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Abstract.
The classical description of elementary spinning particles shows that the center of mass and

center of charge of an elementary particle are different points. This separation is half Compton’s
wave length and because of this the interaction of two electrons with their spins parallel can
produce a bound pair provided the internal phase is opposite and the relative velocity of their
centers of mass is below a certain limit. It is also this separation which justifies that an electron
under a potential barrier can cross it with an energy below the top of the potential provided the
spin is properly oriented and the barrier has a narrow range. This can justify the spin polarized
tunneling effect.

1. Two centers
Let us think that the following classical analysis was performed before 1920, i.e., before the
emergence of quantum mechanics. The assumption is that the center of mass q and the center
of charge r, of a charged elementary spinning particle are two different points. If this is the case
we can define the angular momentum of the particle with respect to both points. Let us call S
the angular momentum w.r.t. the center of charge (CC for short) and SCM the corresponding
angular momentum w.r.t. the center of mass (CM for short). They are not independent, because
if p is the linear momentum of the particle, then SCM = (r−q)×p+S. But both spins satisfy
two different dynamical equations in the free case and under some external electromagnetic
interaction.

For any arbitrary inertial observer, the total angular momentum of the particle w.r.t. the
origin of observer’s frame can be written either as

J = r × p + S, or J = q × p + SCM .

If the particle is free, J is conserved and thus

dJ

dt
= 0 =

dr

dt
× p +

dS

dt
, or

dJ

dt
= 0 =

dq

dt
× p +

dSCM

dt
,

so that
dS

dt
= p× u, or

dSCM

dt
= 0,

because the conserved p is along the CM velocity v = dq/dt, but not along the CC velocity
u = dr/dt. The CM spin is a conserved observable for a free particle while the CC spin is not.



It is moving in an orthogonal direction to the linear momentum, and only its projection on p,
the helicity S · p, is conserved.

Let us assume now that the particle is under some external electromagnetic force F defined
at the CC position. In this case, J and p are no longer conserved and thus dJ/dt = r ×F and
dp/dt = F .

dJ

dt
= r × F =

dr

dt
× p + r × dp

dt
+

dS

dt
, or

dJ

dt
= r × F =

dq

dt
× p + q × dp

dt
+

dSCM

dt
,

dS

dt
= p× u, or

dSCM

dt
= (r − q)× F .

The CC spin satisfies the same dynamical equation as in the free case, it moves in an orthogonal
direction to the linear momentum, although now p is not conserved. The CM spin satisfies the
usual torque equation: the torque of the external force w.r.t. the CM is the time variation of
this spin.

Both spins can be found in the literature. The Bargmann-Michel-Telegdi spin [1] is the
covariant generalization of the CM spin. The CC spin satisfies the same dynamical equation as
Dirac’s spin operator in the quantum case.

2. Classical model of a Dirac particle
If an elementary spinning particle has two separate centers, the free motion implies that the
CM is moving at a constant velocity v. But, what about the CC motion? If the motion is
free it means that we are not able to distinguish, at two different instants, a different dynamical
behaviour. But if the trajectory of the CC is a regular curve (i.e. a continuous and differentiable
trajectory) it means that the velocity of the CC has to be of a constant modulus, the same at
any time, and the trajectory of a constant curvature and torsion. The CC travels along a helix
at a constant velocity, and this description must be valid for any inertial observer.

This implies that the CC velocity has to be unreachable for any inertial observer. Otherwise,
if some inertial observer is at rest w.r.t. the CC at a certain instant t, because the CC motion
is accelerated, it will have for that observer, a velocity different from zero at a subsequent time,
and thus contradictory with the assumption that the velocity is of constant absolute value for
any inertial observer. The only possibility is that the CC velocity is the speed of light and only
a relativistic treatment is allowed.

Figure 1. Model of a free classical
Dirac particle, with two separate
centers, showing the precession of
the CC spin S and the conserved
CM spin SCM . The CC moves
along a helix at the speed of light.
The CC spin is always orthogonal to
the velocity and acceleration of the
charge and precesses around p. The
separation between CC and CM is
h̄/2mc, half Compton’s wavelength,
and the frequency of this internal
motion, in the CM frame, is 2mc2/h.
It is described in [2].

This is precisely the main feature of a classical model of an elementary particle, which satisfies
Dirac’s equation when quantized, we have developped [2]. The free motion of this model is



depicted in Figure 1, where we see the straight motion of the CM and the helical motion at
the speed of light of the CC. We also depict the two above mentioned spins, S and SCM . The
total spin S has two parts S = Z + W , one W related tom the rotation of the particle and in
the direction of the angular velocity while the zitterbewegug part W is due to the separation
between CC and CM and has the opposite direction, as depicted in figure 2.

Figure 2. The classical description of a
spinning Dirac particle in the CM frame.
The CC r moves at the speed of light.
The spin has two parts, one W related to
the rotation of the particle and another
in the opposite direction Z related to the
zitterbewegung part of the motion of the
CC around the CM.

3. Dirac’s analysis of the electron
In his original 1928 papers [3, 4] Dirac describes an electron in terms of a four-component spinor
ψ(t, r), defined at point r, and a Hamiltonian

H = c(p− eA(t, r)) ·α + βmc2 + eφ(t, r)

where β and α are Dirac’s matrices and φ and A the scalar and vector external potentials, also
defined at the point r.

When computing the velocity of point r, Dirac arrives at: u = i/h̄[H, r] = cα, which is
expressed in terms of α matrices and writes, ‘. . . a measurement of a component of the velocity
of a free electron is certain to lead to the result ±c. This conclusion is easily seen to hold also
when there is a field present’, because it holds even if the external potentials are not vanishing.

The point r oscillates in a region of order of Compton’s wavelength: ‘The oscillatory part of
x1 is small, . . . , which is of order of magnitude h̄/mc, . . .’. This is the amplitude of the motion
of the CC around the CM in our model.

The linear momentum does not have the direction of the velocity u, but must be related to
some average value of it: . . . ‘the x1 component of the velocity, cα1, consists of two parts, a
constant part c2p1H

−1, connected with the momentum by the classical relativistic formula, and
an oscillatory part, whose frequency is at least 2mc2/h, . . .’, the same as in the above classical
model.

The total angular momentum w.r.t. the origin of observer’s frame, takes the form

J = r × p +
h̄

2
σ = r × p + S

where the orbital part r × p and the spin part S = h̄σ/2, are not separately conserved for a
free electron but the spin satisfies,

dS

dt
=

i

h̄
[H, S] = p× cα = p× u.



even under some external interaction. This is the dynamical equation of the CC spin.
The electron, ‘. . . behaves as though it has a magnetic moment given by

µ = g
e

2m
S =

eh̄

2m
σ, g = 2,

an also an instantaneous electric dipole’

d =
ieh̄

2mc
α.

If the previous classical analysis of an elementary particle with two separate centers is taken
into account, it is not difficult to conclude that Dirac’s electron is an object with two centers,
described by a spinor ψ(t, r) which is a function of the CC position r. The linear momentum is
not lying along the velocity of point r, but around some average value of it. Dirac spin operator
is not the angular momentum w.r.t. the CM, but it represents the angular momentum w.r.t. the
CC, even under some external interaction. The magnetic moment is produced by the motion
of the charge, and the separation between these two points defines an electric dipole moment
d = e(r − q).

All these features of Dirac’s analysis are contained in the classical description depicted in
figure 2 in which the velocity of the CC is always c.

4. Electron dynamical equations
If we call the position of the CM q, and its velocity v = dq/dt, v < c, and for the CC position
r, and u = dr/dt, in the relativistic case always u = c. The dynamical equation of the spinning
electron in an external electromagnetic field is computed in [5] and are given by the expressions
(1) and (2). In the nonrelativistic case, the second equation (2) is replaced by the third (3)
showing that the relative motion of the CC around the CM is a kind of harmonic motion with a
constant frequency ω while in the relatistic case the internal frequency depends on the velocity
of the CM. The internal frequency of a relativistic electron decreases with its velocity, so that a
faster electron a slower internal frequency as suggested by the so called twin paradox.

dp

dt
= e(E(t, r) + u×B(t, r)), p = γ(v)mv (1)

d2r

dt2
+

c2 − v · u
(r − q)2

(r − q) = 0, (RELATIVISTIC) (2)

d2r

dt2
+ ω2(r − q) = 0, (NON REL) (3)

We shall use these dynamical equations to analyze the classical behaviour of a spinning
electron in two situations: The analysis of an electron-electron interaction, and the analysis of
the interaction of a transversally polarized electron with a triangular potential barrier. In the
firs case we shaw that, in addition to the usal sccatering between electrons, it is also possible
that two spinning electrons with their spins parallel, can form bound states. This is done in
next section. The analysis of tunnelling is defered till section 6.

5. Formation of bound pairs
We shall use the above dynamical equations to analyze the electron-electron interaction but for
particles with spin. Here the fields are the electromagnetic field produced by either particle on
each other.



Figure 3. Scattering of two equal
charged particles with parallel spins.

See in figure 3 the scattering of two equal charged particles with parallel spins. The centre of
mass motion of each particle is depicted with an arrow. If the two particles do not approach each
other too much these trajectories correspond basically to the trajectories of two spinless point
particles interacting through an instantaneous Coulomb force (see figure 4). By too much we
mean that their relative separation between the corresponding centres of mass is always much
greater than Compton’s wavelength. For high energy interaction the two particles approach
each other to very small distances where the interaction term and the exact position of both
charges, becomes important. In this case new phenomena appear. We can have, for instance, a
forward scattering, which is not described in the classical spinless case, or even the formation of
bound pairs for particles of the same charge, which we shall analyse in what follows.

Figure 4. Scattering of two spinning
particles with parallel spins. The in-
ner black lines represent the motion
of two spinless electrons interacting
through a Coulomb force, which have
as initial conditions the same posi-
tions and velocities as the CM’s po-
sitions and velocities of the spinning
electrons. There is a small difference
provided the CC’s do not approach
each other too much.

In figure 5 we represent an initial situation for two equal charged particles with parallel
spins such that the corresponding centres of mass are separated by a distance below Compton’s
wavelength. Remember that the radius of the internal motion is half Compton’s wavelength.
We locate the charge labels ea at the corresponding points ra and the corresponding mass labels
ma to the respective centre of mass qa. We see that a repulsive force between the charges
when both charges have opposite phases implies an atractive force between the corresponding
centres of mass. If the initial situation is such that the centres of mass separation is greater



than Compton’s wavelength, the force is always repulsive irrespective of the internal phases of
the particles.

Figure 5. Boundary values for two
Dirac particles with parallel spins and
with a separation between the centres
of mass below Compton’s wavelength.
The dotted lines represent the previs-
ible clockwise motion of each charge.
If the phases are opposite the repul-
sive force between charges becomes an
atractive force between the CM’s.

The analysis of this interaction is treated in more detail in [5]. In figure 6 we show the
bound motion of both particles when their centres of mass are initially separated q1x = −q2x =
0.2×Compton’s wavelength, q̇1x = −q̇2x = 0.008c and q̇1y = −q̇2y = 0.001c, and opposite phases.

Figure 6. Bound motion of the CC’s
and CM’s of two spinning particles
with parallel spins, and with a centre
of mass velocity v ' 0.008c, for
an initial separation between the
centres of mass of 0.2×Compton’s
wavelength.

We have found bound motions provided the velocity of each electron, in the CM frame, will
be below 0.01c. If the phases of the two particles are the same (or almost the same) there is
no possibility of formation of a bound state. The two fermions of the bound state have the
same spin and energy. They differ that their phases and linear momenta are opposite to each
other. Is this difference in the phase a way to overcome at the classical level, the Pauli exclusion
principle?



6. Tunneling
As a consequence of the zitterbewegung and therefore of the separation between the center of
mass and center of charge, we shall see that spinning particles can have a non-vanishing crossing
of potential barriers.

Figure 7. Uniform field triangular
potential barrier. We show in red, the
variation of the kinetic energy K(q)
of a spinless electron. It goes to zero,
when the eelctron penetrates into the
barrier. Then the electron stops and
is rejected backwards. A spinless
electron never crosses the barrier.

Let us consider the potential barrier depicted in figure 7. On the left side AC the electrostatic
field produces a force on the electrons to the left while on the right side region CB, the force is to
the right. A spinless electron, accelerated with a potential Va has a kinetic energy K(q) such that
when the electron enters into the field decreases till zero, stops and is finally rejected. A spinless
electron with kinetic energy below eV0, never crosses that barrier. However, a tranversally
polarized spinning electron can tunnel the above device.

We solve the electron dynamical equations (1) and (2) in that potential of left width a and
right width b, respectively, and depict in figure 8 the variation of the kinetic energy during the
crossing. In this figure, the width of the potential is a = b = 1, i.e., in units of the separation
between the CC and CM. In figure 9 we depict the variation of the kinetic energy when the right
side of the potential has a width of b = 10 times this separation. The whole classical analysis
is dimensionless so that the crossing is independent of the absolute value of the potential V0. A
more detailed analysis is done in [6]

Figure 8. Evolution of the kinetic
energy of a transversally polarized
electron in a triangular potential
barrier of left width a = 1 and right
width b = 1.

To compare the classical crossing with the quantum one we use the solution of this quantum
mechanical problem as solved by Landau [7]. The quantum probability depends on the potential
V0 and for different V0 values is depicted in figure 10 as a function of the right width b of the
barrier, with a fixed value for the left width a. This quantum probability has been obtained
by assuming that we have electrons of a uniform distribution in energy, below the top of the
potential. Simmilarly, in the same figure we shaw the classical probability of tunneling P (b)
computed from the previous solved equations for different values of b. If we consider for
the classical spinning particle the same uniform distribution of particles, then, the function
P (b) = 1 − Kc(b), where Kc(b) is the minimum dimensionless kinetic energy for crossing



Figure 9. Evolution of the kinetic en-
ergy of a transversally polarized electron
in a triangular potential barrier of left
width a = 1 and right width a = 10.

computed before, represents the ratio of the particles that with kinetic energy below the top of
the potential cross the barrier because of the spin contribution.

Figure 10. Classical probability P (b)
and Quantum probability of tunneling
for various potentials V0. Classical Prob-
ability is independent of the potential
and quantum probability decreases with
V0. The Quantum Probability is greater
than the Classical Probability for cross-
ing because of the Uncertainty Principle.

Figure 11. Potential barrier where Ec

represents the minimum kinetic energy
for crossing for the classical spinning
particle. For a quantum particle of
kinetic energy E, the value of the
crossing energy is between E + ∆E
and E − ∆E, with ∆E∆tc ≥ h̄,
being ∆tc the uncertainty in the time
of crossing. It thus implies that a
quantum particle with an energy below
the crossing energy, has a probability of
having a greater energy than Ec and thus
it crosses the barrier.

The classical probability of crossing is smaller then the quantum one because of the
uncertainty principle. But when the potential V0 rises, the quantum probability approaches
the classical one. The reason is described in figure 11. If ∆tc is the uncertainty in the time



of crossing the uncertainty principle implies that the uncertainty in the energy of the electron
satisfies ∆E ∆tc ≥ h̄. It therefore implies that a quantum particle with an energy below the
crossing energy can have a nonvanishing probability of having a greater energy than Ec if this
value lies in the range Ec ∈ (E −∆E, E + ∆E). This ∆E decreases when the uncertainty ∆tc
increases which is the case for faster particles. This means that a quantum particle with an
average energy below the crossing energy Ec, and an uncertainty ±∆E can cross the barrier
while the classical spinning particle does not. When the potential V0 increases the quantum
probability of crossing approaches the probability computed for the classical spinning particle.
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