R(p)r(r)v + a, (4.2)

Wiy~ Buu(n) £y b (v Bu(n)vi®/( ) )

Y1+ v R(p)u(r)/c?)
oy HR() b plr) + Felw. piu(r). pi(r) o
L—p-p(7r) + Ge(v, psu(r), p(1))

where the functions F'. and G, are given in (2.132) and (2.133), respectively. When quantized,
the wave function of the system is a function ®(¢, 7, u, p) of these kinematical variables. For the
Poincaré group all exponents and thus all gauge functions on homogeneous spaces are equivalent
to zero, and the Lagrangians for free particles can thus be taken strictly invariant. Projective
representations reduce to true representations so that the ten generators on the Hilbert space,
taking into account (4.1)-(4.4) and (3.15) are given by:

0 h ih 0 h 1
H=—ins pP="v, kK=r2 2 _'y__~ _
zhat, Z,V, Uiy tZ,V C2S><u, (4.5)
h
J:TXTV“FS, (46)
1

where as we shall see, the angular momentum operator S with respect to the center of charge,
represents Dirac’s spin operator and is given by the differential operator

h
S—uva+ {V +pxV,+pp-Vy)=uxU+W, (4.7)

and where the differential operators V, and V, are the corresponding gradient operators with
respect to the u and p variables as in the Galilei case. The operator S, satisfies dS/dt = P x u,
and is not a constant of the motion even for the free particle.

To obtain the complete commuting set of observables we start with the Casimir invariant
operator, or Klein-Gordon operator

H? - 2P% = m?ct. (4.8)

In the above representation, H and P only differentiate the wave function with respect to time
t and position 7, respectively. Since the spin operator S operates only on the velocity and
orientation variables, it commutes with the Klein-Gordon operator (4.8). Thus, we can find
simultaneous eigenfunctions of the three operators (4.8), S? and S3. This allows us to try
solutions in separate variables so that the wave function can be written as

o(t,r,u,p) sz r)xi(u, p), (4.9)

where 1;(t, ) are the space-time components and the x;(u, p) represent the internal spin struc-
ture. Consequently
(H? — 2 P? — m2c) y(t,r) = 0, (4.10)
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i.e., space-time components satisfy the Klein-Gordon equation, while the internal structure part
satisfies

Sxi(u, p) = s(s + 1)h?xi(u, p), (4.11)
Ssxi(u, p) = mshy;(u, p). (4.12)

Eigenfunctions of the above type have been found in Section 3.5. In particular we are interested
in solutions that give rise to spin 1/2 particles. These solutions, which are also eigenvectors of
the spin projection on the body axis 75, become a four-component wave function.

For spin 1/2 particles, if we take first for simplicity eigenfunctions x(p) of S? with eigenvalue
1/2, then since the total spin has to be 1/2, the orbital zitterbewegung part Z = u x U can
only contribute with spherical harmonics of value z = 0 and z = 1. This means that we can
find at least two different kinds of elementary particles of spin 1/2, one characterized by the
singlet z = 0 (lepton?) and another by z = 1 (quark?) in three possible states according to the
component z3. If we call to the spin part Z the colour, we can have colourless and coloured
systems of spin 1/2. The three different colours z3 are unobservable because the ¥; states (3.87-
3.90) are eigenstates of S3 and T3 but not eigenstates of Z3. Nevertheless this interpretation of
this spin part Z as representing the colour, as in the standard model, is still unclear and will
be discussed elsewhere.

For z = 0, the spin 1/2 functions x;(p) are linear combinations of the four ®; functions
(3.75)-(3.78) and in the case z = 1 they are linear combinations of the four ¥; of (3.87)-(3.90),
such that the factor function in front of the spherical harmonics is 1 because for this model
u = c is a constant. It turns out that the Hilbert space that describes the internal structure of
a Dirac', particle is isomorphic to the four-dimensional Hilbert space C.

If we have two arbitrary directions in space characterized by the unit vectors uw and v
respectively, and Sy and Sy are the corresponding angular momentum projections Sy = u - S
and Sp = v - S, then S_q = —Su, and [Su, Sv] = ihSuxv- In the case of the opposite sign
commutation relations of operators T;, we have for instance for the spin projections [T1,T5] =
—ihT3, thus suggesting that e; X es = —es, and any cyclic permutation 1 — 2 — 3, and thus e;
vectors linked to the body, not only have as eigenvalues £1/3, but also behave in the quantum
case as a left-handed system. In this case e; vectors are not arbitrary vectors in space, but
rather vectors linked to the rotating body and thus they are not compatible observables, so
that any measurement to determine, say the components of e;, will produce some interaction
with the body that will mask the measurement of the others. We shall use this interpretation
of a left-handed system for particles later, when we analyse the chirality in section 4.2.8. For
antiparticles it will behave as a right handed one.

Operators S; and T; have the matrix representation obtained before in the two possible basic
states, either (3.75)-(3.78) or in (3.87)-(3.90), which is just

. _hfo 0
S:W_2<O U), (4.13)
B0 T B0 i BT 0
T1_2<]I o)’ T2_2<—1'H o)’ T3_2<0 —]1)’ (4.14)

where we represent by o the three Pauli matrices and I is the 2 X 2 unit matrix.

! Paul Adrien Maurice Dirac Born the 8-th August 1902 in Bristol, Gloucestershire, England
and dies the 20-th October 1984 in Tallahassee, Florida, USA. He graduates as an electric engenering
in Bristol and afterwards derives into mathematics at the St John’s College of Cambridge. His
articles of 1925 and the two of 1928 about the structure of the electron, and the equation which
bears his name and the subsequent publication of the book The principles of Quantum Mechanics
in 1930 awarded him the Nobel Prize in 1933. He is considered as one of the founders of the quantum formalism.




198 CHAPTER 4. DIRAC PARTICLE

Similarly, the matrix elements of the nine components of the unit vectors (e;);, 4,7 = 1,2,3
give rise to the two alternative sets of representations depending on whether the zitterbewegung
contribution is z = 0 or z = 1. In the first case we get

1/0 o 1 0 10 1/ 0
61—3<0_ O>’62_3<i0 0>763—3<0 0_)7 (4-15)

while in the z = 1 case the representation is

1/0 o 1 0 1o 1/ 0
el__9<o_ 0>782—_9<_Z~U 0)783__9<0 _o_> (416)

It must be remarked that the different components of the observables e; are not compatible in
general, because they are represented by non-commuting operators.
We finally write the wave function for spin 1/2 particles in the following form for z =0

Q) (t, 7, u, ) sz (v, 0,0), (4.17)

independent of the w variables, and in the case z =1 by

Dyt u, @) Zw, V(B A, 0, 0). (4.18)

where 3 and A represent the direction of vector w. Then, once the ®; or ¥; functions that de-
scribe the internal structure (given in the appendix in (4.93-4.96) or ((4.97-4.100)), respectively)
are identified with the four orthogonal unit vectors of the internal Hilbert space C*, the wave
function becomes a four-component space-time wave function, and the six spin components S;
and T and the nine vector components (e;);, together the 4 x 4 unit matrix, completely ex-
haust this 16 linearly independent 4 x 4 hermitian matrices. They form a vector basis of Dirac’s
algebra, such that any other translation invariant internal observable that describes internal
structure, for instance internal velocity and acceleration, angular velocity, etc., must necessarily
be expressed as a real linear combination of the mentioned 16 hermitian matrices. We shall see
in Sec. 4.3 that the internal orientation completely characterizes its internal structure.

The velocity operator in the basis W; will be calculated in terms of its components in polar
spherical coordinates

u1 = csinffcos A, ug =csinfsinA, wuz = ccospf.

Its matrix representation in this basis vanishes because these vectors are eigenvectors of the
operators S2, S3 and T3 and in these states the expectation value of the velocity operator is
zero with a great uncertainty.

The spin operator with respect to the center of charge S = u x U + W which, as seen in
(3.91) and (4.13), coincides with the usual matrix representation of Dirac’s spin operator.

4.2.1 Dirac operator
If we consider the expression of the kinematical momentum for free u = ¢ particles (2.158)
H 1
K=—5r—tP—-5SXxu.
c? c

Taking the time derivative of this expression followed by the scalar product with u, it leads to
the Poincaré invariant operator (Dirac operator):

H - Pu—l(cs;xu)-S:O. (4.19)
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When Dirac operator acts on a general wave function @) or (1), we know that H and P
have the differential representation given by (4.5) and the spin by the differential representation
(4.7), or the equivalent matrix representation (4.13), but we do not know how to represent the
action of the velocity w and the (du/dt) x u observable. However, we know that for this particle
u and du/dt are orthogonal vectors and together with vector w x du/dt they form an orthogonal
right-handed system, and in the center of mass frame the particle describes a circle of radius
Ry = h/2me in the plane spanned by w and du/dt.

(7]
uU=ca

ez

(a)

()

Figure 4.2: Representation of the local body frame and the different observables for the
(a) H > 0 solution and (b) H < 0 solution. This orientation produces Dirac equation in the
Pauli-Dirac representation

4.2.2 Pauli-Dirac representation

Let us consider first the case z = 0. Since uw and du/dt are translation invariant observables
they will be elements of Dirac’s algebra, and it turns out that we can relate these three vectors
with the left-handed orthogonal system formed by vectors e;, es and e3 with representation
(4.15). Then, as shown in part (a) of Figure 4.2 for the H > 0 system, we have u = ae; and
du/dt x uw = bes, where a and b are constant positive real numbers. Then the third term in
Dirac operator is (b/c?)es - S = (b/c?)T3, and (4.19) operator becomes

H—aP- €] — C%Tg =0. (4.20)
If we make the identification with the H < 0 solution of part (b) of Figure 4.2, the relation of
the above observables is opposite to the previous one but now with the coefficients —a and —b,
respectively, i.e., we get

b
H+aP e+ T3 =0, (4.21)
C

which clearly corresponds to the change H — —H in equation (4.20). Explicitely eq.(4.20)
looks like:

af 0 P-oc\ i1 0) 3 Py P —iPy
H_3<P-a 0 )_202<0 —]1)‘0’ P"’_(P1+iP2 -pP; )

Multiplying (4.21) by (4.20) we obtain an expression which is satisfied by both particle and
antiparticle

H? — a—2P2]I — bh?

5 =0, (4.22)
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and which is an algebraic relation between H? and P?. By identification of this expression with
the Klein-Gordon operator (4.8), which also contains both H > 0 and H < 0 solutions, leads
to a = 3c and b = 2mc*/h = 