Embedding of a Demianski cavity with small rotation parameter
in a perturbation of a Friedmann universe with cosmological constant
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The problem of embedding a Demianski cavity with small rotation parameter in an
appropriate rotational perturbation of a pressureless Friedmann universe with a A term is
considered. The relation between the coordinate change introduced by Schiicking [Z. Phys.
137, 595 (1954) ] for this kind of problems and that used for the simple model of Oppenheimer
and Snyder [Phys. Rev. 56, 455 (1939)] for gravitational collapse is also discussed.

I. INTRODUCTION

The problem of matching the two most important exact
solutions of the Einstein equations, those of Friedmann—
Robertson-Walker and Schwarzschild, was considered by
Einstein and Straus,' who analyzed the influence of the uni-
verse expansion on the gravitational field surrounding an
individual star. In the Einstein and Straus model, a spherical
vacuum region containing at its center a Schwarzschild mass
is cut out inside a pressureless cosmological fluid.The
matching of metrics found by Einstein and Straus depends
on the unknown solutions of some differential equations. A
more explicit solution for the same problem was presented
by Schiicking?® and his work has been recently extended to
the case of the non-null cosmological constant by Balbinot et
al’®

Related problems of embedding the Schwarzschild solu-
tion in cosmological backgrounds have been considered by
McVittie,* Dirac,” and Gautreau.® Other spherical inhomo-
geneities in cosmology has been considered in the so-called
“Swiss cheese” models.” In inflationary cosmology the dy-
namics of false-vacuum spherical bubbles with a domain
wall have also been analyzed.®

On the other hand, the original approach of Einstein
and Straus has been extended to the case of a small rotation
by Chamorro,® keeping in mind that almost all large aggre-
gations of matter in the universe have some form of rota-
tion.In Chamorro’s paper, the Kerr solution developed to
first order in the rotation parameter is substituted for the
Schwarzschild solution and a rotational perturbation of the
Friedmann-Robertson-Walker solution is used as the exte-
rior metric. This perturbation decays to zero as the spatial
distance increases.

In this paper we simultaneously extend the works of
Balbinot e a/.* and Chamorro® by considering the matching
of a Demianski solution'® with a small rotation parameter in
a spherical cavity cut out inside an external rotational per-
turbation of a Friedmann—-Robertson~Walker universe with
zero pressure and a non-null cosmological constant. Our re-
sults are valid to first order of perturbation theory. Instead of
the original approach of Einstein and Straus' we shall start
from the equivalent, but more explicit method of Schiick-
ing.?

In addition, the local equivalence of two problems
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which correspond to very different physical and topological
conditions seems to have been largely overlooked (one ex-
ception would be the book by Stephani''). For example, the
strictly local problems of matching the Schwarzschild and
Robertson—-Walker metrics in the Einstein and Straus va-
cuole and in the model for a gravitational collapse of Oppen-
heimer and Snyder,'* where the exterior metric is Schwarzs-
child and the interior one is Friedmann, are exactly
identical. In fact, the latter work has been extended to the
case of the collapse of a slowly rotating dust cloud by Ke-
geles.'?

We shall explicitly show the equivalence between the
matching methods used in cosmological problems®? and in
the simplest models for gravitational collapse.'* '

Il. THE PROBLEM

We shall consider a spherical cavity where the space-
time metric is the generalization of the Kerr solution to the
case of the non-null cosmological constant given by De-
mianski.'” Since we shall always keep only the first term in
the expansions in the small rotation parameter e, this metric
reads, to this first approximation, as

ds’. = —bdt? + (1/b)dr + P dw*
— 2esin® 6(1 — b)dt dg, (1)
with
b=1-2M/r— (A/3)P, do*=df8?*+sin?0dp?.

(2)

This metric satisfies, to first order in €, the vacuum field
equations with a A term,

Raﬁ sh Agu,@ = O: (3)
and reduces to the Schwarzschild—de Sitter metric used in
Ref. 3 when thereis no rotation (€ = 0) and to the expansion
of the Kerr metric used in Ref, 9 when A = 0.

In the exterior of the cavity the metric will be a rota-

tional perturbation of the Robertson-Walker metric in the
form'*?

ds’, = —d7r + R*(C ~*dp? + p* dw?)
— 2ep’R * sin® (W dr + X dp)dg, (4)
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where C = /T — kot (k= — 1, 0, 1), the scale factor R de-
pends on 7, and the functions Wand X depend on 7 and p.

We suppose a cosmological fluid of pressureless dust
moving with the four-velocity

Uy = — 1,0,0,eL(7,p,0)),

u”:(l,o,o,e(W+L/p2stin2 a)). (5)
The stress-energy tensor isT,p = au,u, and its conserva-
tion gives the “total mass” A=1aR * which remains con-
stant. Also, L=4L /dr = 0: This condition also guarantees
that the motion of the fluid is geodesic to first order in .

It can be seen that under these assumptions the field
€quations

Rap —1RGup — Agoy = — 87GT,, (6)
give rise to the evolution equation for the scale factor,

R=h(R)=\87GAR ~"— k + IR? (F=riay,

(978

and the following conditions on the functions L, W, and X:

L=Clip)sin® 0 /20, X — W' = fip)/p*CR?, (8)

where W’EBW/EJ‘p and /(p) and f(p) are arbitrary except
for the fact that they must satisfy

S =247GAl. (9)

Finally, we shall also require the perturbation to vanish
at infinite spatial distance, that is,

tim S _ i, S10)

p=a p p-a p

=lim W(r,p)
p—ﬂ

=1lim X(7,p) =0, (10)
p—-ﬂ'

where a stands for 1 when k = | and for o if k=0, — 1.

The problem we face can be stated as follows: Given the
values of the constants M, A, k, and A4 and the scale factor
R(7) satisfying Eq. (7), we seek a spherical surface 3 [with
the equations »=ry(r) in internal coordinates and
P =po(7) in external coordinates] and the functions
L(p,8), Wi(r,p), and X(7p) satisfying Egs. (8)-(10) in
such a way that the first and second fundamental forms are
continuous across the surface.

We shall work to order e throughout the paper, as indi-
cated above, and will comment at the end on the approxi-
mate nature of our solution.

ll. THE CONTINUITY OF THE METRIC

To analyze the continuity of the metric across the
spherical surface, we shall closely follow the method of “cur-
vature coordinates” of Refs. 2 and 3. Thus we shall change
the coordinates for the exterior metric from (7,0) to (z,r) by
means of the implicit equations

R(r)=¢(tr), p= r/e(tr),
with @ (z,7) defined (implicitly, again) by

F\(@(6,r)) + Fy(r/d(1,r)) = G(1), (12)
with a function G(7) to be determined later and with

(11)
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Fi(x) = —2[—«———_.,
87GA — kx + Ax3

Fﬂx):%ln[l—kle. (13)

A more explicit expression for F is discussed in Ref, 3.

Equations (12) and (13) are required in order to guar-
antee that in the new coordinates the coefficient of dt dr van-
ishes. Indeed, one can easily see that in the coordinates (z,r)
the exterior metric reads as

1 272
AR
4 B
+j;;dr2+r2a’w3~26rzsin26
X[(W——{gk’)ﬂda’
& JH
H _\¢' X
+[(W-;—2X)%+gjdr}d¢, (14)
where

HLD) = AR GAg T~ AP, - Bilpny < (PFRR.

Bltr) =1 —SwGAr'zgﬁ_J—/er:qﬁ"z(Dz»—rsz).
(15)

Next, we require continuity of the line element on the
spherical  surface 3 at, r=nii= R(T)py(1)
= &o(t,74(1))po(7). By comparing the coefficients of 472 in
Egs. (1) and (14), we see that??

Po= (2M /87GA)""* = const. (16)

Using Egs. (12) and (13) to analyze the continuity of the
coefficients of dt 2, we find

Fo=1r5*[ry— (M + Ar5) ] (2M + 27

—kporo)'(1 — kp2) =172, (17)

Equations (16) and (17) give the radius of the matching
surface in external and internal coordinates, respectively. By
using Eq.(16) and a solution 7o(1) to Eq. (17), the function
G(t) can be computed by means of the restriction of Eq.
(12) to the surface of matching, which gives the relation

G(1) = Fy[ry(1)/p,] + F5(po) (18)

and then ¢(#,r) can in principle be found from Eq. (129
This completely determines the change of coordinates in Eq.
(11) and guarantees the continuity of the metric to zeroth
orderin e

In addition, continuity of the coefficients of d dgp and
drdg, i.e., continuity of the metric to first order in ¢, gives

Wo=Co(1 — By)/piR B,

Xﬂzk(z_go)/pgkcogw (19)

where the subindex zero means that the expression is valid
only on the matching surface. Thus, for example, we have

Co=+1—kpi,
Bo=1—87GAR ~'p2 _ 4R “isk
=b0=1—2M/r0~—/1r(2,. (20)

Aguirregabiria et a/, 2205



In the particular case in whichA = 0, the results of Cha-
morro’ are recovered.

The matching surface can be seen as made of points that
slowly rotate along the geodesics, with equations given in
external coordinates by (5) with p = p, and in internal co-
ordinates by (17) and

AL S LR L T S P SR

i P

dt 7 2p;

IV. THE CONTINUITY OF THE EXTRINSIC CURVATURE

Since we assume that there is no singular domain wall at
the points on the matching surface—which are in free fall in
both metrics—we must require not only the continuity of the
metric, but also that of the extrinsic curvature, '

By using the results of Sec. IIT it is easy to see that the
outward normal unit vector in internal and external coordi-
nates is

ne™ = ( —pOR,C(,Bgﬁ 1,0,0),

ni*) = (0,RC:,0,0). (22)
We choose the intrinsic coordinates for X as (&,, &,
£,) = (7,0,p); the associated basis of tangent vectors in in-
ternal coordinates is

efly =GB R 00), 2 =1001,0),

ef,y = (0,0,0,1) (23)
and in external coordinates the basis is

e(a.-] = (I?OJO}O)J e?ﬁ) 5= (01011}0)!

e,y = (0,0,0,1). (24)

It is possible to see that the components of the extrinsic
curvature

de(, o ¥
KU e h‘a(o,,é_j =+ rﬁ}/el(gi)e(ﬁ)’ (25}

as computed in both types of coordinates, are exactly the
same at zeroth order in €, but now we have the following
first-order terms:

1 :
Kt = ein’ e
4qf‘ 2

” (3B,—2C3)(1— B,) — Ap R *B,
pOJ?BO !

K3 =esin® GoRCo[po(Xo — W) — 2W,]. (26)

In consequence, using (19) we see that one must also
require that W and X satisfy, at 2,

Xo— W4 =6M/piR>C,, (27)
which reduces to the condition found by Chamorro® when
A=0

By a straightforward extension of the analysis in Ref. 9 it
is possible to show that there exist the functions L(p,d),
W(rp), and X(7,p) satisfying Eqs. (8)-(10), (19), and
(27). This solves the proposed embedding problem.

V. FINAL COMMENTS

To match both metrics we have passed from the coordi-
nates (7,p) to (r,r) by means of (11). It is equally possible,
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of course, to express the coordinates (4,r) in terms of (7,p).
Infact, the necessary inverse change of coordinatesisaslight
extension of the change used by several authors'*'? to deal
with the model of gravitational collapse of Oppenheimer and
Snyder? and its rotational perturbation.'” Although the to-
pology and physical meaning of both problems are complete-
ly different, the local problem of matching both metrics at a
spherical surface is mathematically the same as the one dis-
cussed above. The only different minor details are the rela-
tive positions of the vacuum and dust solutions and the fact
that in the problem of collapse one selects length units to
have k = 87GA > 0. Of course, there is no A term in the
latter problem and instead of Eq. (10) other conditions'?
must be imposed.

In order to establish the relation between these two-
changes of coordinates used in different kinds of problems,
we shall sketch the procedure to match both metrics in the
coordinates (7,0). The change from the coordinates (z,7) to
(7o) is given by

s r=pR(7), (28)

t____CJ___EiR___
~ %) By(R)R(R)

where the function S(7,p) must be determined in the match-
ing process. The latter can be accomplished in a way similar
to that used in Secs. II-IV to obtain, obviously, the same
final results. The relation between the changes (11) and
(28) is given in terms of the functions defined in (13) by

S(r,p) = UF(R(7)) + Fa(p)), (29)

where the function U is implicitly defined by means of func-
tion G(1):

G(_cojﬁﬂm ):x. (30)
By(RYR(R) | k= vin

Finally, we want to comment on the approximate nature
of our solution. The problem has been solved to first order in
the rotation parameter €. If higher orders were considered,
new features would appear in the situation. In fact, it is to be
expected that the solution to second order in € should require
in general a nonspherical shape for the boundary of the De-
mianski cavity. This is so because the centrifugal force only
becomes effective to second order in the angular velocity of
the dust (second order in €), therefore distorting to this or-
der the originally spherical shape of the boundary. The rate
of expansion of the boundary should also be in general lati-
tude dependent in the second order, with that dependence
determined by the initial conditions of the dust. This bears
some resemblance to the results obtained by Brill and Co-
hen'® and Pfister and Braun'” in their studies of the Machian
induction of the inertial forces by a rotating shell. Pfister and
Braun were able to extend Brill and Cohen’s induction of the
Coriolis force (first order in the angular velocity of the shell )
to the centrifugal force (second order in the angular velocity
of the shell) by allowing for a prolate shell and a latitude-
dependent mass density instead of the spherical and homo-
geneous shell considered by the latter authors.

It is perhaps worth stressing that our results do not
guarantee the existence of an exact exterior cosmological
solution matched to the Demianski cavity, However, the
possibility of obtaining first-order results is a necessary con-

R=5(7p)
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dition for such a solution to exist at all.

We do not see @ priori reasons suggesting that an infinj-
tesimally thin wall at the boundary of the cavity must be-
come necessary at higher orders. Postulating singular do-
main walls in embedding problems relaxes the requirement
of the matching of the extrinsic curvatures and therefore
makes the embedding much easier. However, under the usu.-
al conditions of our present universe, most embeddings with
an infinitesimal wall should be regarded as limiting cases of
the more realistic smooth embeddings, where continuity of
the extrinsic curvature holds in addition to that of the met-
ric. An example in this direction is that of expanding voids in
the universe: Their relativistic treatment has usually been
undertaken within the context of the thin wall approxima-
tion.'"® However, the existence of expanding voids without
thin walls smoothly embedded in asymptotically Fried-
mann-Tolman universes can be shown, !
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