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ARE WE CAREFUL ENOUGH WHEN
USING COMPUTER ALGEBRA?

J. M. A%liirregabiria, A. Hernandez,

and M. Rivas

C omputer-algebra systems are gaining increasing accep-
tance in the everyday work of physicists and students
of physics. There exist affordable programs that run on the
cheapest computers, and even the hardware necessary for
the most complex and expensive programs has been con-
tinuously decreasing in price. Nowadays, computing a ra-
tional integral by hand, or with the help of a table, is be-
coming nearly as rare as computing a logarithm by looking
at a table. Furthermore, the widespread availability of
computer-algebra programs may help to introduce new top-
ics in graduate and undergraduate courses and teach stan-
dard topics in a fresh way.’

But, despite the advantage of computer algebra, we
cannot avoid expressing some concerns about the way in
which students are starting to use computer-algebra sys-
tems. When we see students using pocket calculators to
compute \/5 or cos 0, we know that, at least in these cases,
they will get the right answers. Unfortunately, computer
algebra, especially if it is used without extreme care, may
not always give the right answer.

Introductory textbooks on numerical calculus usually
discuss to some extent the different types of error that un-
avoidably arise in numerical computing. One might be
tempted to assume that symbolic computing (as opposed to
numerical computing) is “exact,” whereas errors in numeri-
cal calculus occur because of its “approximate” nature. In
fact, computer-algebra systems are complex, with room for
bugs and subtleties. For obvious but not always the right
reasons, manuals of most computer-algebra systems pay
little attention to the limitations of the programs. Often left
unstated is the fact that some functions or commands may
give symbolic answers that either are incorrect or have a
limited domain of validity. Moreover, although it is easy to
teach algebraic properties to the computer, analysis is often
subtle, and the abilities of computer-algebra systems are
impressive but always limited and completely unintelligent.

Consequently, we think that obtaining incorrect or mis-
leading results when using these systems may occur more
often than when employing numerical codes. Therefore, we
need to provide our students with instruction in the use of
computer algebra.

The aim of this article is to present ideas and examples
(most of them extracted from actual work in physics prob-
lems) that could be helpful in computer-algebra training. To
discuss the examples, we shall be working with four of the
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most widely used computer-algebra systems: Derive,

MACSYMA,? Maple,“, and Mathematica. Although the
first system is much smaller than the others, it is useful,
inexpensive, and runs on the most humble personal com-
puter. The last three are complete and complex programs
that have versions for many computer types. However, a
larger hardware configuration is needed for their use.

“True” bugs

In practice, all nontrivial programs have errors, and so
it is not surprising that every computer-algebra system has
bugs and occasionally gives erroneous results. [n fact, these
systems may have programming errors that give incorrect
mathematical answers as well as bugs or limitations in the
user interface. Moreover, it is not always easy to interrupt
run-away calculations. Abrupt exits (due sometimes to poor
management of stack and memory resources) sometimes
give users little opportunity to save their work.

Although we have found bugs in every computer-
algebra system that we have tried, we will not discuss them
here, because they are program-dependent and change from
version to version. We wish to discuss problems of a po-
tentially more serious nature. They are problems that cannot
be called “bugs,” because they do not cause anomalous
behavior against the explicit intentions of the developer.
They are contrary to users’ needs. In some cases, explicit
design options lead to results that are outright erroneous.
For instance, let us assume that a lazy student is asked if the
function x~° is integrable over the interval (—1,1). If the
student types the equivalent of JL,dx/x?, the answer will
be incorrectly given as —2 in Derive and in all but the latest
version of Mathematica! Of course, a careless student might
obtain by hand the same answer, by blindly applying Bar-
row’s rule, but this is no excuse for the software’s giving the
wrong answer, just as the fact that some students are unable
to compute, say, square roots, would not justify calculators’
returning completely erroneous answers when computing
them. Maple, which always tries to ascertain if a primitive
is continuous, gives the right answer in the latest version,
whereas it returned the integral unevaluated in previous ver-
sions. MACSYMA also recognizes that the integral is di-
vergent.

Limited domains of validity

Computer-algebra systems not only sometimes give er-
roneous results, they also may give results that are only
correct over a limited domain. Sometimes the assumptions



Potential _
>V 1= 1/sqrE(r*2+(z-I)*2)+1/sgrt(r 2+ (z+I)*2):

Electric field
> Er := -diff(V,r):
> Bz := -diff(v;z):

Laplace's equation
> simplify(Aiff(r*diff(V,r), ) /r+diff(V,z52));
0
Charge density
> limit (Ez,2=0,right)-limit(Ez,z=0,1eft);
0

PlotEzforr=0
> plot (Re(subs({r=0,Ez)),z=-5..5);

Total charge
> simplify(int (r*Er,z=-infinity..infinity));
4

Figure 1. Maple “worksheet” shows results with a limited domain of va-
lidity for the charge density o and total charge g of potential (1) and an
erroneous plot for E, along the axis r=0.

are not stated explicitly with the results. (In some cases,
short notes about the corresponding functions appear in the
instruction manual—but not always.)

Consider this example. Some time ago, a colleague
asked us if the following function in cylindrical coordinates

(?’, o, Z),
1 / 1 1
V= : 4
8meo\ V2 (z—1)? \iP+(z+i)?

could be considered as an electrostatic potential. One can
easily see by using any computer-algebra system that V
satisfies Laplace’s equation. (This fact is obvious because V'
is formally the potential of two point charges g =1/2 located
at points r=0, z= *{.) So, it is rather natural to ask if the
function can be considered as the electrostatic potential of a
charge density with physical meaning. It is also apparent
that V is real except perhaps in the disk {z=0, r?<1}, and
a little thought shows that the discontinuities (i.e., the
charge) must be located precisely in that disk.

The surprise arises when computing the charge density
in the disk by using

(1)

( Iim E lim E,) li i li o
0= € 1im = lm =€ m. === 1l ==
y z—0+ : g—=l= : . z2—0~ dz z—0+ dz

2

Potential
Inft]:=
V = 1/8qrt{r"2+(z-I}"2]+1/8qrt [r"2+(z+I)"2];
Electric field
infel:=
Er = -D[V,r] // Together ;
Ez = -D[V,z] // Together ;
Laplace's equation
Inf4):=
D[r D[V,r],x]/xr+DIV,{2,2]] // Together
Qulf4)=
0
Charge density
Inf5]=
Limit [Ez,z->0,Direction->1]-Limit [Ez, z->0, Direction->-1]
Outf5]=
0
PlotEzforr=0
Inf6]:=
Plot[Ez /. r-»0, (z,-5,5), PlotRange->{-2,2});

Total charge
Inf7]=
Integrate[r Er // Simplify, (z,-Infinity,Infinity}) //
Simplify
oul[7)=
4

Figure 2. Mathematica “notebook” shows the same limited domain of
validity as in Fig. 1 for the charge density o and total charge q of potential
(1), but produces a correct plot for E,.

The four programs give the same answer: zero. One could
be tempted to think that, if four independent programs give
the same answer, it must be correct. In this case, however,
even this wide agreement is not enough to avoid an erro-
neous conclusion. Let us assume that we are careful enough
to plot £, for r=0 and —5<z<5. If we use Maple, we could

be completely convinced of the rightness of the null result,
because doing the plot before simplifying £, shows a con-
tinuous function (see Fig. 1). As shown in Fig. 2, if we use
Derive or Mathematica, we see that E, has a jump trough at
z=0 (the same can be done by using MACSYMA, but two
plots, one for z<<0 and the other for z>0, seem necessary).
This example is a clear indication that something is wrong
with the symbolic result. In fact, it is not difficult to check
by hand that

1
-;—(1“7'2)73]2, if r<i;
2T (3)

o=

0, otherwise.

So, the answer for o was not exactly wrong, but rather
it was only valid for r>1, though no indication of this range
was given by any of the programs. Probably the four
programs were assuming /(#*—1)? =#* —1, which is not
always true. This assumption also explains Maple’s errone-
ous plot; apparently the program uses this symbolic simpli-
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fication before evaluating the numerical result.

Derive has the nice possibility of declaring the domain
of a variable. It is then possible to choose 0<<r<C1. But if
this is done, the program exhausts all memory and returns,
after a long time, with no result. It seems that Derive is
using I’Hospital’s rule in this case to compute limits. The
difficult point is the calculation of lim,_,y.z/R, where

R= \/ V2222 (P2 D) + (- 12 +22+r2—1. (4)
Applying 1'Hospital’s rule once, one obtains
z 1 1-r? . R

lim —= lim
SR e dRfE 2

The desired result is essentially contained in the
above expression, but a blind repeated application of
I’Hospital’s rule will obviously lead to an endless loop.

Mathematica tetums Ty J(rP—1)2—1+r2  for
lim , o+ R/z, which at least suggests that something is
happening. Surprisingly, Mathematica gives 0 for
lim,_,y.2z/R. Maple’s latest version has an assume com-
mand that does not change the behavior described before.
Maple always gives 0 for lim, _, ¢ z/R, because it simplifies
\f_f =g, even if it is said to assume a<<0. (The answer (o

llrnz_,0+R/z is o sign(yr’—1).) MACSYMA asks if
ri—1 is positive or negative, but always returns 0 for
lim,_y-2/R, and leaves lim,_y.R/z unevaluated if it is
told that \(r>— 1) + r? — 1 is zero.

The charge density in (3) diverges as r—1, and it is
easy to check that (3) gives an infinite charge for the disk.
So, one expects an additional infinite charge located on the
disk edge because the potential is regular outside the disk.
Although now it is clear that (3) does not represent a real-
istic electrostatic potential, one can still compute the total
charge by applying Gauss’s theorem to an infinite cylinder
of radius r around the axis OZ:

o0 o0 (9V
q=eOJ' 27rE, dz:—Zweorf E‘-dz. (6)
Derive and MACSYMA are not able to calculate (6) with-
out further help,® and Maple and Mathematica give the
same result, 1, with no indication that this answer is valid
only for r>1.

To find the electrostatic field created by a cylindrical
charge density o o z sin ¢ by direct application of Cou-
lomb’s law, we needed some time ago to calculate the fol-
lowing integral:’

fﬂ cos ¢(cos ¢—x)de

— (cos g—x)*+(sin o—y)*

it x2+y%<1;
it x2+y*>1.

‘l ~m(2 =y yP), .

Although the answer is not difficult to obtain by using com-

plex variable techniques, it is even easier to tell the com-
puter to do it for you. At that time, Derive was unable to
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solve the integral correctly, and Mathematica returned only
the last value (its latest version is no longer able to return
any result in this case), but our knowledge of the physical
problem told us that the result should depend on the sign of
x4y 2—1. In this case, Maple gave us the right answer.
MACSYMA and the current version of Derive also give the
correct result.

Another kind of difficulty arises because computer-
algebra systems are not able to use all the mathematical
rules they know in the right places, as in the following
example:

7
A
lmé sin®p+(1—¢)cos’p—1 o ®

Derive gets the right trivial answer of this fake limit, but
MACSYMA, Maple, and Mathematica (the big systems!)
give 0 because they fail to recognize the most elementary
trigonometric identity. If you try an expansion in powers of
€, the last three programs 2gwe a completely absurd series in
powers of e/(cos @+sin“g—1). Of course, this is a rather
artificial example and it is sufficient to simplify the function
before applying the limit to get the right answer. But the
same problem arises in the following example,

€
lim
e—0 1+e€ sin ¢+ Vi—¢€ cos” p—1
2 9
T 1-2 cose’ ©)

and more involved expressions. Moreover, the trouble can
become really serious if this kind of difficulty happens in
the middle of a very complex computation, where interme-
diate results are not even seen by the user.

Helping your system

Another problem that sometimes arises is that students
erroneously assume that computer-algebra systems always
know more than they do about how to compute some ex-
pressions. For instance, if a computer-algebra system re-
turns an integral unevaluated, a student could be tempted to
think that there is no exact solution in terms of known
functions, that solving the integral is exceedingly compli-
cated, or that very sophisticated methods are needed to
evaluate it. However, even though it is true that computer-
algebra systems use powerful and general algorithms,
sometimes a more elementary approach proves useful.

The following example was posed to us by a colleague.
He wanted to check the value of the following integral
appearing in a paper®. that dealt with the evaluation of a
class of diagrams in many-body theory:

J’ x ; c+dx?+xJa+bx*
o
Ja+bx? gC"'dxz'x\/aerxz

Maple was not able to evaluate this integral on its own (and
the same happens with the other systems), but if it is in-
structed to do the elementary integration by parts, step by
step, the (rather involved) result can be readily found (see
Fig. 3).

dx. (10)



Intermediate expression
> 8q := sqgrt(a+b*x+2):

The integrand
> 11 := x/8q*ln( (c+d*x*2+x*sq) / (c+d*xA2-x*sq) ) :

Maple cannot compute it without help

> int(id,x);
xh{c+dx2+xja+bx2J
dx

___c+dx2—xja+bx2
Ja+bx2

Instruct it performing integration by parts
>u := int(x/sq,x):

>V o= ln((c+d*x“2+x*sq)/(c+d*x*2—x*sq)):
> Av := simplify(diff(v,x)):
> r := u*v-int(u*dv,x):

Check the result
> normal (diff(r,x)-1ii);

>

Figure 3. Integration by parts helps Maple to compute the integral (10).

To evaluate the power dissipated by the Joule effect
due to the current induced inside a conducting sphere by a
point charge moving in its nei%hborhood, we needed to
compute an integral in the form:

J‘ E?sin 8d6, (11)
0

where

F 1 [a cos?6+b cos f+c
" sin 6] (1—2r cos g+ 72572 S ¢ (12)

is a component of the induced electric field. Derive, Maple,
and Mathematica were unable to compute (11). It is easy to

see that, by using z = y1—2r cos 6+ as the integration

variable, one obtains a rational integral that can then be
evaluated. After some flags have been carefully set,
MACSYMA is able to compute (11), but the work needed
to obtain the final compact result is greater than that in-
volved in instructing the program to use the transformation
just discussed.

Although summing the series,

i (2n+1)(n+1)b" 3b 5%

P ~1=5 =gy il b

n=1

(13)

is not too difficult, our computer-algebra systems failed to
obtain the result. Nevertheless, by instructing Maple to first
expand the general term, the program was able to find the
sum. (The latest version of Mathematica is able to compute
(13) with no help.)

The preceding examples clearly show that elementary
calculation techniques must still be taught to students, be-

Infi):= T

<< Utilities'ShowTime"

Direct integration
Inf2j:=
il1[£ ] := Integratelf, (x,0,2Pi}]
0. Second
First expand the integrand, then integrate each term
Inf3]:=
i2(£f_] := Map{Integrate[#,{x,O,ZPi]]&,Expand[f]]
0. Second
The integrand
Inf4):=
f = Sin[x)+3Cos(2x];
E-= (f-Normal[Series[f,{x,l,d]]]}“z;

0. Second
6.32 second

Use both methods
Inf6]:=

rl = I1[E]

5555.89 Second
Inf7]:=

r2 = i2[f£] ;

104.2 Second

The results must agree, of course
Inf8):=
rl-r2 // Expand // Simplify
18.78 Second
Out{8]=
0

Figure 4. Telling Mathematica to use linearity of integration speeds up the
calculation of (13).

cause a program may not always apply them as necessary.
Also, some calculations seem never ending or exhaust
computer resources prematurely. In some cases, a little help
may allow the program to complete the task or complete it
faster.
Assume that we want to compare different power ex-
pansions of f6),

") g
g(0)=2 L,f,—”—%e—ewﬁ (14)
k=0 :
by using the L? norm:
27
iff—gHZEfO (f(8)—g(8)%d6. (15)

By choosing f=sin(6)+3 cos(26), 6,=1, and n=4, we see
in Fig. 4 that a direct application of (15) in Mathematica
takes fifty times longer than instructing the program to ex-
pand the integrand and apply the linearity of integration.
Furthermore, this speed-up grows dramatically with n.
Again, the computer-algebra system was not “intelligent”
enough. On the contrary, MACSYMA computes the unex-
panded integral faster. (For the expanded integral it seems
to use complex-variable techniques.) Derive and Maple are
very fast in both cases. These different behaviors also show
that knowledge of the weaknesses and strengths of different
computer-algebra systems may save time by helping the
user to choose the most appropriate system in each case.
In some cases, rather than explicitly defining certain
quantities, it is better to make use of properties that directly
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Direct definition of the set of integrals
Inf1]:=
i0[k_,p_,g) := 1/Pi Integratel
z~(2 k)/
({a*2 z"2+b"2)"p (c"2 z"2+d"*2)"q),
{z,-Infinity, Infinity}]
Properties of the family
Inf2):=

ilo 1,0 1= LA0a B
Inf3]:=

i00,0 ,1 1 = 1/4c &) ;
Inf4):=

if0 ,p..0 l:= i[0,p,0) =

D{i[0 ,p-1,0 ],b)/(2 b(l-p))
Inf5):=
i 0 ygl)e== 1[0,0,q] =
Dlifo ,0 ,g-1],d]/(2 d{l-q))

Inf6]:=
il .pi.g )= i00,pq] =
(a~2 i[0,p,g-1)-c"2 i[0,p-1,q9])/
fan2 :d72-b%2' c”2)
Inf7}:=
ilk_,0 ,q. l:= i[k,0,q] =
D[i[k-1,0 ,g-1]),cl/{2 c(l-q)!

In[8]:=
ilk_,p_,al:= i[k,p,q] =
{ifk-1,p-1,q]-b"2 i[k-1,p,qgl)/a"2
Compute an integral by using both methods
In[9]:=
{cl,r1l) = i0[1,2,3] // Together // Timing ;
Inf10j:=
{t2,r2) = i[1,2,3) // Together // Timing ;
Relative computing time
Inf11):=

tl/t2
outf11}=

11.5829

Check that both results agree
Inf12}:=

rl-r2 // Together // PowerExpand /.

{Sqrt[x_*2] :> x, sartly_~(=2)] :> 1/y)

oul{12)=

0

Figure 5. Teaching Mathematica some properties of integrals in (16) leads
to a far more effective way to compute them.

influence the calculation to be performed. Several years
ago, for instance, in order to calculate the electromagnetic
angular momentum radiated by a system of two interacting
point charﬁes, we needed to compute a set of integrals of
the form:'

(0sk<p+q).

(16)
Our old computer-algebra system’! was unable to compute
these integrals except in the most trivial cases. A little
thought convinced us that all of the required integrals can
be derived hy differentiation and algebraic operations from
the elementary result

I —Jw _E gl 17
010~ " (a222+b2) dz_ab‘ ( )

This observation gave a fast solution to our problem. Our
computer-algebra systems are now able to compute such
integrals, but the same trick speeds up calculations in a
spectacular way. As can be seen in Fig. 5, Mathematica
needs more than ten times longer to compute I, by evalu-
ating the integral in (16) than by using the properties of the
family of integrals. So, these types of tricks could prove

i 42k
Ikpq:J’Wm (ﬂ222+b2)‘p(6222+d2)q dz,
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valuable if many such integrals must be computed. In Math-
ematica, one does not have to deal with annoying terms in
the form of va® and \/IF In the other three computer-
algebra systems, the performance gain is very similar, but
this approach may prove less useful, because the definition
of the relation among integrals is not as natural as in Math-
ematica, and a short, but more traditional programming job
is necessary.

Final comments

Some issues discussed in this paper are not exclusively
related to computer-algebra but are also applicable to cal-
culations performed by hand or by using tables. In fact,
sometimes there are more possibilities of error if a careless
student uses tables instead of a computer-algebra system.
For instance, computing

f < x2dx (18)
s {1+z%)

by using Barrow’s rule with the following primitive that can
be found in well-known tables:'?

2P dx 1 =2 x+1 V2x
j = log +2tan~! ——¢ ,
(A+x% 42| Cxi+\2x+1 1=x
(19)
might lead to the conclusion that (18) is null, though it is an
obviously ridiculous result for the integral of a positive
function. The reason is, of course, that the primitive is not
continuous over the interval. In this case, however, our four
computer-algebra systems give the right answer, perhaps
because they use the following continuous primitive,

x2dx 1 xz—\/fx+1 =
f (1+x“):4\/5[1°gx2+ V2x+1" 2[tan”(y2x+1)
+tanl(\/§x—1)]], (20)

which differs from (19) by a function that is only piecewise
constant.

Nonetheless, since computer algebra allows very com-
plex calculations to be attempted, which are often per-
formed in an automatic or semi-automatic way, there is
more place for errors. For instance, it is not rare for there to
be many intermediate results that are not even seen by the
user, or which are so complex that there is no hope to check
them.

We do not blame computer-algebra systems. After all,
we use them all the time! But we think that one must first
learn to use them and, then, be very careful. We recommend
the following check list of remedies that always prove use-
ful for verifying calculations performed by hand or by a
computer-algebra system:

¢ Use common sense and your previous knowledge of
the problem to check if the result is plausible.

* Perform the calculation in more than one way.

* Check particular cases. Sometimes, exact cases are
known, or one can evaluate some of them numerically.
Graphics are also helpful in this respect.

 Use more than one computer-algebra system. This is
useful not only for checking the validity of results, but also



because each system has its own strong points and performs
some calculations better than the other systems. Note that
this recommendation is equivalent to having a colleague
check your calculations or apply techniques that you have
not yet mastered. (Unfortunately colleagues and additional
computer-algebra systems are not always available.)

One more thing, if you find a true error in a computer-
algebra system, please inform the publisher. If the error can
be corrected in the next version of the program, you will
help other people save valuable time.
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