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The equilibrium configurations of several different systems of pointlike charges placed on an
ellipse are considered. The suitability of these discrete systems as models for finding the
equilibrium charge distribution in a conducting wire of negligible cross section is also
discussed. This example might prove useful in a course on computational physics, especially in
order to illustrate the dangers of naive discretizations of continuous physical problems.

INTRODUCTION

The problem of finding the equilibrium charge distribution
in a conducting wire with negligible cross section has re-
cently been considered by Ross.! In his paper, a discrete
system of point charges is substituted for the continuous
problem. This, in turn, suggests analyzing and comparing
other discrete systems that could also be considered as na-
ive models for the same continuous problem.

It should be noted that we want to consider the dis-
crete models as physical systems by themselves. Analogous
discrete problems, which refer to charges or magnets
placed instead on a spherical surface or in bounded regions
of the plane or the space, have received quite a lot of atten-
tion?”" in the last years.

Nevertheless we shall also discuss the suitability of the
discrete physical systems as models for the continuous
problem, in particular in relation to the method of mo-
ments,*19

We think that this problem could be a useful example
for a course on computational physics. Indeed, several dif-
ferent numerical techniques can be tried, compared, and
tested in its analysis. Moreover, it can be useful for discuss-
ing the most fundamental concept of computational phys-
ics: discretization. As we shall see, different discrete mod-
els that seem, at first sight, to be plausible models for the
continuous problem will give different results for the linear
charge density. Furthermore, all the numerical computa-
tions described below can be done rather easily on a micro-
computer and the necessary numerical techniques and
codes are well described in textbooks and widely available
in different computer languages and formats.'!

I. THE CONTINUOUS PROBLEM

Ross! considers an elliptic shaped conducting wire in equi-
librium with total charge Q. The dimensions of the cross
section are assumed to be negligible compared to the ellipse
axes, and the unknown to be found is the charge distribu-
tion per unit length.

The method of Ref. 1 is based on an equilibrium condi-
tion, the wire must be equipotential, and on a discrete mod-
el for the wire: It is divided in N pieces subtending the same
polar angle from the center and each piece is replaced by a
point charge g, located in the middle and whose polar angle
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is 2mi/N, r, being its corresponding position vector. The
problem is thus reduced to the solution of the linear system
formed by the N equations, which state that the potential ¥
is the same in the N sites of the charges and the condition
that the total charge is O:
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i=1
This system can be solved for the N + 1 unknowns
(the N charges ¢, and the potential V') and the linear den-

sity at each site is defined as 4, =¢,//,, where /, is the length
of the corresponding piece of wire. The results obtained by
Ross are rather surprising and, we think, incorrect. The
linear charge density is far more discontinuous (in the fig-
ure of Ref. 1, values that seem to be strictly null appear
close to rather high values) than what can be expected by
elementary physical intuition. Moreover, we think that
these unacceptable results occur not only because the num-
ber of points V used is not sufficient for the cases analyzed
but also, and more important, because the method is not
correct, as we shall discuss now, and later in Secs. II and
Iv.

In fact, we can interpret system (1) in two apparently
similar yet very different forms. First, we can think that it is
a discrete mathematical approximation to the equations for
the continuous case, which would be something like

- AV yse0), (2a)
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3‘3 A(s)ds' = Q, (2b)
=

where s is the curvilinear abscissa along the ellipse C. The
difficulty is that the first integral in (2) has a logarithmic
singularity when s =s". So Egs. (2) are not valid for the
wire and system (1) should be an approximation to incor-
rect equations. On the other hand, the method can be seen
as a variant of the point-matching approximation in Ref. 8,
but the important—in fact, infinite—contribution to the
potential ‘of the division of the wire where each point is
located is simply ignored.



The second possible interpretation for system (1) isto
consider the discrete model as a physical system by itself,
i.e., like IV real point charges restricted to move on an el-
lipse. In the realm of this second interpretation, the prob-
lem consists of finding for what values of the N charges
these stay at rest in their initial positions. From this point of
view, we might perhaps expect that in the limit N— o the
result for the linear charge density in the equilibrium con-
figuration of this discrete system will be similar to the one
corresponding to the continuous case. As we shall see,
however, this cannot always be the case.

Furthermore, though in this discrete system there is
no divergence—because, as usual with point charges, the
self-contributions are ignored—the right equilibrium con-
dition is not that the potential must be the same on all
charges. In fact, the necessary and sufficient condition for
the point charges to be at rest is that they are under the
action of an electric field that must be normal to the ellipse.
In the continuous case, the fact that the potential is con-
stant on the surface of a conductor is strictly equivalent to
the vanishing of the tangent component of the electric field
in all points of that surface. But this is no longer true in the
case of the discrete physical system, as we shall show in Sec.
IIL.

In the following, we shall deal mainly with the discrete
systems and their possible connection with the continuous
conducting wire will only occasionally be considered until
Sec. IV.

Il. A FAMILY OF DISCRETE PHYSICAL SYSTEMS

We shall consider a class of discrete physical systems in
which N point charges are located initially at certain points
on an ellipse and free to move along it. The goal is to find
the values of the charges g; for which every charge remains
at rest in its initial position. We shall use for the ellipse a
generic parameter p in such a way that the locations of the
N charges are determined by the values p; (see Fig. 1).
Since in the equilibrium configuration the electric field on
each charge must be normal to the ellipse, the unknown
values ¢, must satisfy the equations

N 1 T
1 GO T g =120, (3)
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where 1, is the unit vector tangent to the ellipse at point
r, =r(p).

First, we need to know if this linear system has a solu-
tion and if this is unique, i.e., we must compute the rank of
the N X N matrix A with elements

A;=(r, *rj)"";/'r.' _rj‘s (hj=12...N). (B

The computation of this rank is an interesting application
of singular value decomposition techniques.'' The results
we found can be summarized as follows:

(1) If the charges are located at random positions,
rank 4 =/ and the only solution is the trivial one:
G=g=""=qy=0.

(2) If the sites are symmetrically distributed—at
points with polar angles 6, = 2ri/N, forinstance— and the
number of charges is odd, rank 4 = N — 1. The indeter-
minacy resulting from this can easily be removed if, after
giving the total charge Q, we replace any one of the equa-
tions in system (3) with Eq. (1b).

if

1y

N

FIG. 1. In all figures &V point charges are located on an ellipse at equidis-
tant valués of the parameter p (here, p = ¢). The semiaxes are ¢ = 2 and
b=1

(3) If the charges are symmetrically distributed and
their number is even, rank A = N — 2. In these cases, there
are an infinity of solutions, even after removing the invar-
iance associated with the total charge. The reason for this is
the high symmetry, as can be easily understood in the sim-
plest cases. Indeed, any two charges, g and Q — g, located
opposite each other at the ends of the major—or minor—
axis will stay at rest. The same happens with four charges,
two of the same arbitrary value g at the opposite sides of the
major axis, and the other two of value Q /2 — g at the ends
of the minor axis. In the same way, it is easy to convince
oneself that the solution will not be unique in cases with
more charges but the same high symmetry.

So, in order to have a unique solution, we shall only
consider an odd number of charges distributed in a sym-
metric fashion. Although this can still be made in many
different forms, we shall only analyze three of the most
natural ones. To do that, we shall consider three families of
physical systems constructed by parametrizing the ellipse
by three different parameters: the polar angle € (as made
by Ross) '; the angle ¢ for which the equations of the ellipse
are x = a cos ¢, y = b sin ¢ (a and b being the semiaxes of
the ellipse); and the curvilinear abscissa s given by the
length measured along the ellipse and scaled in such a way
that the total length of the ellipse is always 27. In any case,
the charges are located at points p, =27i/N
(i=1,2,...,¥) and the linear system (3)—with an equa-
tion replaced by Eq. (1b) with Q = 1—can be solved, for
instance, by means of the LU decomposition.'' This gives
us the values of the charges necessary to have an equilibri-
um configuration.

If we want to compare the results obtained for dif-
ferent physical systems with different values of & and for
different parameters, we need to define a common quantity
for all of them. The most natural candidate—especially if
we expect the results to have some relation to the original
continuous problem—is the linear charge density. So the
next step is to assign to each charge g; an arc of the ellipse
Di_ 1,2 <P <Diy 12~ Then we must compute the length of
the arc by using Romberg integration or a routine that ap-
proximates the elliptic functions,

Pi+ 172
i J' & g, (5)
Pi—1/2 dp

and, finally, we shall define the linear charge density at site
iasd; =g/l :

If the charges are located at points p; = 2mi/N, the
most natural choice for the division of the ellipse in pieces is

COMPUTERS IN PHYSICS, JAN/FEB 1990 Bl



0.18

0.16

Linear charge density

| N VT TR e T N RN O, I AN L VAN (O W 7 i 0, |

0.14

S N T e S B B S N N O S N I R S L O

0.0 i ;
Curvilinear abscissa

FIG. 2. Linear charge densities A (s) when the tangent electric field is null
in discrete systems with charges located at points with curvilinear abscissa
s 27i/Nand (a) N =25; (b) N=101; (¢) N=175.

totakep; 1, =4(pi—y +p)andp; 1 =30 +Pig 1)
We have made it and plotted A vs s for different values of V.
When the number of points is rather low, the result could
hardly be interpreted as a meaningful density because of its
up and down character [see Fig. 2(a) ]. In fact, this density
can even become negative for high enough eccentricities
with low values of N. Though the curves are always step-
wise due to the discrete nature of the problem, when N— oo
it can be seen in Fig. 2(b) and (¢)—and in other curves not
plotted for clarity—that they converge to a smooth limit. It
is thus possible for each parameter to attribute a definite
sense to the concept of linear charge density.

But, as shown by the results displayed in Fig. 3 for
N = 175 and for the three different parameters, @, ¢, and s,
i.e., different families of discrete systems give different lim-
ited charge distributions. So, at most, one of these families
can give the linear charge density corresponding to the con-
tinuous wire.

This illustrates rather clearly how, in some instances,
different discrete systems that at first glance could be
thought of as equally plausible approximations for a con-
tinuous problem can give very different results. Further-
more, the difference can be not only quantitative but also
qualitative, as seen in the case of parameter ¢ which gives a
charge density that is smaller at points where curvature is
bigger, contrary to the intuition for the continuous wire.

On the other hand, if we insist on interpreting system
(3) as a mathematical approximation to an integral equa-
tion associated with the continuous system,

1 A8 [r(s) —r(s)]r(s)ds’

4me, Je [r(s) —r(s)?
the differences between the limits obtained for the three
discrete systems, which can be seen as different methods of
constructing partial Darboux sums for this integral, reflect
its divergent nature.

Another reasonable method to share an arc of the el-
lipse between the two neighboring charges in order to de-
fine the charge density is always to halve its length, regard-
less of the parameter used to locate the charges. We have
also done that but, as expected, the results do not signifi-
cantly change when N is big enough.

As seen in Fig. 4, the value of the potential Fis not in
general the same at the sites of the different charges
(marked in the figure with vertical strokes), though, as
required by the equilibrium condition, the tangent electric
field is null at all these points. If, on the contrary, we re-

0, (6)
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FIG. 3. Linear charge densities A(s) for a null tangent electric field when
the N = 175 charges are distributed at positions p, = 2i/N, the param-
eter p being (a) the polar angle &; (b) the angular parameter d; and (c)
the length s measured along the ellipse. The three different discrete sys-
tems give different results, so at most one of them can be an acceptable
approximation to the continuous system.

quire with Ross' the potential to be the same at every site,
the tangent component of the electric field would not in
general be zero there, as seen in Fig. 5. This fact shows that
the two conditions are no longer equivalent in the discrete
model and invalidates, in our opinion, the results previous-
ly mentioned. Since each charge is affected only by the
fields of the others, Figs. 4 and 5 show in the neighborhood
of each charge the contributions to the potential and the
tangent electric field created by the remaining charges.
This is the origin of the apparent discontinuities of Figs. 4
and 5.

lIl. A MORE NATURAL DISCRETE SYSTEM

In this section we shall consider a different discrete phys-
ical system that could be thought of as a more natural—
though still naive—model for the continuous wire. Like the
electrons in a conducting wire, we think of V charges that
all have the same value, g; = 1/N. The unknowns will now
be the parameter values p, for charge positions in equilibri-
um configurations. Related problems of finding the equi-
librium configurations of NV pointlike charges free to move
on the surface of a sphere®* or in the interior of a circle,* a
sphere,’ or other volumes,® or in the case of magnets,” have
recently been considered. -
The system to be solved now is a nonlinear one and
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FIG. 4. Though the tangent electric field £ is null at all charge positions
(indicated by vertical strokes), the potential ¥ does not have the same
values at all these points. £ and ¥ are measured in arbitrary units and the
charges are located at equidistant values of the polar angle.
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FIG. 5. The same problem as in Fig. 4, but now charge values have been
computed, as in Ref. 1, in order to have the same Vat all sites. Since the
tangent electric field acting on charges is not null, this is not an equilibri-
um configuration, '

thus more difficult. Though this task can be accomplished,
especially if N is rather small, by means of the Newton—
Raphson method for nonlinear systems of equations,"!
better approach can be undertaken.

The condition of a null tangent field at each site is
equivalent to requiring the electrostatic energy,

1 1 1

v 4re, Nzgj|r,-~rj|’ AL
to be extremal. Indeed we are only interested in solutions of
minimal energy and these can be found by means of differ-
ent methods; we have tried with sugcess the Polak—Ribiere
variant of the conjugate gradient method and simulated
annealing.!! This approach is more efficient and has the
added advantage of not giving the unstable equilibrium
configurations (corresponding to maximum energy) that
are occasionally obtained by imposing the condition of a
null tangent field.

The results obtained by means of this method and
after dividing each piece of ellipse in two parts of the same
length assigned to the neighboring charges is presented in
Fig. 6. A comparison with Fig. 3(c) shows that the results
for this system are nearly the same as those obtained with
charges located at regular length intervals, which was the
most natural element of the former family of discrete sys-
tems. That suggests very strongly that Figs. 3(c) and 6 are
good approximations to the linear charge density of the
continuous orlgmal problem.

IV. FINAL COMMENTS

Back to the conducting wire problem, is it natural to ask
ourselves if it is possible to attack the continuous problem
directly by means of some variant of the method of the
moments.®'® As we have already said, the most direct ap-
proach by the point-matching approximation is not work-
able, because when computing the potentlal ata pomt the
contribution of the division of the wire in which it is located
is infinite. The solution by Ross," who skips this important
contribution completely, does not seem acceptable either.
Of course, another method could consist of taking into
account that the wire’s transversal dimensions are not
strictly null. But another approach is possible, and simpler,
which would consist of considering as equilibrium condi-
tion for the continuous system, instead of the constancy of
the potential, the physically and mathematically equiva-
lent condition of a null tangent electric field, as given by Eq.
(6). For this new condition, it is straightforward to design
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FIG. 6. Linear charge density A(s) corresponding to minimal electrostat-
ic energy when NV = 175 equal charges are free to move on the ellipse.

avariant of the point-matching approximation in the meth-
od of moments.® The problem is, as before, that at each
point the contribution of its own wire division is in general
infinite. But—contrary to the case of the potential, where
this contribution is necessarily infinite—we can now care-
fully select each division in order to have a null self-contri-
bution to the tangent electric field. It is sufficient to take, in
the limit N— oo, the division as a very short straight seg-
ment of wire with the point where the field is computed
located precisely in its geometric center. In this case the
self-contribution is obviously null by symmetry.

But the method just described is exactly equivalent to
the discrete system obtained when in Sec. II the selected
parameter was the arc length s, and only to it. And this
system was precisely the one that gave the same charge
density that the more natural system considered in Sec. III.
We can thus consider that discrete system as the simplest
variant of the point-matching approximation in the meth-
od of moments that can be applied to the continuous wire
problem.

From a mathematical point of view, that discrete sys-
tem can be seen as a careful way of defining partial sums
that give in the limit a sense to the divergent integral (6) in
a way very similar to Cauchy’s principal value. The same
cannot be done for integral (2a) because its integrand is
definite.

We think these are convincing reasons to accept Fig.
3(c) or 6, as a meaningful approximation to the linear
charge density of the continuous conducting wire problem.
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